Load Balancing Part 1: Dynamic Load Balancing

Kathy Yelick
yelick@cs.berkeley.edu
www.cs.berkeley.edu/~yelick/cs194f07
Implementing Data Parallelism

• Why didn’t data parallel languages like NESL, *LISP, pC++, HPF, ZPL take over the world in the last decade?

• 1) parallel machines are made from commodity processors, not 1-bit processors; the compilation problem is nontrivial (not necessarily impossible) and users were impatient.

• 2) data parallelism is not a good model when the code has lots of branches (recall “turn off processors” model).

![Logical execution of statement](image)

![Mapping to bulk-synchronous execution](image)
Load Imbalance in Parallel Applications

The primary sources of inefficiency in parallel codes:
• Poor single processor performance
 • Typically in the memory system
• Too much parallelism overhead
 • Thread creation, synchronization, communication
• Load imbalance
 • Different amounts of work across processors
 • Computation and communication
 • Different speeds (or available resources) for the processors
 • Possibly due to load on the machine
• How to recognizing load imbalance
 • Time spent at synchronization is high and is uneven across processors, but not always so simple …
Measuring Load Imbalance

• Challenges:
 • Can be hard to separate from high synch overhead
 • Especially subtle if not bulk-synchronous
 • “Spin locks” can make synchronization look like useful work
 • Note that imbalance may change over phases
 • Insufficient parallelism always leads to load imbalance
 • Tools like TAU can help (acts.nersc.gov)
Tough Problems for Data Parallelism

- Hierarchical parallelism
 - E.g., Loosely connected “cities” of life variation of HW2
 - List of grids representation; nested data parallelism might work
 - Corresponds to real “Adaptive Mesh Refinement” algorithms

- Divide and conquer parallelism
 - E.g., Quicksort relies on either nested data parallelism or tasks

- Branch-and-bound search
 - Game tree search: consider possible moves, search recursively
 - Problem: amount of work depends on computed values; not a function only of input size

- Event-driven execution
 - Actor model for multi-player games, asynchronous circuit simulation, etc.

Load balancing is a significant problem for all of these
Load Balancing Overview

Load balancing differs with properties of the tasks (chunks of work):

• **Tasks costs**
 • Do all tasks have equal costs?
 • If not, when are the costs known?
 • Before starting, when task created, or only when task ends

• **Task dependencies**
 • Can all tasks be run in any order (including parallel)?
 • If not, when are the dependencies known?
 • Before starting, when task created, or only when task ends

• **Locality**
 • Is it important for some tasks to be scheduled on the same processor (or nearby) to reduce communication cost?
 • When is the information about communication known?
Outline

• Motivation for Load Balancing
• Recall graph partitioning as load balancing technique
• Overview of load balancing problems, as determined by
 • Task costs
 • Task dependencies
 • Locality needs
• Spectrum of solutions
 • Static - all information available before starting
 • Semi-Static - some info before starting
 • Dynamic - little or no info before starting
• Survey of solutions
 • How each one works
 • Theoretical bounds, if any
 • When to use it
Task Cost Spectrum

Schedule a set of tasks under one of the following assumptions:

Easy: The tasks all have equal (unit) cost.

\[\begin{array}{c}
\text{n items} \\
\hline
\end{array} \quad \begin{array}{c}
\text{p bins} \\
\hline
\end{array} \]

branch-free loops

Harder: The tasks have different, but known, times.

\[\begin{array}{c}
\text{n items} \\
\hline
\end{array} \quad \begin{array}{c}
\text{p bins} \\
\hline
\end{array} \]

sparse matrix-vector multiply

Hardest: The task costs unknown until after execution.

\[\begin{array}{c}
\text{n items} \\
\hline
\end{array} \quad \begin{array}{c}
\text{p bins} \\
\hline
\end{array} \]

GCM, circuits, search
Task Dependency Spectrum

Schedule a graph of tasks under one of the following assumptions:

Easy: The tasks can execute in any order. dependence
free loops

Harder: The tasks have a predictable structure.
wave-front out-tree in-tree general dag
balanced or unbalanced

Hardest: The structure changes dynamically (slowly or quickly) search, sparse LU
Task Locality Spectrum (Communication)

Schedule a set of tasks under one of the following assumptions:

Easy: The tasks, once created, do not communicate.

Harder: The tasks communicate in a predictable pattern.

![Regular and irregular graphs](image)

Hardest: The communication pattern is unpredictable.

- *embarrassingly parallel*
- *PDE solver*
- *discrete event simulation*
Spectrum of Solutions

A key question is when certain information about the load balancing problem is known. Many combinations of answer leads to a spectrum of solutions:

- **Static scheduling.** All information is available to scheduling algorithm, which runs before any real computation starts.
 - *Off-line* algorithms make decisions before execution time
- **Semi-static scheduling.** Information may be known at program startup, or the beginning of each timestep, or at other well-defined points.
 - Offline algorithms may be used, between major steps.
- **Dynamic scheduling.** Information is not known until mid-execution.
 - *On-line* algorithms make decisions mid-execution
Dynamic Load Balancing

- Motivation for dynamic load balancing
 - Search algorithms as driving example
- Centralized load balancing
 - Overview
 - Special case for schedule independent loop iterations
- Distributed load balancing
 - Overview
 - Engineering
 - Theoretical results

- Example scheduling problem: mixed parallelism
 - Demonstrate use of coarse performance models
Search

• Search problems are often:
 • Computationally expensive
 • Have very different parallelization strategies than physical simulations.
 • Require dynamic load balancing

• Examples:
 • Optimal layout of VLSI chips
 • Robot motion planning
 • Chess and other games (N-queens)
 • Speech processing
 • Constructing phylogeny tree from set of genes
Example Problem: Tree Search

• In Tree Search the tree unfolds dynamically
• May be a graph if there are common sub-problems along different paths
• Graphs unlike meshes which are precomputed and have no ordering constraints
Sequential Search Algorithms

- **Depth-first search (DFS)**
 - Simple backtracking
 - Search to bottom, backing up to last choice if necessary
 - Depth-first branch-and-bound
 - Keep track of best solution so far ("bound")
 - Cut off sub-trees that are guaranteed to be worse than bound
 - Iterative Deepening
 - Choose a bound on search depth, d and use DFS up to depth d
 - If no solution is found, increase d and start again
 - Iterative deepening A* uses a lower bound estimate of cost-to-solution as the bound

- **Breadth-first search (BFS)**
 - Search across a given level in the tree
Depth vs Breadth First Search

• DFS with Explicit Stack
 • Put root into Stack
 • Stack is data structure where items added to and removed from the top only
 • While Stack not empty
 • If node on top of Stack satisfies goal of search, return result, else
 – Mark node on top of Stack as “searched”
 – If top of Stack has an unsearched child, put child on top of Stack, else remove top of Stack

• BFS with Explicit Queue
 • Put root into Queue
 • Queue is data structure where items added to end, removed from front
 • While Queue not empty
 • If node at front of Queue satisfies goal of search, return result, else
 – Mark node at front of Queue as “searched”
 – If node at front of Queue has any unsearched children, put them all at end of Queue
 – Remove node at front from Queue
Parallel Search

• Consider simple backtracking search
• Try static load balancing: spawn each new task on an idle processor, until all have a subtree

Load balance on 2 processors

Load balance on 4 processors

• We can and should do better than this …
Centralized Scheduling

- Keep a queue of task waiting to be done
 - May be done by manager task
 - Or a shared data structure protected by locks
Centralized Task Queue: Scheduling Loops

- When applied to loops, often called self scheduling:
 - Tasks may be range of loop indices to compute
 - Assumes independent iterations
 - Loop body has unpredictable time (branches) or the problem is not interesting

- Originally designed for:
 - Scheduling loops by compiler (or runtime-system)
 - Original paper by Tang and Yew, ICPP 1986

- This is:
 - Dynamic, online scheduling algorithm
 - Good for a small number of processors (centralized)
 - Special case of task graph – independent tasks, known at once
Variations on Self-Scheduling

- Typically, don’t want to grab smallest unit of parallel work, e.g., a single iteration
 - Too much contention at shared queue
- Instead, choose a chunk of tasks of size K.
 - If K is large, access overhead for task queue is small
 - If K is small, we are likely to have even finish times (load balance)

- (at least) Four Variations:
 1. Use a fixed chunk size
 2. Guided self-scheduling
 3. Tapering
 4. Weighted Factoring
Variation 1: Fixed Chunk Size

• Kruskal and Weiss give a technique for computing the optimal chunk size

• Requires a lot of information about the problem characteristics
 • e.g., task costs as well as number

• Not very useful in practice.
 • Task costs must be known at loop startup time
 • E.g., in compiler, all branches be predicted based on loop indices and used for task cost estimates
Variation 2: Guided Self-Scheduling

• Idea: use larger chunks at the beginning to avoid excessive overhead and smaller chunks near the end to even out the finish times.
 • The chunk size K_i at the i^{th} access to the task pool is given by $\text{ceiling}(R_i/p)$
 • where R_i is the total number of tasks remaining and
 • p is the number of processors

Variation 3: Tapering

• Idea: the chunk size, K_i is a function of not only the remaining work, but also the task cost variance
 • variance is estimated using history information
 • high variance \Rightarrow small chunk size should be used
 • low variance \Rightarrow larger chunks OK

 • Gives analysis (based on workload distribution)
 • Also gives experimental results -- tapering always works at least as well as GSS, although difference is often small
Variation 4: Weighted Factoring

- If hardware is heterogeneous (some processors faster than others)
- Idea: similar to self-scheduling, but divide task cost by computational power of requesting node

- Also useful for shared resource clusters, e.g., built using all the machines in a building
 - as with Tapering, historical information is used to predict future speed
 - “speed” may depend on the other loads currently on a given processor

- See Hummel, Schmit, Uma, and Wein, SPAA ‘96
 - includes experimental data and analysis
When is Self-Scheduling a Good Idea?

Useful when:

- A batch (or set) of tasks without dependencies
 - can also be used with dependencies, but most analysis has only been done for task sets without dependencies
- The cost of each task is unknown
- Locality is not important
- Shared memory machine, or at least number of processors is small – centralization is OK
Distributed Task Queues

• The obvious extension of task queue to distributed memory is:
 • a distributed task queue (or “bag”)
 • Doesn’t appear as explicit data structure in message-passing
 • Idle processors can “pull” work, or busy processors “push” work

• When are these a good idea?
 • Distributed memory multiprocessors
 • Or, shared memory with significant synchronization overhead or very small tasks which lead to frequent task queue accesses
 • Locality is not (very) important
 • Tasks that are:
 • known in advance, e.g., a bag of independent ones
 • dependencies exist, i.e., being computed on the fly
 • The costs of tasks is not known in advance
Distributed Dynamic Load Balancing

- Dynamic load balancing algorithms go by other names:
 - Work stealing, work crews, …
- Basic idea, when applied to tree search:
 - Each processor performs search on disjoint part of tree
 - When finished, get work from a processor that is still busy
 - Requires asynchronous communication

![Diagram showing the process of distributed dynamic load balancing.]

1. Service pending messages
2. Select a processor and request work
3. Do fixed amount of work
4. Service pending messages
5. Got work
6. No work found
7. Got work
8. Idle
How to Select a Donor Processor

• Three basic techniques:
 1. Asynchronous round robin
 • Each processor k, keeps a variable “target$_k$”
 • When a processor runs out of work, requests work from target$_k$
 • Set target$_k$ = (target$_k$ +1) mod procs
 2. Global round robin
 • Proc 0 keeps a single variable “target”
 • When a processor needs work, gets target, requests work from target
 • Proc 0 sets target = (target + 1) mod procs
 3. Random polling/stealing
 • When a processor needs work, select a random processor and request work from it

• Repeat if no work is found
How to Split Work

• First parameter is number of tasks to split off
 • Related to the self-scheduling variations, but total number of tasks is now unknown

• Second question is which one(s)
 • Send tasks near the bottom of the stack (oldest)
 • Execute from the top (most recent)
 • May be able to do better with information about task costs
Theoretical Results (1)

Main result: A simple randomized algorithm is optimal with high probability

- Karp and Zhang [88] show this for a tree of unit cost (equal size) tasks
 - Parent must be done before children
 - Tree unfolds at runtime
 - Task number/priorities not known a priori
 - Children “pushed” to random processors

- Show this for independent, equal sized tasks
 - “Throw balls into random bins”: $\Theta \left(\frac{\log n}{\log \log n} \right)$ in largest bin
 - Throw d times and pick the smallest bin: $\frac{\log \log n}{\log d} = \Theta (1)$ [Azar]
 - Extension to parallel throwing [Adler et all 95]
 - Shows $p \log p$ tasks leads to “good” balance
Theoretical Results (2)

Main result: A simple randomized algorithm is optimal with high probability

- Blumofe and Leiserson [94] show this for a fixed task tree of variable cost tasks
 - their algorithm uses task pulling (stealing) instead of pushing, which is good for locality
 - i.e., when a processor becomes idle, it steals from a random processor
 - also have bounds on the total memory required
- Chakrabarti et al [94] show this for a dynamic tree of variable cost tasks
 - uses randomized pushing of tasks instead of pulling: worse for locality, but faster balancing in practice
 - works for branch and bound, i.e. tree structure can depend on execution order
Distributed Task Queue References

- Introduction to Parallel Computing by Kumar et al (text)
- Multipol library (See C.-P. Wen, UCB PhD, 1996.)
 - Part of Multipol (www.cs.berkeley.edu/projects/multipol)
 - Try to push tasks with high ratio of cost to compute/cost to push
 - Ex: for matmul, ratio = $2n^3 \text{cost(flop)} / 2n^2 \text{cost(send a word)}$
- Goldstein, Rogers, Grunwald, and others (independent work) have all shown
 - advantages of integrating into the language framework
 - very lightweight thread creation
- CILK (Leiserson et al) (supertech.lcs.mit.edu/cilk)
 - Space bound on task stealing
- X10 from IBM
Diffusion-Based Load Balancing

• In the randomized schemes, the machine is treated as fully-connected.
• Diffusion-based load balancing takes topology into account
 • Locality properties better than prior work
 • Load balancing somewhat slower than randomized
 • Cost of tasks must be known at creation time
 • No dependencies between tasks
Diffusion-based load balancing

- The machine is modeled as a graph
- At each step, we compute the weight of task remaining on each processor
 - This is simply the number if they are unit cost tasks
- Each processor compares its weight with its neighbors and performs some averaging
 - Analysis using Markov chains
- See Ghosh et al, SPAA96 for a second order diffusive load balancing algorithm
 - takes into account amount of work sent last time
 - avoids some oscillation of first order schemes
- Note: locality is still not a major concern, although balancing with neighbors may be better than random
Load Balancing Summary

- Techniques so far deal with
 - Unpredictable loads → online algorithms
- Two scenarios
 - Fixed set of tasks with unknown costs: self-scheduling
 - Dynamically unfolding set of tasks: work stealing
- Little concern over locality, except
 - Stealing (pulling) is better than pushing (sending work away)
 - When you steal, steal the oldest tasks which are likely to generate a lot of work
- What if locality is very important?
 - Load balancing based on data partitioning
 - If equal amounts of work per grid point, divide grid points evenly
 - This is what you’re doing in HW3
 - Optimize locality by minimizing surface area (perimeter in 2D) where communication occurs; minimize aspect ratio of blocks
- What if we know the task graph structure in advance?
- More algorithms for these other scenarios
Project Discussion
Project outline

• Select an application or algorithm (or set of algorithms) Choose something you are personally interested in that has potential to need more compute power
 • Machine learning (done for GPUs in CS267)
 • Algorithm from “physics” game, e.g., collision detection
 • Sorting algorithms
 • Parsing html (ongoing project)
 • Speech or image processing algorithm
 • What are games, medicine, SecondLife, etc. limited by?

• Select a machine (or multiple machines)
 • Preferably multicore/multisocket SMP, GPU, Cell (>= 8 cores)

• Proposal (due Fri, Oct 19): Describe problem, machine, predict bottlenecks and likely parallelism (~1-page)
Project continued

Project steps:
• Implement a parallel algorithm on machine(s)
• Analyze performance (!); develop performance model
 • Serial work
 • Critical path in task graph (can’t go faster)
 • Memory bandwidth, arithmetic performance, etc.
• Tune performance
• We will have preliminary feedback sessions in class!
• Write up results with graphs, models, etc.
 • Length is not important, but think of 8-10 pages
• Note: what is the question you will attempt to answer?
 • X machine is better than Y for this algorithm (and why)
 • This algorithm will scale linearly on X (for how many procs?)
 • This algorithm is entirely limited by memory bandwidth