Parallel Numerical Algorithms

- Lecture schedule:
 - 3/8: Dense Matrix Products
 - BLAS 1: Vector operations
 - BLAS 2: Matrix-Vector operations
 - BLAS 3: Matrix-Matrix operations
 - Use of Performance models in algorithm design
 - 3/10: Dense Matrix Solvers
 - 3/12: Dense Matrix Solvers
 - Use of Performance models in algorithm design
 - 3/15: Sparse Matrix Products
 - 3/17: Sparse Direct Solvers

Parallel Vector Operations

Some common vector operations for vectors x,y,z:

- Vector add: z = x + y
 - Trivial to parallelize if vectors are aligned
- AXPY: z = a*x + y (where a is scalar)
 - Broadcast a, followed by independent * and +
- Dot product: s = \sum x[j] * y[j]
 - Independent * followed by + reduction

Broadcast and reduction

- Broadcast of 1 value to p processors in log p time
- Reduction of p values to 1 in log p time
- Takes advantage of associativity in +,*, min, max, etc.

Broadcast Algorithms

- Sequential or "centralized" algorithm
 - P0 sends value to P-1 other processors in sequence
 - O(P) algorithm
 - Note: variations in UPC/Titanium model based on whether P0 writes to all others, or others read from P0
- Tree-based algorithm
 - May vary branching factor
 - O(log P) algorithm
- If broadcasting large data blocks, may break into pieces and pipeline

Lower Bound on Parallel Performance

- To compute a function of n inputs \(x_1, \ldots, x_n \)
 - Given only binary operations on our machine.
 - In 1 time step, output depends on at most 2 inputs
 - In 2 time steps, output depends on at most 4 inputs
 - Adding a time step increases possible inputs by at most 2x
 - In k-log n time steps, output depends on at most n inputs
 - A function of n inputs requires at least log n parallel steps.
Scan (or Parallel prefix), A Digression

- What if you want to compute partial sums
- Definition: the parallel prefix operation take a binary associative operator \(\oplus \), and an array of \(n \) elements
 \[[a_0, a_1, a_2, \ldots, a_{n-1}] \]
 and produces the array
 \[[a_0, (a_0 \oplus a_1), \ldots, (a_0 \oplus a_1 \ldots \oplus a_{n-1})] \]
- Example: add scan of
 \[[1, 2, 0, 4, 2, 1, 1, 3] \]
 is \[[1, 3, 3, 7, 9, 10, 11, 14] \]
- Can be implemented in \(O(n) \) time by a serial algorithm
 - Obvious \(n-1 \) applications of operator will work

Applications of scans

- There are several applications of scans, some more obvious than others
 - lexically compare string of characters
 - add multi-precision numbers (represented as array of numbers)
 - evaluate polynomials
 - implement bucket sort and radix sort
 - solve tridiagonal systems
 - to dynamically allocate processors
 - to search for regular expression (e.g., grep)

Prefix Sum in parallel

- Parallel prefix works on any associative operator
- Updating “odds”
- Names: \(+\) (APL), \(\text{cumsum}(\text{Matlab})\), MPI_SCAN
- Warning: \(2n \) operations used when only \(n-1 \) needed

Implementing Scans

- Tree summation 2 phases
 - up sweep
 - get values L and R from left and right child
 - save L in local variable \(\text{Mine} \)
 - compute \(\text{Tmp} = L + R \) and pass to parent
 - down sweep
 - get value \(\text{Tmp} \) from parent
 - send \(\text{Tmp} \) to left child
 - send \(\text{Tmp} + \text{Mine} \) to right child

E.g., Using Scans for Array Compression

- Given an array of \(n \) elements
 \[[a_0, a_1, a_2, \ldots, a_{n-1}] \]
 and an array of flags
 \[[1, 0, 1, 0, 0, \ldots] \]
 compress the flagged elements
 \[[a_0, a_2, a_3, a_6, \ldots] \]
- Compute a “prescan” i.e., a scan that doesn’t include the element at position \(i \) in the sum
 \[[0, 1, 1, 2, 3, 3, 4, \ldots] \]
- Gives the index of the \(i \)-th element in the compressed array
 - If the flag for this element is 1, write it into the result array at the given position
E.g., Fibonacci via Matrix Multiply Prefix

\[
\begin{bmatrix}
F_{n+1} \\
F_n
\end{bmatrix} =
\begin{bmatrix}
1 & 1 \\
1 & 0
\end{bmatrix}
\begin{bmatrix}
F_n \\
F_{n-1}
\end{bmatrix}
\]

Can compute all \(F_n \) by matmul_prefix on
\[
\begin{bmatrix}
F_0 & F_1 & F_2 & \ldots & F_{n-1} \\
1 & 0 & 0 & \ldots & 0
\end{bmatrix}
\]
then select the upper left entry.

Segmented Operations

Inputs = Ordered Pairs
(operand, boolean)
e.g. \((x, T)\) or \((x, F)\)

<table>
<thead>
<tr>
<th>+</th>
<th>y, T</th>
<th>y, F</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x, T)</td>
<td>x+y, T</td>
<td>(y, F)</td>
</tr>
<tr>
<td>(x, F)</td>
<td>(y, T)</td>
<td>(x@y, F)</td>
</tr>
</tbody>
</table>

\[\text{e.g.}\]

\[
\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
T & T & F & F & F & T & F & T
\end{array}
\]
Result:

\[
\begin{array}{cccccc}
1 & 3 & 3 & 7 & 12 & 6 & 7 & 8
\end{array}
\]

End of Digression

Summary of data parallel operations
- Vector add, etc. is embarrassingly parallel
- Broadcast used for axpy operations
- Reduction used for dot product
- Parallel prefix (scan) is a variation on reduction with partial results
 - Useful in parallelizing surprising algorithms
 - If something seems serial, try this

Now back to our regular programming
We have covered the idea with most BLAS1 (vector) operations
Now onto vector/matrix (BLAS2) and matrix-matrix (BLAS3)

Parallel Matrix-Vector Product

- Compute \(y = y + A^T x \), where \(A \) is a dense matrix
 - Layout: 1D by rows
 - Algorithm:
 - Foreach processor \(i \)
 - Broadcast \(x(i) \)
 - Compute \(y(i) = A(i)^T x \)
 - \(A(i) \) refers to the \(n \) by \(n/p \) block row that processor \(i \) owns, \(x(i) \) and \(y(i) \) similarly refer to segments of \(x,y \) owned by \(i \)
 - Algorithm uses the formula
 \[
 y(i) = y(i) + A(i)^T x = y(i) + \Sigma \left(A(i)^T x(i)\right)
 \]

Matrix-Vector Product

- A column layout of the matrix eliminates the broadcast
 - But adds a reduction to update the destination
- A blocked layout uses a broadcast and reduction, both on a subset of processors
 - \(\sqrt{p} \) for square processor grid
Parallel Matrix Multiply

- Computing $C = C + A \times B$
- Using basic algorithm: $2 \times n^3$ Flops
- Variables are:
 - Data layout
 - Topology of machine
 - Scheduling communication
- Use of performance models for algorithm design
 - Message Time = "latency" + #words * time-per-word
 - $\alpha + n^b$

Latency Bandwidth Model

- Network of fixed number P of processors
 - fully connected
 - each with local memory
- Latency (α)
 - accounts for varying performance with number of messages
 - gap (g) in logP model may be more accurate cost if messages are pipelined
- Inverse bandwidth (β)
 - accounts for performance varying with volume of data
- Efficiency (in any model):
 - serial time / ($P \times$ parallel time)
 - perfect (linear) speedup \Rightarrow efficiency = 1

Matrix Multiply with 1D Column Layout

- Assume matrices are $n \times n$ and n is divisible by p
- $A(i)$ refers to the $n \times n/p$ block column that processor i owns (similarly for $B(i)$ and $C(i)$)
- $B(i,j)$ is the $n/p \times n/p$ sublock of $B(i)$
 - in rows $j \times n/p$ through $(j+1) \times n/p$
- Algorithm uses the formula
 - $C(i) = C(i) + A \times B(i) = C(i) + \sum_j A(j) \times B(i,j)$

Matrix Multiply: 1D Layout on Bus or Ring

- Algorithm uses the formula
 - $C(i) = C(i) + A \times B(i) = C(i) + \sum_j A(j) \times B(j)$

MatMul: 1D layout on Bus without Broadcast

Naïve algorithm:

```plaintext
C(myproc) = C(myproc) + A(myproc) \times B(myproc,myproc)
for i = 0 to p-1
  for j = 0 to p-1 except i
    if (myproc == i) send A(i) to processor j
    if (myproc == j)
      receive A(i) from processor i
      C(myproc) = C(myproc) + A(i) \times B(i,myproc)
barrier
```

Cost of inner loop:

- computation: $2n^2(n/p)^2 = 2n^3/p^2$
- communication: $\alpha + \beta n^2 / p$

Naïve MatMul (continued)

Cost of inner loop:

- computation: $2n^2(n/p)^2 = 2n^3/p^2$
- communication: $\alpha + \beta n^2 / p$

Only 1 pair of processors i and j are active on any iteration, and of those, only i is doing computation \Rightarrow the algorithm is almost entirely serial

Running time:

- $= \left(p(p-1) + 1 \right)^2$ computation + $p^2(p-1)$ communication
- $= 2n^2 + p^2\alpha + p^3n^b$

this is worse than the serial time and grows with p
Matmul for 1D layout on a Processor Ring

- Pairs of processors can communicate simultaneously

 Copy A(myproc) into Tmp
 C(myproc) = C(myproc) + Tmp*B(myproc, myproc)
 for j = 1 to p-1
 Send Tmp to processor myproc+1 mod p
 Receive Tmp from processor myproc-1 mod p
 C(myproc) = C(myproc) + Tmp*B(myproc-j mod p, myproc)

- Same idea as for gravity in simple sharks and fish algorithm
- May want double buffering in practice for overlap
- Ignoring deadlock details in code
- Time of inner loop = 2*(α + β*n^2/p) + 2*n*(n/p)^2

Matmul for 1D layout on a Processor Ring

- Time of inner loop = 2*(α + β*n^2/p) + 2*n*(n/p)^2
- Total Time = 2*n'*(n/p)^2 + (p-1)*Time of inner loop
- Optimal for 1D layout on Ring or Bus, even with with Broadcast:
 - Perfect speedup for arithmetic
 - A(myproc) must move to each other processor, costs at least
 (p-1)*cost of sending n*(n/p) words
 - Parallel Efficiency = 2*n^3/(p*Total Time)
 = 1/(1 + α*p^2/(2*n^3) + β*p/(2*n))
 = 1/(1 + O(p/n))
 - Grows to 1 as n/p increases (or α and β shrink)

MatMul with 2D Layout

- Consider processors in 2D grid (physical or logical)
- Processors can communicate with 4 nearest neighbors
- Broadcast along rows and columns

- Assume p is square s x s grid

Cannon’s Algorithm

\[C(i,j) = C(i,j) + \sum A(i,k) * B(k,j) \]

- Assume s = sqrt(p) is an integer
- forall i=0 to s-1 \hspace{1cm} “skew” A
 left-circular-shift row i of A by i
 so that A(i,j) overwritten by A(i,(j+i)mod s)
 \hspace{1cm} “skew” B
 up-circular-shift B column i of B by i
 so that B(i,j) overwritten by B((i+j)mod s), j)

- for all processors in parallel
 C(i,j) = C(i,j) + A(i,j)*B(i,j)
 left-circular-shift each row of A by 1
 up-circular-shift each row of B by 1

Cannon’s Matrix Multiplication

\[C(1,2) = A(1,0) * B(0,2) + A(1,1) * B(1,2) + A(1,2) * B(2,2) \]

Initial Step to Skew Matrices in Cannon

- Initial blocked input

- After skewing before initial block multiplies

Skewing Steps in Cannon

- First step
 - A(0,0) A(0,1) A(0,2)
 - A(1,0) A(1,1) A(1,2)
 - A(2,0) A(2,1) A(2,2)

- Second
 - A(0,1) A(1,0) A(2,0)
 - A(1,1) A(1,2) A(2,1)
 - A(2,2) A(0,2) A(0,1)

- Third
 - A(0,0) A(0,2) A(0,1)
 - A(1,0) A(1,1) A(1,2)
 - A(2,0) A(2,1) A(2,2)

Cost of Cannon’s Algorithm

forall i=0 to s-1 recall s = sqrt(p)
left-circular-shift row i of A by i ... cost = s(α + β* n2/p)
forall i=0 to s-1
up-circular-shift B column i of B by i ... cost = s(α + β* n2/p)
for k=0 to s-1
forall i=0 to s-1 and j=0 to s-1
C(i,j) = C(i,j) + A(i,j)*B(i,j) ... cost = 2*(n/s) 3 = 2*n3/p
left-circular-shift each row of A by 1 ... cost = α + β* n2/p
up-circular-shift each row of B by 1 ... cost = α + β* n2/p

Total Time = 2*n3/p + 4*s*α + 4*β* n2/s
Parallel Efficiency = 2*n3 / (p * Total Time)
= 1/(1 + α* 2*(s/n)3 + β* 2*(s/n))
= 1/(1 + O(sqrt(p)/n))
Grows to 1 as n/s = n/sqrt(p) = sqrt(data per processor) grows
Better than 1D layout, which had Efficiency = 1/(1 + O(p/n))

Drawbacks to Cannon

- Hard to generalize for
 - p not a perfect square
 - A and B not square
 - Dimensions of A, B not perfectly divisible by s=sqrt(p)
 - A and B not “aligned” in the way they are stored on processors
 - block-cyclic layouts
 - Memory hog (extra copies of local matrices)

SUMMA Algorithm

- SUMMA = Scalable Universal Matrix Multiply
- Slightly less efficient, but simpler and easier to generalize
- Presentation from van de Geijn and Watts
 - www.netlib.org/lapack/lawns/lawn96.ps
- Similar ideas appeared many times
- Used in practice in PBLAS = Parallel BLAS
 - www.netlib.org/lapack/lawns/lawn100.ps

SUMMA

- I, J represent all rows, columns owned by a processor
- k is a single row or column
 - or a block of b rows or columns
- C(I,J) = C(I,J) + Σk A(I,k)*B(k,J)
- Assume a pr by pc processor grid (pr = pc = 4 above)
- Need not be square

For k=0 to n-1 ... or b-1 where b is the block size
 ... = # cols in A(I,k) and # rows in B(k,J)
 ... in parallel
for all I = 1 to pr
 owner of A(I,k) broadcasts it to whole processor row
for all J = 1 to pc
 owner of B(k,J) broadcasts it to whole processor column
Receive A(I,k) into Acol
Receive B(k,J) into Brow
C(I,J) = C(I,J) + Σk Acol * Brow
SUMMA performance

To simplify analysis only, assume $s = \sqrt{p}$

For $k = 0$ to $n/b - 1$
 for all $i = 1$ to s \[\ldots \]
 owner of $A(i,k)$ broadcasts it to whole processor row
 \[\ldots \text{time} = \log s \cdot (\alpha + \beta \cdot b/n/s), \text{using a tree} \]
 for all $j = 1$ to s
 owner of $B(k,j)$ broadcasts it to whole processor column
 \[\ldots \text{time} = \log s \cdot (\alpha + \beta \cdot b/n/s), \text{using a tree} \]
Receive $A(i,k)$ into A_{col}
Receive $B(k,j)$ into B_{row}
$C(\text{myproc}, \text{myproc}) = C(\text{myproc}, \text{myproc}) + A_{col} \cdot B_{row}$
\[\ldots \text{time} = 2 \cdot (n/s)^2 \cdot b \]

Total time $= 2 \cdot n^3/p + \alpha \cdot \log p \cdot n/b + \beta \cdot \log p \cdot n^2/s$

SUMMA performance

- Total time $= 2 \cdot n^3/p + \alpha \cdot \log p \cdot n/b + \beta \cdot \log p \cdot n^2/s$
- Parallel Efficiency $= 1/(1 + \alpha \cdot \log p \cdot n/(2 \cdot \sqrt{n} \cdot b) + \beta \cdot \log p \cdot s/(2 \cdot n))$
- Same β term as Cannon, except for $\log p$ factor
 \[\log p \text{ grows slowly so this is ok} \]
- Latency (α) term can be larger, depending on b
 When $b=1$, get $\alpha \cdot \log p \cdot n$
 As b grows to n/s, term shrinks to $\alpha \cdot \log p \cdot s$ ($\log p$ times Cannon)
- Temporary storage grows like $2b/n/s$
- Can change b to tradeoff latency cost with memory

ScaLAPACK Parallel Library

For both cache hierarchies and parallelism, recursive layouts may be useful
- Z-Morton, U-Morton, and X-Morton Layout
- Also Hilbert layout and others
- What about the user’s view?
 - Fortunately, many problems can be solved on a permutation
 - Never need to actually change the user’s layout

Recursive Layouts

- For both cache hierarchies and parallelism, recursive layouts may be useful
- Z-Morton, U-Morton, and X-Morton Layout

Summary of Parallel Matrix Multiplication

- **1D Layout**
 - Bus without broadcast - slower than serial
 - Nearest neighbor communication on a ring (or bus with broadcast): Efficiency $= 1/(1 + O(p/n))$
- **2D Layout**
 - Cannon
 - Efficiency $= 1/(1+O(\sqrt{p}/n))$
 - Hard to generalize for general $p, n, \text{block cyclic, alignment}$
 - SUMMA
 - Efficiency $= 1/(1 + O(\log p \cdot n / (b \cdot n^2) + \log p \cdot \sqrt{p}/n))$
 - Very General
 - b small \gg less memory, lower efficiency
 - b large \gg more memory, high efficiency
- **Recursive layouts**
 - Current area of research
Extra Slides

Gaussian Elimination

Gaussian Elimination via a Recursive Algorithm

F. Gustavson and S. Toledo

LU Algorithm:
1: Split matrix into two rectangles (m x n/2)
 if only 1 column, scale by reciprocal of pivot & return
2: Apply LU Algorithm to the left part
3: Apply transformations to right part
 (triangular solve $A_{ij} = L^{-1}A_{ij}$ and
 matrix multiplication $A_{ij} = A_{ij} - A_{ij}^*A_{ij}^*$)
4: Apply LU Algorithm to right part

Most of the work in the matrix multiply
Matrices of size n/2, n/4, n/8, ...

Recursive Factorizations

• Just as accurate as conventional method
• Same number of operations
• Automatic variable blocking
 • Level 1 and 3 BLAS only!
• Extreme clarity and simplicity of expression
• Highly efficient
• The recursive formulation is just a rearrangement of the point-wise
 LINPACK algorithm
• The standard error analysis applies (assuming the matrix
 operations are computed the “conventional” way).

Review: BLAS 3 (Blocked) GEPP

for $ib \leq b \leq n$ step b
 ... Process block b of columns at a time
 ... Point to end of block of b columns
 apply BLAS2 version of GEPP to get $A_{ib} = P^* L^* U$
 ... let LL denote the strict lower triangular part of $A_{ib}\ldots A_{ib}$
 ... $A_{ib} = L^{-1}L^T A_{ib}$
 ... apply delayed updates with single matrix-multiply
 ... with inner dimension b
 ... apply delayed updates with single matrix-multiply
 ... with inner dimension b
Review: Row and Column Block Cyclic Layout

processors and matrix blocks are distributed in a 2d array
pcol-fold parallelism
in any column, and calls to the BLAS2 and BLAS3 on matrices of size brow-by-bcol
serial bottleneck is eased
need not be symmetric in rows and columns

Distributed GE with a 2D Block Cyclic Layout

block size b in the algorithm and the block sizes brow and bcol in the layout satisfy b=brow=bcol.
shaded regions indicate busy processors or communication performed.
unnecessary to have a barrier between each step of the algorithm, e.g. step 9, 10, and 11 can be pipelined

Distributed Gaussian Elimination with a 2D Block Cyclic Layout

\[\text{for } k = 1 \rightarrow n-1 \text{ step b} \]
\[\text{for } i = 1 \rightarrow \text{brow} \text{ step b} \]
\[m(i, j) = m(i, j) - A(i, j) \times m(j, k) \]

Matrix multiply of green = green - blue * pink

LAPACK and ScalAPACK

Machines: Workstations, Vector, SMP
Distributed: Processors, DSM
Based on BLAS: BLAS, BLACS
Functionality: Linear Systems, Least Squares, Eigenproblems
Linear Systems, Least Squares, Eigenproblems (less than LAPACK)
Matrix types: Dense, banded, out-of-core
Error Bounds: Complete
Languages: Fortran and C
Interface to: C, Fortran, HPF
Manual? Yes
Scales well, nearly full machine speed

Old version, pre 1998 Gordon Bell Prize Still have ideas to accelerate Project Available!

Old Algorithm, plan to abandon

Have good ideas to speedup Project available!

Hardest of all to parallelize Have alternative, and would like to compare Project available!

Out-of-core means matrix lives on disk; too big for main mem
Much harder to hide latency of disk

QR much easier than LU because no pivoting needed for QR
Moral: use QR to solve Ax=b Projects available (perhaps very hard...)

Work-Depth Model of Parallelism

- The work depth model:
 - The simplest model is used
 - For algorithm design, independent of a machine
 - The work, W, is the total number of operations
 - The depth, D, is the longest chain of dependencies
 - The parallelism, P, is defined as W/D

- Specific examples include:
 - circuit model, each input defines a graph with ops at nodes
 - vector model, each step is an operation on a vector of elements
 - language model, where set of operations defined by language