Communication-Avoiding Compilers (?)

Kathy Yelick
Associate Laboratory Director of Computing Sciences
Lawrence Berkeley National Laboratory

EECS Professor, UC Berkeley
Challenge #4: Communication is expensive

Communication is expensive…
… time and energy

Cost components:
• Bandwidth: # of words
• Latency: # messages

Strategies
• Overlap: hide latency
• Avoid: algorithms to reduce bandwidth use and number of messages (latency)

Hard to change: Latency is physics; bandwidth is money!

<table>
<thead>
<tr>
<th>Annual improvements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flops</td>
</tr>
<tr>
<td>Network</td>
</tr>
<tr>
<td>59%</td>
</tr>
</tbody>
</table>

Hard to change: Latency is physics; bandwidth is money!
Because of cost and power issues, we cannot have both high memory bandwidth and large memory capacity.

The colored region is feasible in 2017.

Compute intensive architecture focus on upper-left
Data Intensive architecture focus on lower right

Slide source: John Shalf
Finding Good Performance is like finding the Needle in a Haystack

OSKI sparse matrix library: offline search + online evaluation: adding zeros can reduce storage in blocked format

Dense: \(MFlops(r,c) \)

\[
\frac{MFlops(r,c)}{Tsopf: \ Fill(r,c)} = Effective_MFlops(r,c)
\]

Selected RB(5x7) with a sample dense matrix

Work by Im, Vuduc, Williams, Kamil, Ho, Demmel, Yelick…
Autotuning: Write Code Generators

- Autotuners are code generators plus search
- Avoids two unsolved compiler problems: dependence analysis and accurate performance models
- Popular in libraries: Atlas, FFTW, OSKI,…

Work by Williams, Oliker, Shalf, Madduri, Kamil, Im, Ethier,…
Approaches to Autotuning

How do we produce all of these (correct) versions?

• Using scripts (Python, perl, C,..)
• Transform high level representation (FFTW, Spiral)
• Compiling a domain-specific language (D-TEC)
• Compiling a general-purpose language (X-Tune)
• Dynamic compilation of a domain-specific (SEJITS)
Avoiding Communication in Iterative Solvers

- Consider Sparse Iterative Methods for $Ax=b$
 - Krylov Subspace Methods: GMRES, CG,…

- Solve time dominated by:
 - Sparse matrix-vector multiple (SPMV)
 - Which even on one processor is dominated by “communication” time to read the matrix
 - Global collectives (reductions)
 - Global latency-limited

- Can we lower the communication costs?
 - Latency: reduce # messages by computing multiple reductions at once
 - Bandwidth to memory, i.e., compute Ax, A^2x, \ldots A^kx with one read of A
Multiplying by a matrix is equivalent to nearest neighbor relaxation on a grid.

Simplest example: a tridiagonal matrix

Is the same as relaxation on a line grid:

\[y[i] = \ldots x[i-1] + \ldots x[i] + \ldots x[i+1] \]
Communication Avoiding Kernels

The Matrix Powers Kernel: \([Ax, A^2x, \ldots, A^kx]\)

- Replace \(k\) iterations of \(y = A \cdot x\) with \([Ax, A^2x, \ldots, A^kx]\)

- Idea: pick up part of \(A\) and \(x\) that fit in fast memory, compute each of \(k\) products

- Example: A tridiagonal matrix (a 1D “grid”), \(n=32\), \(k=3\)

- General idea works for any “well-partitioned” \(A\)
Communication Avoiding Kernels
(Sequential case)

The Matrix Powers Kernel: \([Ax, A^2x, \ldots, A^kx]\)

- Replace \(k\) iterations of \(y = A \cdot x\) with \([Ax, A^2x, \ldots, A^kx]\)
- **Sequential Algorithm**

- Example: A tridiagonal, \(n=32, k=3\)
- Saves bandwidth (one read of \(A\&x\) for \(k\) steps)
- Saves latency (number of independent read events)
Communication Avoiding Kernels: (Parallel case)

The Matrix Powers Kernel: \([Ax, A^2x, \ldots, A^kx]\)

- Replace \(k\) iterations of \(y = A \cdot x\) with \([Ax, A^2x, \ldots, A^kx]\)
- **Parallel Algorithm**

- Example: A tridiagonal, \(n=32, k=3\)
- Each processor works on (overlapping) trapezoid
- Saves latency (# of messages); Not bandwidth

But adds redundant computation
Matrix Powers Kernel on a General Matrix

• Saves communication for “well partitioned” matrices
 • Serial: $O(1)$ moves of data moves vs. $O(k)$
 • Parallel: $O(\log p)$ messages vs. $O(k \log p)$

For implicit memory management (caches) uses a TSP algorithm for layout

Joint work with Jim Demmel, Mark Hoemman, Marghoob Mohiyuddin
$A^k x$ has higher performance than Ax

Speedups on Intel Clovertown (8 core)
Minimizing Communication of GMRES to solve $Ax=b$

- **GMRES**: find x in $\text{span}\{b, Ab, \ldots, A^k b\}$ minimizing $\|Ax-b\|_2$

Standard GMRES

for $i=1$ to k

$w = A \cdot v(i-1)$... SpMV

$\text{MGS}(w, v(0), \ldots, v(i-1))$

update $v(i)$, H

endfor

solve LSQ problem with H

Communication-avoiding GMRES

$W = [v, Av, A^2 v, \ldots, A^k v]$

$[Q, R] = \text{TSQR}(W)$

... "Tall Skinny QR"

build H from R

solve LSQ problem with H

Sequential case: #words moved decreases by a factor of k

Parallel case: #messages decreases by a factor of k

- **Oops** – W from power method, precision lost!
TSQR: An Architecture-Dependent Algorithm

Parallel: \(W = \begin{bmatrix} W_0 \\ W_1 \\ W_2 \\ W_3 \end{bmatrix} \rightarrow \begin{bmatrix} R_{00} \\ R_{10} \\ R_{20} \\ R_{30} \end{bmatrix} \rightarrow \begin{bmatrix} R_{01} \\ R_{11} \end{bmatrix} \rightarrow R_{02} \)

Sequential: \(W = \begin{bmatrix} W_0 \\ W_1 \\ W_2 \\ W_3 \end{bmatrix} \rightarrow \begin{bmatrix} R_{00} \\ R_{01} \end{bmatrix} \rightarrow \begin{bmatrix} R_{02} \\ R_{03} \end{bmatrix} \)

Dual Core: \(W = \begin{bmatrix} W_0 \\ W_1 \\ W_2 \\ W_3 \end{bmatrix} \rightarrow \begin{bmatrix} R_{00} \\ R_{01} \\ R_{11} \end{bmatrix} \rightarrow \begin{bmatrix} R_{02} \\ R_{03} \end{bmatrix} \)

Work by Laura Grigori, Jim Demmel, Mark Hoemmen, Julien Langou

Multicore / Multisocket / Multirack / Multisite / Out-of-core: ?
Can choose reduction tree dynamically
Matrix Powers Kernel (and TSQR) in GMRES

Jim Demmel, Mark Hoemmen, Marghoob Mohiyuddin, Kathy Yelick
Communication-Avoiding Krylov Method (GMRES)

Performance on 8 core Clovertown

Runtime per kernel, relative to CA-GMRES(k,t), for all test matrices, using 8 threads and restart length 60

Relative runtime, for best (k,t), with floor(restart length / k) = t

Sparse matrix name

k=5
2.3x
k=5
2.1x
k=5
1.7x
k=5
2.1x
k=5
4.3x
k=5
1.7x
k=4
1.6x

Matrix powers
kernel
TSQR
Block Gram-Schmidt
Small dense operations
Sparse matrix-vector product
Modified Gram-Schmidt
Can we do better? How do we know?

Lower bounds, (matching) upper bounds (algorithms) and a question:

Can we train compilers to do this?

See: http://www.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-61.pdf
Beyond Domain Decomposition
2.5D Matrix Multiply on BG/P, 16K nodes / 64K cores

\[c = 16 \text{ copies} \]
Matrix multiplication on 16,384 nodes of BG/P

Surprises:
- Even Matrix Multiply had room for improvement
- Idea: make copies of C matrix (as in prior 3D algorithm, but not as many)
- Result is provably optimal in communication

Lesson: Never waste fast memory

Can we generalize for compiler writers?

EuroPar’11 (Solomonik, Demmel)
SC’11 paper (Solomonik, B hatele, Demmel)
Towards Communication-Avoiding Compilers: Deconstructing 2.5D Matrix Multiply

Tiling the iteration space
- Compute a subcube
- Will need data on faces (projection of cube, subarrays)
 - For s loops in the nest \Rightarrow s dimensional space
- For x dimensional arrays, project to x dim space

Matrix Multiplication code has a 3D iteration space
Each unit cube in the space is a constant computation ($*/+$)

for i
 for j
 for k
 $C[i,j] \ldots A[i,k] \ldots B[k,j] \ldots$
Deconstructing 2.5D Matrix Multiply
Solomonik & Demmel

Tiling in the k dimension
- k loop has dependencies because C (on the top) is a Left-Hand-Side variable
 \[C += .. \]
- Advantages to tiling in k:
 - More parallelism \(\rightarrow \) Less synchronization
 - Less communication

What happens to these dependencies?
- All dependencies are vertical k dim (updating C matrix)
- Serial case: compute vertical block column in order
- Parallel case:
 - 2D algorithm (and compilers): never chop k dim
 - 2.5 or 3D: Assume + is associative; chop k, which implies replication of C matrix
Short Digression on Legality

for $k = 1$ to n

$C(i,j) = C(i,j) + A(i,k) \times B(k,j)$

- The k dimension is a dot product with the $+= $ as the “interesting” operation
- If we assume (which is not strictly true for floating point) that $+$ is associate
 - We can use a tree reduction for $+$
 - It can be deterministic (even with fp) if we use the same tree, independent of the number of processors (even on 1)
 - Any tree / serial combination may be OK in some settings
- If we assume $+$ is commutative (also not true for fp)
 - We can do “atomic” asynchronous updates

(Harsha’s hyperedges were these set of vertices)
Beyond Domain Decomposition

• Much of the work on compilers is based on owner-computes
 – For MM: Divide C into chunks, schedule movement of A/B
 – Data-driven domain decomposition partitions data; but we can partition work instead

• Ways to compute C “pencil”
 1. Serially
 2. Parallel reduction *Standard vectorization trick*
 3. Parallel asynchronous (atomic) updates
 4. Or any hybrid of these

• For what types / operators does this work?
 – “+” is associative for 1,2 rest of RHS is “simple”
 – and commutative for 3

Using x for C[i,j] here
Lower Bound Idea on $C = A*B$

Iromy, Toledo, Tiskin

"Unit cubes" in black box with side lengths x, y and z

= Volume of black box

= $x*y*z$

= $(\#A\square s \times \#B\square s \times \#C\square s)^{1/2}$

= $(xz * zy * yx)^{1/2}$

(i,k) is in "A shadow" if (i,j,k) in 3D set

(j,k) is in "B shadow" if (i,j,k) in 3D set

(i,j) is in "C shadow" if (i,j,k) in 3D set

Thm (Loomis & Whitney, 1949)

cubes in 3D set = Volume of 3D set

$\leq (\text{area}(A\ shadow) \times \text{area}(B\ shadow) \times \text{area}(C\ shadow))^{1/2}$
Lower Bound: What is the minimum amount of communication required?

- Assume fast memory of size M

- Outline (big-O reasoning):
 - Segment instruction stream, each with M loads/stores
 - Somehow bound the maximum number of flops that can be done in each segment, call it F
 - So \(F \cdot \# \text{segments} \geq T = \text{total flops} = 2 \cdot n^3 \), so \(\# \text{segments} \geq T / F \)
 - So \(\# \text{loads & stores} = M \cdot \# \text{segments} \geq M \cdot T / F \)

- How much work (F) can we do with \(O(M) \) data?
Recall optimal sequential Matmul

• Naïve code
 for i=1:n, for j=1:n, for k=1:n, C(i,j)+=A(i,k)*B(k,j)

• “Blocked” code
 for i1 = 1:b:n, for j1 = 1:b:n, for k1 = 1:b:n
 for i2 = 0:b-1, for j2 = 0:b-1, for k2 = 0:b-1
 i=i1+i2, j = j1+j2, k = k1+k2
 C(i,j)+=A(i,k)*B(k,j)

• Thm: Picking b = M^{1/2} attains lower bound:
 #words_moved = \Omega(n^3/M^{1/2})

• Memory-constrained replication (compare to 3D)
• Where does 1/2 come from? Can we compute these for arbitrary programs?
Generalizing Communication Lower Bounds and Optimal Algorithms

• For serial matmul, we know \(\#\text{words_moved} = \Omega \left(\frac{n^3}{M^{1/2}} \right) \), attained by tile sizes \(M^{1/2} \times M^{1/2} \).

• Thm 1: (Christ, Demmel, Knight, Scanlon, Yelick): For any program that “smells like” nested loops, accessing arrays with subscripts that are linear functions of the loop indices

\[
\#\text{words_moved} = \Omega \left(\frac{\#\text{iterations}}{M^e} \right)
\]

for some \(e \) we can determine

• Thm 2: (C/D/K/S/Y): Under some assumptions, we can determine the optimal tiles sizes
 – E.g., index expressions are just subsets of indices

• Long term goal: All compilers should generate communication optimal code from nested loops
Lower Bounds on Communication

Discrete HBL Linear Program (D-HBL-LP):
for all subgroups $H \leq \mathbb{Z}^d$, $\text{rank}(H) \leq \sum_{i=1}^{m} s_i \cdot \text{rank}(\phi_i(H))$

Note: There exist infinitely many H, but only finitely many possible constraints in D-HBL-LP (at most $(d+1)^{m+1}$)

Thm (B/C/C/T): $s_i \geq 0$ satisfy D-HBL-LP if and only if for any finite set $E \subset \mathbb{Z}^d$ its cardinality $|E|$ is bounded by

$$|E| \leq \prod_{i=1}^{m} |\phi_i(E)|^{s_i} \quad \ldots \quad C = 1!$$

We want tightest bound when $|\phi_i(E)| \leq 2M$, i.e. $|E| \leq (2M)^{\sum_{i=1}^{m} s_i}$

\implies Compute $s_{HBL} \equiv \min \sum_{i=1}^{m} s_i$ subject to D-HBL-LP

Thm: \#words_moved $= \Omega(\#\text{iterations}/M^{s_{HBL}-1})$
How general is this?

- General model:

\[
\text{for all } \mathcal{I} \in \mathcal{Z} \subset \mathbb{Z}^d, \text{ in some order}
\]
\[
\text{inner_loop}(\mathcal{I}, A_1(\phi_1(\mathcal{I})), \ldots, A_m(\phi_m(\mathcal{I})))
\]

- Ex: LU inner loop: \(A(i, j) = A(i, j) - L(i, k) \times U(k, j) \)
 - Ok to ignore loop scaling columns of \(L \)
 - Ok to overwrite \(A \): \(L(i, k) = A(i, k) \) for \(i > k \), ditto for \(U \)
 - Same idea applies to BLAS, Cholesky, \(LDL^T \), ...
 - Same idea applies to tensor contractions
 - QR, eig, SVD need another idea
Decidability of the Lower Bound

- What about Discrete HBL-LP?
 \[\forall H \leq \mathbb{Z}^d, \text{rank}(H) \leq \sum_{i=1}^{m} s_i \cdot \text{rank}(\phi_i(H)) \]

- Constraints define polytope \(\mathcal{P} \) in space of \([s_1, \ldots, s_m] \in \mathbb{R}^m\)

- Enough to get any subset of subgroups \(H \) defining \(\mathcal{P} \)

- Let \((H_1, H_2, H_3, \ldots) \) be any enumeration of all \(H \leq \mathbb{Z}^d \)

- Let \(\mathcal{P}_i \) be polytope defined by \((H_1, \ldots, H_i)\)

- “Simple” decidability algorithm:
 \[i = 0, \text{repeat } i = i + 1 \text{ until } \mathcal{P}_i = \mathcal{P} \]

- Thm: Decidable whether a vertex of \(\mathcal{P}_i \) in \(\mathcal{P} \)
 - Similar induction idea as before

- Better algorithm: which subgroups \(H \) to try first?
Special case: Subsets of Indices

- i_1, \ldots, i_d be indices, ϕ_1, \ldots, ϕ_m be projections
- Let $\Delta_{j,k} = 1$ if i_k in range of ϕ_j, else 0
- Thm: Let $s = [s_1, \ldots, s_m]$ minimize $1^T s \equiv s_{HBL}$ such that $s^T \Delta \geq 1^T$. Then
 \[
 \#\text{words_moved} = \Omega(\#\text{loop_iterations}/M^{s_{HBL}^{-1}})
 \]
- Proof idea
 - Constraints $s^T \Delta \geq 1$ are subset of Discrete HBL-LP, for all H spanned by $(0, \ldots, 0, 1, 0, \ldots, 0)$ (k-th entry = 1)
 - Show this subset implies $\text{rank}(H) \leq \sum_{j=1}^{m} s_j \text{rank}(\phi_j(H))$ for all $H \leq \mathbb{Z}^d$
Upper Bound for Subset of Indices Case

• i_1, \ldots, i_d be indices, ϕ_1, \ldots, ϕ_m be projections

• Let $\Delta_{j,k} = 1$ if i_k in range of ϕ_j, else 0

• Dual LP: Let $x = [x_1, \ldots, x_d]$ maximize $1^T x \equiv s_{HBL}$ such that $\Delta x \leq 1^T$.

• Thm: The solution x of the Dual LP gives the optimal block sizes to minimize communication: i_k blocked by M^{x_k}

• Proof idea

 – Each constraint in $\Delta x \leq 1$ bounds number of entries of each array by M

 – $1^T x = s_{HBL}$ says number of inner loop iterations per block is $M^{s_{HBL}}$.

• Extends to parallel case, “n.5D” algorithms
New Theorem 2 applied to Matmul

- for i=1:n, for j=1:n, for k=1:n, C(i,j) += A(i,k)*B(k,j)
- Record array indices in matrix Δ

\[
\Delta = \begin{pmatrix}
i & j & k \\
1 & 0 & 1 \\
0 & 1 & 1 \\
1 & 1 & 0 \\
\end{pmatrix}
\]

\[
\Delta x \leq 1
\]

Solve LP for \(x = [x_i, x_j, x_k]^T\): max \(1^T x\) s.t. \(\Delta x \leq 1\)
- Result: \(x = [1/2, 1/2, 1/2]^T\), \(1^T x = 3/2 = s_{HBL}\)
- Thm:
 \#words_moved = \(\Omega(n^3/M_{s_{HBL}}^{-1}) = \Omega(n^3/M^{1/2})\)
- Attained by block sizes \(M^{x_i}, M^{x_j}, M^{x_k} = M^{1/2}, M^{1/2}, M^{1/2}\)
What does this tell us?

Lower bound attained by block sizes

\[M^{x_i}, M^{x_j}, M^{x_k} = M^{1/2}, M^{1/2}, M^{1/2} \]

- Need to cut in all three dimensions for optimality: not “owner-computes” aka 2D
 - This is the 3D algorithm (if \(M \) is large enough) or 2.5D otherwise

- Tile shape is roughly a cube (within constants)

- Scales with cache / memory size

- This works for parallel code
New Theorem applied to Direct N-Body

- for \(i=1:n, \) for \(j=1:n, \) \(F(i) += \) force(\(P(i), P(j) \))
- Record array indices in matrix \(\Delta \)

\[
\Delta = \begin{pmatrix}
i & j \\
1 & 0 & F \\
1 & 0 & P(i) \\
0 & 1 & P(j)
\end{pmatrix}
\]

- Solve LP for \(x = [x_i, x_j]^T: \) max \(1^T x \) s.t. \(\Delta x \leq 1 \)
 - Result: \(x = [1, 1], \) \(1^T x = 2 = s_{HBL} \)
- Thm: \#words_moved = \(\Omega(n^2/M^{S_{HBL}-1}) = \Omega(n^2/M^1) \)
 Attained by block sizes \(M^{x_i}, M^{x_j} = M^1, M^1 \)
Generalizing Communication Optimal Transformations to Arbitrary Loop Nests

The same idea (replicate and reduce) can be used on (direct) N-Body code:

1D decomposition \rightarrow “1.5D”

Does this work in general?
- Yes, for certain loops and array expressions
- Relies on basic result in group theory
- Compiler work TBD

Speedup of 1.5D N-Body over 1D

<table>
<thead>
<tr>
<th># of cores</th>
<th>Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>32K</td>
<td>2.0x</td>
</tr>
<tr>
<td>24K</td>
<td>1.7x</td>
</tr>
<tr>
<td>8K</td>
<td>1.8x</td>
</tr>
<tr>
<td>6K</td>
<td>3.7x</td>
</tr>
</tbody>
</table>

IPDPS’13 paper (Driscoll, Georganas, Koanantakool, Solomonik, Yelick)
N-Body Speedups on IBM-BG/P (Intrepid)
8K cores, 32K particles

K. Yelick, E. Georganas, M. Driscoll, P. Koanantakool, E. Solomonik

Execution Time vs. Replication Factor

- Blue: Communication (Reduce)
- Green: Communication (Shift)
- Red: Computation

Execution Time Per Timestep (sec)

Replication Factor

11.8x speedup
New Theorem applied to Random Code

- for $i_1=1:n$, for $i_2=1:n$, ... , for $i_6=1:n$
 $A_1(i_1,i_3,i_6) \leftarrow \text{func1}(A_2(i_1,i_2,i_4),A_3(i_2,i_3,i_5),A_4(i_3,i_4,i_6))$
 $A_5(i_2,i_6) \leftarrow \text{func2}(A_6(i_1,i_4,i_5),A_3(i_3,i_4,i_6))$

- Record array indices in matrix Δ

- Solve LP for $x = [x_1, ..., x_7]^T$: max $1^T x$ s.t. $\Delta x \leq 1$
 - Result: $x = [2/7, 3/7, 1/7, 2/7, 3/7, 4/7]$, $1^T x = 15/7 = s_{HBL}$

- Thm: $\#\text{words}_\text{moved} = \Omega(n^6/M_{SHBL}^{-1}) = \Omega(n^6/M^{8/7})$
 Attained by block sizes $M^{2/7}, M^{3/7}, M^{1/7}, M^{2/7}, M^{3/7}, M^{4/7}$
General Communication Bound

• Given S subset of \mathbb{Z}^k, group homomorphisms ϕ_1, ϕ_2, \ldots, bound $|S|$ in terms of $|\phi_1(S)|$, $|\phi_2(S)|$, \ldots, $|\phi_m(S)|$

• Def: Hölder-Brascamp-Lieb LP (HBL-LP) for s_1, \ldots, s_m:
 for all subgroups $H < \mathbb{Z}^k$, $\text{rank}(H) \leq \sum_j s_j \cdot \text{rank}(\phi_j(H))$

• Thm (Christ/Tao/Carbery/Bennett): Given s_1, \ldots, s_m
 \[|S| \leq \prod_j |\phi_j(S)|^{s_j} \]

• Thm: Given a program with array refs given by ϕ_j, choose s_j to minimize $s_{\text{HBL}} = \sum_j s_j$ subject to HBL-LP. Then
 \[\#\text{words}_{\text{moved}} = \Omega (\#\text{iterations} / M^{s_{\text{HBL}}^{-1}}) \]
Comments

• Thm: (bad news) HBL-LP reduces to Hilbert’s 10th problem over Q (conjectured to be undecidable)

• Thm: (good news) Another LP with same solution is decidable (but expensive, so far)

• Thm: (better news) Easy to write down LP explicitly in many cases of interest (eg all $\varphi_j = \{\text{subset of indices}\})

• Thm: (good news) Easy to approximate, i.e. get upper or lower bounds on s_{HBL}

 • If you miss a constraint, the lower bound may be too large (i.e. s_{HBL} too small) but still worth trying to attain

 • Tarski-decidable to get superset of constraints (may get s_{HBL} too large)
Comments

• Attainability depends on loop dependencies
 Best case: none, or associative operators (matmul, nbody)

• Thm: When all $\phi_j = \{\text{subset of indices}\}$, dual of HBL-LP gives optimal tile sizes:

 HBL-LP: $\text{minimize } 1^T s \text{ s.t. } s^T \Delta \geq 1^T$

 Dual-HBL-LP: $\text{maximize } 1^T x \text{ s.t. } \Delta^* x \leq 1$

Then for sequential algorithm, tile i_j by M^{x_j}

• Ex: Matmul: $s = [1/2, 1/2, 1/2]^T = x$

• Generality:
 – Extends to unimodular transforms of indices
 – Does not require arrays (as long as the data structures are injective containers)
 – Does not require loops as long as they can model computation
Stepping Back

• Communication avoidance as old at tiling
• Communication optimality as old as Hong/Kung
 – But many of those algorithms assume unlimited memory (3D Matmul, 2D N-body; rather than memory-constrained .5D)

• What’s new?
 – Raising the level of abstraction at which we optimize
 – BLAS2 → BLAS3 → LU or SPMV/DOT → Krylov
 – Changing numerics in non-trivial ways
 – Rethinking methods to models

• Communication and synchronization avoidance
• Software engineering: breaking abstraction
• Compilers: inter-procedural optimizations
Communication Optimization Summary

1. Compress Data Structures
2. Target Higher Level Loops
3. Understand theory / numerics
4. Replicate data
5. Understand theory / lower bounds
6. Aggregate communication
7. Overlap communication
8. Use one-sided communication
9. Synchronization strength reduction
10. Combine the techniques
Optimal Tiling for N-Body

- $M = \text{cache size (} \#\text{words)}$
- $b \times b = \text{block size}$

Unblocked (given) code:

```plaintext
for i = 1:N, for j = 1:N
    F(i) += force(P(i), P(j))
```

Blocked code (optimal)

- $b = O(M) \rightarrow O(M^2) \text{ reuse}$

```plaintext
for j_1 = 1:N/b, for j_2 = 1:N/b
    for k_1 = 1:b, for k_2 = 1:b
        (i, j) = b \cdot (j_1, j_2) + (k_1, k_2)
        F(i) += force(P(i), P(j))
```

b = 6
(Sub)optimal tiling for “Twisted” N-body

- $M =$ cache size (#words)
- $b \times b =$ block size

Unblocked (given) code:

```plaintext
for i = 1:N, for j = 1:N
    F(i+c\cdot j) += force(P(i+c\cdot j), P(i-c\cdot j))
```

Naively blocked code (suboptimal)

- $b = O(M/c)$ to fit P, F in cache
- $\rightarrow O(M^2/c^2)$ reuse, not $O(M^2)$

```plaintext
for j_1 = 1:N/b, for j_2 = 1:N/b
    for k_1 = 1:b, for k_2 = 1:b
        (i, j) = b \cdot (j_1, j_2) + (k_1, k_2)
        F(i+c\cdot j) += force(P(i+c\cdot j), P(i-c\cdot j))
```

$c = 2, b = 3$
Optimal Tiling for “Twisted” N-Body

- $M =$ cache size (#words)
- $b \times b =$ block size

Unblocked (given) code:

```plaintext
for i = 1:N, for j = 1:N
    F(i+c\cdot j) += force(P(i+c\cdot j), P(i-c\cdot j))
```

Blocked code (optimal)

- $b = O(M) \to O(M^2) =$ reuse

  ```plaintext
  for j_1 = (*), for j_2 = (*)
      for t = 1:2 \cdot c
          for k_1 = 1:b, for k_2 = 1:b
              (i,j) = b \cdot (j_1, j_2) + (k_1, k_2)
              (m,n) = i \cdot (c,-1) + j \cdot (c,1) + t \cdot (1,0)
              F(m+c\cdot n) += force(P(m+c\cdot n), P(m-c\cdot n))
  ```

(*) denotes a subset of 1:N/b (ignore fringe cases)
$c = 2,$
$b = 6$

$t = 0, 1, 2, 3$