CS 267: Multigrid

Kathy Yelick

www.cs.berkeley.edu/~yelick/cs267_s07
Algorithms for 2D (3D) Poisson Equation (N = n^2 (n^3) vars)

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Serial</th>
<th>PRAM</th>
<th>Memory</th>
<th>#Procs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dense LU</td>
<td>N^3</td>
<td>N</td>
<td>N^2</td>
<td>N^2</td>
</tr>
<tr>
<td>Band LU</td>
<td>N^2 (N^{7/3})</td>
<td>N</td>
<td>N^{3/2} (N^{5/3})</td>
<td>N (N^{4/3})</td>
</tr>
<tr>
<td>Jacobi</td>
<td>N^2 (N^{5/3})</td>
<td>N (N^{2/3})</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Explicit Inv.</td>
<td>N^2</td>
<td>log N</td>
<td>N^2</td>
<td>N^2</td>
</tr>
<tr>
<td>Conj.Gradients</td>
<td>N^{3/2} (N^{4/3})</td>
<td>N^{1/2(1/3)} *log N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Red/Black SOR</td>
<td>N^{3/2} (N^{4/3})</td>
<td>N^{1/2} (N^{1/3})</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Sparse LU</td>
<td>N^{3/2} (N^2)</td>
<td>N^{1/2}</td>
<td>N*log N (N^{4/3})</td>
<td>N</td>
</tr>
<tr>
<td>FFT</td>
<td>N*log N</td>
<td>log N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Multigrid</td>
<td>N</td>
<td>log^2 N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Lower bound</td>
<td>N</td>
<td>log N</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

PRAM is an idealized parallel model with zero cost communication

Algorithms for 2D (3D) Poisson Equation ($N = n^2 (n^3)$ vars)

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Serial</th>
<th>PRAM</th>
<th>Memory</th>
<th>#Procs</th>
</tr>
</thead>
<tbody>
<tr>
<td>° Dense LU</td>
<td>N^3</td>
<td>N</td>
<td>N^2</td>
<td>N^2</td>
</tr>
<tr>
<td>° Band LU</td>
<td>$N^2 (N^{7/3})$</td>
<td>N</td>
<td>$N^{3/2} (N^{5/3})$</td>
<td>$N (N^{4/3})$</td>
</tr>
<tr>
<td>° Jacobi</td>
<td>$N^2 (N^{5/3})$</td>
<td>$N (N^{2/3})$</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>° Explicit Inv.</td>
<td>N^2</td>
<td>$\log N$</td>
<td>N^2</td>
<td>N^2</td>
</tr>
<tr>
<td>° Conj.Gradients</td>
<td>$N^{3/2} (N^{4/3})$</td>
<td>$N^{1/2} (1/3) \log N$</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>° Red/Black SOR</td>
<td>$N^{3/2} (N^{4/3})$</td>
<td>$N^{1/2} (N^{1/3})$</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>° Sparse LU</td>
<td>$N^{3/2} (N^2)$</td>
<td>$N^{1/2}$</td>
<td>$N \log N (N^{4/3})$</td>
<td>N</td>
</tr>
<tr>
<td>° FFT</td>
<td>$N \log N$</td>
<td>$\log N$</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>° Multigrid</td>
<td>N</td>
<td>$\log^2 N$</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>° Lower bound</td>
<td>N</td>
<td>$\log N$</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

PRAM is an idealized parallel model with zero cost communication.

Review of Previous Lectures

° Review Poisson equation
° Overview of Methods for Poisson Equation
° Jacobi’s method
° Red-Black SOR method
° Conjugate Gradients
° FFT

\{ Reduce to sparse-matrix-vector multiply
Need them to understand Multigrid \}

° Multigrid
° Comparison of methods
Poisson’s equation in 1D: \(\frac{\partial^2 u}{\partial x^2} = f(x) \)

\[
T = \begin{pmatrix}
-1 & 2 & -1 \\
-1 & 2 & -1 \\
-1 & 2 & -1 \\
2 & -1 & \\
\end{pmatrix}
\]

Graph and “stencil”
2D Poisson’s equation

° Similar to the 1D case, but the matrix T is now

\[T = \begin{pmatrix}
4 & -1 & -1 & -1 \\
-1 & 4 & -1 & -1 \\
-1 & -1 & 4 & -1 \\
-1 & -1 & -1 & 4 \\
\end{pmatrix} \]

° 3D is analogous

Graph and “stencil”
Multigrid Motivation

° Recall that Jacobi, SOR, CG, or any other sparse-matrix-vector-multiply-based algorithm can only move information one grid cell at a time
 • Take at least \(n \) steps to move information across \(n \times n \) grid

° Can show that decreasing error by fixed factor \(c < 1 \) takes \(\Omega(\log n) \) steps
 • Convergence to fixed error < 1 takes \(\Omega(\log n) \) steps

° Therefore, converging in \(O(1) \) steps requires moving information across grid faster than to one neighboring grid cell per step
Multigrid Methods

- We studied several iterative methods
 - Jacobi, SOR, Guass-Seidel, Red-Black variations, Conjugate Gradients (CG)
 - All use sparse matrix-vector multiply (nearest neighbor communication on grid)

- Key problem with iterative methods is that:
 - detail (short wavelength) is correct
 - convergence controlled by coarse (long wavelength) structure

- In simple methods one needs of order N^2 iterations to get good results
 - Ironically, one goes to large N (fine mesh) to get detail
 - If all you wanted was coarse structure, a smaller mesh would be fine

- Basic idea in multigrid is key in many areas of science
 - Solve a problem at multiple scales

- We get coarse structure from small N and fine detail from large N
 - Good qualitative idea but how do we implement?
Gauss Seidel is Slow I

- Take Laplace’s equation in the Unit Square with initial guess as $\phi = 0$ and boundary conditions that are zero except on one side.
- For $N=31 \times 31$ Grid it takes around 1000 (N^2) iterations to get a reasonable answer.

Boundary Conditions

Exact Solution
Gauss Seidel is Slow II

1 Iteration

10 Iterations

100 Iterations

1000 Iterations

Slide source: Geoffrey Fox and (indirectly) Ulrich Ruede
Multigrid Overview

° Basic Algorithm:

• Replace problem on fine grid by an approximation on a coarser grid

• Solve the coarse grid problem approximately, and use the solution as a starting guess for the fine-grid problem, which is then iteratively updated

• Solve the coarse grid problem recursively, i.e. by using a still coarser grid approximation, etc.

° Success depends on coarse grid solution being a good approximation to the fine grid
Same Big Idea used elsewhere

° Replace fine problem by coarse approximation, recursively

° Multilevel Graph Partitioning (METIS):
 • Replace graph to be partitioned by a coarser graph, obtained via Maximal Independent Set
 • Given partitioning of coarse grid, refine using Kernighan-Lin

° Barnes-Hut (and Fast Multipole Method) for computing gravitational forces on n particles in $O(n \log n)$ time:
 • Approximate particles in box by total mass, center of gravity
 • Good enough for distant particles; for close ones, divide box recursively

° All examples depend on coarse approximation being accurate enough (at least if we are far enough away)
Multigrid uses Divide-and-Conquer in 2 Ways

° **First way:**
 • Solve problem on a given grid by calling Multigrid on a coarse approximation to get a good guess to refine

° **Second way:**
 • Think of error as a sum of sine curves of different frequencies
 • Same idea as FFT solution, but not explicit in algorithm
 • Each call to Multigrid responsible for suppressing coefficients of sine curves of the lower half of the frequencies in the error (pictures later)
Multigrid Sketch in 1D

• Consider a 2^m+1 grid in 1D for simplicity
• Let $P^{(i)}$ be the problem of solving the discrete Poisson equation on a 2^i+1 grid in 1D
 • Write linear system as $T(i) \cdot x(i) = b(i)$
• $P^{(m)} , P^{(m-1)} , \ldots , P^{(1)}$ is sequence of problems from finest to coarsest

<table>
<thead>
<tr>
<th>2</th>
<th>2</th>
<th>2</th>
<th>2</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P^{(3)}$: 1D grid of 9 points</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 unknowns</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Points labeled 2 are part of next coarser grid</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P^{(2)}$: 1D grid of 5 points</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 unknowns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Points labeled 1 are part of next coarser grid</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| $P^{(1)}$: 1D grid of 3 points |
| 1 unknown |
Multigrid Sketch in 2D

- Consider a $2^{m+1} \times 2^{m+1}$ grid in 2D
- Let $P^{(i)}$ be the problem of solving the discrete Poisson equation on a $2^{i+1} \times 2^{i+1}$ grid in 2D
 - Write linear system as $T(i) \times x(i) = b(i)$
- $P^{(m)}, P^{(m-1)}, \ldots, P^{(1)}$ is sequence of problems from finest to coarsest

![Grids](image)

$P^{(3)}$: 9 by 9 grid of points
7 by 7 grid of unknowns
Points labeled 2 are part of next coarser grid

$P^{(2)}$: 5 by 5 grid of points
3 by 3 grid of unknowns
Points labeled 1 are part of next coarser grid

$P^{(1)}$: 3 by 3 grid of points
1 by 1 grid of unknowns
Multigrid Hierarchy

- Relax
- Restrict
- Interpolate
- Relax
- Relax
- Relax
- Relax
- Relax

3x3
5x5
9x9
17x17
35x35

Slide source: Geoffrey Fox
Basic Multigrid Ideas

- In picture, relax is application of standard iteration scheme
 - “solve” short wavelength solution at a given level
 - i.e. use Jacobi, Gauss-Seidel, Conjugate Gradient

- Interpolation is taking a solution at a coarser grid and interpolating to find a solution at half the grid size

- Restriction is taking solution at given grid and averaging to find solution at coarser grid
Multigrid Operators

- For problem $P^{(i)}$ at varying coarsening levels (i, grid size grows with i):
 - $b(i)$ is the Right Hand Side (RHS) and
 - $x(i)$ is the current estimated solution

- All the following operators just average values on neighboring grid points (so information moves fast on coarse grids)

- The restriction operator $R(i)$ maps $P^{(i)}$ to $P^{(i-1)}$
 - Restricts problem on fine grid $P^{(i)}$ to coarse grid $P^{(i-1)}$
 - Uses sampling or averaging
 - $b(i-1) = R(i) (b(i))$

- The interpolation operator $I_n(i-1)$ maps approx. solution $x(i-1)$ to $x(i)$
 - Interpolates solution on coarse grid $P^{(i-1)}$ to fine grid $P^{(i)}$
 - $x(i) = I_n(i-1)(x(i-1))$

- The solution operator $S(i)$ takes $P^{(i)}$ and improves solution $x(i)$
 - Uses “weighted” Jacobi or SOR on single level of grid
 - $x_{\text{improved}}(i) = S(i) (b(i), x(i))$

- Overall algorithm, then details of operators

both live on grids of size 2^i-1
Multigrid Operators

• For problem $P^{(i)}$ at varying coarsening levels (i, grid size grows with i):
 • $b(i)$ is the Right Hand Side (RHS) and
 • $x(i)$ is the current estimated solution

• All the following operators just average values on neighboring grid points (so information moves fast on coarse grids)

• The restriction operator $R(i)$ maps $P^{(i)}$ to $P^{(i-1)}$
 • Restricts problem on fine grid $P^{(i)}$ to coarse grid $P^{(i-1)}$
 • Uses sampling or averaging
 • $b(i-1) = R(i) (b(i))$

• The interpolation operator $In(i-1)$ maps approx. solution $x(i-1)$ to $x(i)$
 • Interpolates solution on coarse grid $P^{(i-1)}$ to fine grid $P^{(i)}$
 • $x(i) = In(i-1)(x(i-1))$

• The solution operator $S(i)$ takes $P^{(i)}$ and improves solution $x(i)$
 • Uses “weighted” Jacobi or SOR on single level of grid
 • $x_{improved \ (i)} = S(i) (b(i), x(i))$

• Overall algorithm, then details of operators
Multigrid Operators

- For problem $P^{(i)}$ at varying coarsening levels (i, grid size grows with i):
 - $b(i)$ is the Right Hand Side (RHS) and
 - $x(i)$ is the current estimated solution

 both live on grids of size 2^i-1

- All the following operators just average values on neighboring grid points (so information moves fast on coarse grids)

- The restriction operator $R(i)$ maps $P^{(i)}$ to $P^{(i-1)}$
 - Restricts problem on fine grid $P^{(i)}$ to coarse grid $P^{(i-1)}$
 - Uses sampling or averaging
 - $b(i-1) = R(i)(b(i))$

- The interpolation operator $In(i-1)$ maps approx. solution $x(i-1)$ to $x(i)$
 - Interpolates solution on coarse grid $P^{(i-1)}$ to fine grid $P^{(i)}$
 - $x(i) = In(i-1)(x(i-1))$

- The solution operator $S(i)$ takes $P^{(i)}$ and improves solution $x(i)$
 - Uses “weighted” Jacobi or SOR on single level of grid
 - $x_{\text{improved}} (i) = S(i)(b(i), x(i))$

- Overall algorithm, then details of operators
Multigrid Operators

- For problem $P^{(i)}$ at varying coarsening levels (i, grid size grows with $i)$:
 - $b(i)$ is the Right Hand Side (RHS) and
 - $x(i)$ is the current estimated solution

\[
\text{both live on grids of size } 2^i-1
\]

- All the following operators just average values on neighboring grid points (so information moves fast on coarse grids)

 - The restriction operator $R(i)$ maps $P^{(i)}$ to $P^{(i-1)}$
 - Restricts problem on fine grid $P^{(i)}$ to coarse grid $P^{(i-1)}$
 - Uses sampling or averaging
 - $b(i-1)= R(i) (b(i))$

 - The interpolation operator $In(i-1)$ maps approx. solution $x(i-1)$ to $x(i)$
 - Interpolates solution on coarse grid $P^{(i-1)}$ to fine grid $P^{(i)}$
 - $x(i) = In(i-1)(x(i-1))$

 - The solution operator $S(i)$ takes $P^{(i)}$ and improves solution $x(i)$
 - Uses “weighted” Jacobi or SOR on single level of grid
 - $x_{\text{improved}} (i) = S(i) (b(i), x(i))$

- Overall algorithm, then details of operators

03/23/07 CS267 Lecture 16
Multigrid V-Cycle Algorithm

Function MGV (b(i), x(i))

... Solve $T(i)x(i) = b(i)$ given $b(i)$ and an initial guess for $x(i)$
... return an improved $x(i)$

if (i = 1)
 compute exact solution $x(1)$ of $P^{(1)}$
 only 1 unknown
 return $x(1)$

else
 solve recursively
 $x(i) = S(i) (b(i), x(i))$
 improve solution by damping
 high frequency error
 $r(i) = T(i)x(i) - b(i)$
 compute residual
 $d(i) = In(i-1) (MGV(R(i) (r(i)), 0))$
 solve $T(i)d(i) = r(i)$ recursively
 $x(i) = x(i) - d(i)$
 correct fine grid solution
 $x(i) = S(i) (b(i), x(i))$
 improve solution again
 return $x(i)$
This is called a V-Cycle

° Just a picture of the call graph
° In time a V-cycle looks like the following
Complexity of a V-Cycle

° On a serial machine

• Work at each point in a V-cycle is $O(\text{the number of unknowns})$
• Cost of Level i is $(2^i-1)^2 = O(4^i)$ for a 2D grid
• If finest grid level is m, total time is:
 $\sum_{i=1}^{m} O(4^i) = O(4^m)$ for a 2D grid
 $= O(\# \text{unknowns})$ in general

° On a parallel machine (PRAM)

• with one processor per grid point and free communication, each step in the V-cycle takes constant time
• Total V-cycle time is $O(m) = O(\log \#\text{unknowns})$
Full Multigrid (FMG)

- **Intuition:**
 - improve solution by doing multiple V-cycles
 - avoid expensive fine-grid (high frequency) cycles
 - analysis of why this works is beyond the scope of this class

```
Function FMG (b(m), x(m))

    ... return improved x(m) given initial guess
    compute the exact solution x(1) of P(1)
    for i=2 to m
        x(i) = MGV ( b(i), In (i-1) (x(i-1) ) )
```

- **In other words:**
 - Solve the problem with 1 unknown
 - Given a solution to the coarser problem, P^{i-1}, map it to starting guess for P^{i}
 - Solve the finer problem using the Multigrid V-cycle
Full Multigrid Cost Analysis

One V for each call to FMG
- people also use Ws and other compositions

Serial time: \(\sum_{i=1}^{m} O(4^i) = O(4^m) = O(\text{# unknowns}) \)

PRAM time: \(\sum_{i=1}^{m} O(i) = O(m^2) = O(\log^2 \text{# unknowns}) \)
Complexity of Solving Poisson’s Equation

- Theorem: error after one FMG call:
 - error_after \(\leq (0.5 \times \text{error}_{\text{before}}) \)
 - independent of \# unknowns
 - At least 1 bit each time

- Corollary: We can make the error < any fixed tolerance in a fixed number of steps, independent of size of finest grid

- This is the most important convergence property of MG, distinguishing it from all other methods, which converge more slowly for large grids

- Total complexity just proportional to cost of one FMG call
The Solution Operator $S(i)$ - Details

° The solution operator, $S(i)$, is a weighted Jacobi

° Consider the 1D problem

\[x(j) := \frac{1}{2} \left(x(j-1) + x(j+1) + b(j) \right) \]

° At level i, pure Jacobi replaces:

\[x(j) := \frac{1}{3} \left(x(j-1) + x(j) + x(j+1) + b(j) \right) \]

° Weighted Jacobi uses:

\[x(j) := \frac{1}{3} \left(x(j-1) + x(j) + x(j+1) + b(j) \right) \]

° In 2D, similar average of nearest neighbors
Weighted Jacobi chosen to damp high frequency error

Initial error
“Rough”
Lots of high frequency components
Norm = 1.65

Error after 1 weighted Jacobi step
“Smoother”
Less high frequency component
Norm = 1.06

Error after 2 weighted Jacobi steps
“Smooth”
Little high frequency component
Norm = .92,
won’t decrease much more
Each level in a V-Cycle reduces the error in one part of the frequency domain.

Schematic Description of Multigrid

Error Component \(\alpha(j) \)

P(1) Upper half of frequencies on P(4)
P(2) Upper half of frequencies on P(3)

Frequency j
The Restriction Operator R(i) - Details

- The restriction operator, R(i), takes
 - a problem P(i) with RHS b(i) and
 - maps it to a coarser problem P(i-1) with RHS b(i-1)

- In 1D, average values of neighbors
 - \(x_{\text{coarse}}(i) = \frac{1}{4} x_{\text{fine}}(i-1) + \frac{1}{2} x_{\text{fine}}(i) + \frac{1}{4} x_{\text{fine}}(i+1) \)

- In 2D, average with all 8 neighbors (N,S,E,W,NE,NW,SE,SW)
Interpolation Operator \text{In}(i-1): details

- The interpolation operator \text{In}(i-1), takes a function on a coarse grid \(P(i-1)\), and produces a function on a fine grid \(P(i)\).

- In 1D, linearly interpolate nearest coarse neighbors
 - \(x_{\text{fine}}(i) = x_{\text{coarse}}(i)\) if the fine grid point \(i\) is also a coarse one, else
 - \(x_{\text{fine}}(i) = 1/2 \times x_{\text{coarse}}(\text{left of } i) + 1/2 \times x_{\text{coarse}}(\text{right of } i)\)

- In 2D, interpolation requires averaging with 4 nearest neighbors (NW, SW, NE, SE)
Convergence Picture of Multigrid in 1D

- **True Solution**
 - Graph showing a step function.

- **Right Hand Side**
 - Graph showing a step function.

- **Error of each iteration**
 - Graph showing a comparison of errors over iterations.

- **norm(res(m+1))/norm(res(m))**
 - Graph showing the ratio of residual norms for consecutive iterations.

- **norm(res(m))**
 - Graph showing the residual norm over iterations.
Convergence Picture of Multigrid in 2D
Parallel 2D Multigrid

- Multigrid on 2D requires nearest neighbor (up to 8) computation at each level of the grid.
- Start with \(n=2^m+1 \) by \(2^m+1 \) grid (here \(m=5 \)).
- Use an \(s \) by \(s \) processor grid (here \(s=4 \)).
Performance Model of parallel 2D Multigrid (V-cycle)

° Assume 2^m+1 by 2^m+1 grid of points, $n=2^m-1$, $N=n^2$
° Assume $p = 4^k$ processors, arranged in 2^k by 2^k grid
 • Processors start with 2^{m-k} by 2^{m-k} subgrid of unknowns
° Consider V-cycle starting at level m
 • At levels m through k of V-cycle, each processor does some work
 • At levels $k-1$ through 1, some processors are idle, because a 2^{k-1} by 2^{k-1} grid of unknowns cannot occupy each processor
° Cost of one level in V-cycle
 • If level $j \geq k$, then cost =
 \[
 O(4^j) \text{ Flops, proportional to the number of grid points/processor}
 + O(1) \alpha \text{ Send a constant # messages to neighbors}
 + O(2^j) \beta \text{ Number of words sent}
 \]
 • If level $j < k$, then cost =
 \[
 O(1) \text{ Flops, proportional to the number of grid points/processor}
 + O(1) \alpha \text{ Send a constant # messages to neighbors}
 + O(1) \beta \text{ Number of words sent}
 \]
° Sum over all levels in all V-cycles in FMG to get complexity
Comparison of Methods (in O(.) sense)

<table>
<thead>
<tr>
<th></th>
<th># Flops</th>
<th># Messages</th>
<th># Words sent</th>
</tr>
</thead>
<tbody>
<tr>
<td>MG</td>
<td>$\frac{N}{p} + \log p \times \log N$</td>
<td>$(\log N)^2$</td>
<td>$(\frac{N}{p})^{1/2} + \log p \times \log N$</td>
</tr>
<tr>
<td>FFT</td>
<td>$\frac{N \log N}{p}$</td>
<td>$p^{1/2}$</td>
<td>$\frac{N}{p}$</td>
</tr>
<tr>
<td>SOR</td>
<td>$\frac{N^{3/2}}{p}$</td>
<td>$N^{1/2}$</td>
<td>$\frac{N}{p}$</td>
</tr>
</tbody>
</table>

- SOR is slower than others on all counts
- Flops for MG and FFT depends on accuracy of MG
- MG communicates less total data (bandwidth)
- Total messages (latency) depends …
 - This coarse analysis can’t say whether MG or FFT is better when $\alpha >> \beta$
Practicalities

° In practice, we don’t go all the way to $P^{(1)}$

° In sequential code, the coarsest grids are negligibly cheap, but on a parallel machine they are not.
 • Consider 1000 points per processor
 • In 2D, the surface to communicate is $4\sqrt{1000} \approx 128$, or 13%
 • In 3D, the surface is $1000-8^3 \approx 500$, or 50%

 • on 64x64 grid of unknowns, only 4 per processor
 - efficiency of 1 V-cycle was .02, and on FMG .008
 • on 1024x1024 grid
 - efficiencies were .7 (MG V-cycle) and .42 (FMG)
 - although worse parallel efficiency, FMG is 2.6 times faster that V-cycles alone
 • nCUBE had fast communication, slow processors
Multigrid on an Adaptive Mesh

° For problems with very large dynamic range, another level of refinement is needed

° Build adaptive mesh and solve multigrid (typically) at each level

° Can’t afford to use finest mesh everywhere
Multiblock Applications

° Solve system of equations on a union of rectangles
 • subproblem of AMR

° E.g.,
Adaptive Mesh Refinement

- Data structures in AMR
- Usual parallelism is to assign grids on each level to processors
- Load balancing is a problem
Support for AMR

° Domains in Titanium designed for this problem
° Kelp, Boxlib, and AMR++ are libraries for this
° Primitives to help with boundary value updates, etc.
Multigrid on an Unstructured Mesh

- Another approach to variable activity is to use an unstructured mesh that is more refined in areas of interest.

- Adaptive rectangular or unstructured?
 - Numerics easier on rectangular
 - Supposedly easier to implement (arrays without indirection) but boundary cases tend to dominate code

Up to 39M unknowns on 960 processors, With 50% efficiency (Source: M. Adams)
Multigrid on an Unstructured Mesh

° Need to partition graph for parallelism

° What does it mean to do Multigrid anyway?

° Need to be able to coarsen grid (hard problem)
 • Can’t just pick “every other grid point” anymore
 • Use “maximal independent sets” again
 • How to make coarse graph approximate fine one

° Need to define $R()$ and $\text{In}()$
 • How do we convert from coarse to fine mesh and back?

° Need to define $S()$
 • How do we define coarse matrix (no longer formula, like Poisson)

° Dealing with coarse meshes efficiently
 • Should we switch to using fewer processors on coarse meshes?
 • Should we switch to another solver on coarse meshes?
Source of Unstructured Finite Element Mesh: Vertebra

Source: M. Adams, H. Bayraktar, T. Keaveny, P. Papadopoulos, A. Gupta
Multigrid for nonlinear elastic analysis of bone

Mechanical testing for material properties

Micro Computed Tomography @ 22 μm resolution

3D image

μFE mesh
2.5 mm³
44 μm elements

Up to 537M unknowns
4088 Processors (ASCI White)
70% parallel efficiency

Source: M. Adams et al
Extra Slides
Preconditioning

° One can change A and b by preconditioning

$$M_1^{-1} A (M_2^{-1} M_2)x = M_1^{-1} b$$

° is same equation as before for any choice of matrices M_1 and M_2

° All these choices are designed to accelerate convergence of iterative methods

° $A_{new} = M_1^{-1} A M_2^{-1}$

° $x_{new} = M_2 x$

° $b_{new} = M_1^{-1} b$

° We choose M_1 and M_2
to make our standard methods perform better

° There are specialized preconditioning ideas and perhaps better general approaches such as multigrid and Incomplete LU (ILU) decomposition

$A_{new} x_{new} = b_{new}$

has same form as above and we can apply any of the methods that we used on $A x = b$
Multigrid Philosophically

° Suppose we have a finest level $M(1)$ with N by N points (in 2D)
° Then the k’th coarsest approximation $M(k)$ to this has $N/2^k$ by $N/2^k$ points
° One way to think about Multigrid is that $M(k+1)$ can form a preconditioner to $M(k)$ so that one can replace natural matrix $A(k)$ by $A^{-1}(k+1)A(k)$
 • $A^{-1}(k+1)A(k)$ is a nicer matrix than $A(k)$ and iterative solvers converge faster as long wavelength terms have been removed
° Basic issue is that $A(k)$ and $A(k+1)$ are of different size so we need prolongation and restriction to map solutions at level k and $k+1$
 • We apply this idea recursively
Multigrid Algorithm: procedure MG(level, A, u, f)

° if level = coarsest then
 • solve coarsest grid equation by another method “exactly”
° else
 • smooth $A^{\text{level}}u = f \quad (m_1 \text{ times})$
 • Compute residual $r = f - A^{\text{level}}u$
 • Restrict $F = Rr \quad (R \text{ is Restriction Operator})$
 • Call MG(level + 1, $A^{(\text{level}+1)}$, V, F) \quad (m_c \text{ times})
 • Interpolate $v = P V$ (Interpolate new solution at this level)
 • correct $u_{\text{new}} = u + v$
 • smooth $A^{\text{new}}u = f \quad (m_2 \text{ times})$ and
 • set $u = u_{\text{new}}$
° endif
° endprocedure
Multigrid Cycles

° The parameter m_c determines the exact strategy for how one iterates through different meshes.

° One ends up with a full cycle as shown.

Slide source: Geoffrey Fox