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Abstract

Applications with dynamic data structures, unpredictable computational costs, and irregular data
access patterns require substantial effort to parallelize. Much of their programming complexity comes
from the implementation of distributed data structures. We describe a library of such data structures,
Multipol, which includes parallel versions of classic data structures such as trees, sets, lists, graphs,
and queues. The library is built on a portable runtime layer that provides basic communication,
synchronization, and caching. The data structures address the classic trade-off between locality and load
balance through a combination of replication, partitioning, and dynamic caching. To tolerate remote
communication latencies, some of the operations are split into a separate initiation and completion
phase, allowing for computation and communication overlap at the library interface level. This leads
to a form of relaxed consistency semantics for the data types. In this paper we give an overview of
Multipol, discuss the performance trade-offs and interface issues, and describe some of the applications
that motivated its development.

1 Introduction

We have implemented a number of irregular parallel applications, including a symbolic algebra system

[CY94], a timing level circuit simulator [WY93], a biological cell simulation [Ste94], a solution to the

phylogeny problem [Jon94], and a electromagnetics simulation kernel [CDG+93]. In all of these projects,

the key parallelization task was the development and performance tuning of distributed data structures.

Although several languages and runtime systems support the development of such data structures [And93,

BBG+93, FLR92, SK91, SL93], there are no comprehensive data structure libraries, such as those that

exist for uniprocessors. Multipol is such a library. In this paper we give an overview of distributed data

structures in general and Multipol in particular. We identify the common performance issues that arise

and describe the implementation techniques used in Multipol.

Multipol is designed to help programmers write for irregular applications such as discrete simulation,

symbolic computation, and search problems. These applications typically contain conditional control con-

structs and irregular, non-array data structures such as graphs or unstructured grids, which make the

amount of computation in the program data dependent, leading to dynamic scheduling and load balance

requirements. They also produce unpredictable communication patterns, for which runtime techniques

must be used for enhancing locality and reducing communication costs. The Multipol data structures and

runtime system provide such support.

∗This work was supported in part by the Advanced Research Projects Agency of the Department of Defense monitored by
the Office of Naval Research under contract DABT63-92-C-0026, by the Department of Energy grant DE-FG03-94ER25206,
by the National Science Foundation as a Research Initiation Award (number CCR-9210260), and as an Infrastructure Grant
(number CDA-8722788), The information presented here does not necessarily reflect the position or the policy of the Gov-
ernment and no official endorsement should be inferred.
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One of the key problems in any library effort of this kind is portability. Our primary targets are

distributed memory machines such as Thinking Machines CM5, IBM SP1, Cray T3D and Intel Paragon,

as well as networks of workstations. While at a functional level these platforms are very similar, the

performance characteristics vary significantly. All of the machines have higher costs for accessing non-local

memory than remote memory, whether this is done in hardware or in software, but the relative speeds of

computation, the startup overhead of communication, the latency and the observed bandwidth all vary.

The interface design and implementation of Multipol structures are aimed at coping with communication

overhead and latency.

Multipol is implemented on a novel runtime layer that provides mechanisms for lightweight threading

and communication without enforcing fixed scheduling policies or particular memory models. The threading

model provides for fixed duration threads, which obviates the need for expensive thread preemption. The

communication subsystem does message aggregation to amortize the communication startup on machines

like workstation networks that have high message startup costs.

The approach taken by Multipol offers the following advantages. First, the data structures provide

high level programming abstractions that can be reused across applications. The abstractions also help

hide implementation details, which can be fine-tuned to match the communication and synchronization

needs. Finally, the library defines a set of interface ideas, such as split-phase operations, and underly-

ing implementation infrastructure that make it easily extendible to a wider class of data structures and

applications.

The remainder of the paper is organized as follows. Section 2 gives an overview of the data structures in

Multipol, describing their functionality and the applications that may use them. Section 3 introduces the

common issues in designing high-performance, portable data structures. Section 4 sketches the portable

runtime system on which Multipol is built, and Section 5 describes a few of the Multipol data structure

implementations in greater detail. Sections 6 gives an overview of related work and in Section 7 we draw

conclusions from our experience.

2 Overview of Data Structures

This section gives an overview of the Multipol data structures and the applications that use them. The

data structures fall into three categories: spatial structures represent a collection of objects in a physical

system; association structures represent a collection of key/value pairs, typically to store a set of computed

values; scheduling structures represent a collection of tasks to be performed.

2.1 Spatial Structures

Many scientific applications simulate physical systems in which a set of objects are spread out in a spatial

domain. In most cases, objects in the system have a physical coordinate, although in some cases objects

are connected though logical channels without reference to a global coordination system. Spatial structures

have natural locality, since objects nearby tend to have more effect than objects further away, and taking

advantage of this locality proves critical to performance.

Bipartite Graph: Some algorithms gain efficiency and accuracy by using unstructured meshes, which

place mesh points at physically significant locations, such as the face of a tetrahedron [Mad92], and use more
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refined meshes in areas of greatest activity. The neighbor relation is still important, but the connectivity

pattern is irregular. In an electromagnetics application called EM3D, the mesh is irregular but static

[CDG+93]. In this case there are two set of mesh points, one with electric field values and one with

magnetic field values. The graph is bipartite, and computation proceeds by reading values from one set of

vertices and updating the neighboring values in the other set.

Oct-tree: Although locality is evident in most physical simulations, the effects between entities may not

be limited to neighboring values. In the cell simulation, a O(n2) algorithm is used to compute the effects

of cells on each other. In systems with gravitational or similar forces between entities, hierarchical data

structures can be used to improve performance. The oct-tree is one example of such a structure. A three

dimensional space is partitioned into eight equally sized cubes, and the process repeated on each sub-cube

with more than one object, until each cube has at most one object [BH86]. The oct-tree is the hierarchy

created from this decomposition.

Event Graph: The event graph provides flow-controlled, in-order message delivery in a static network.

The nodes of the event graph represent computational processes that send and receive messages along

the edges. The messages are called events because their order with respect to the same edge should be

preserved. The event graph is used in a discrete event timing simulator called SWEC [LKMS91]. Discrete

event simulations like SWEC can be parallelized using either optimistic or conservative scheduling. We

have parallelized SWEC using optimistic scheduling [WY93] and focus here on the conservative simulation.

2.2 Association Structures

Association structures store a set of values without any relationship to a physical domain. These are

common in search problems and are often built as dictionaries that store key/value pairs. There is no a

priori notion of spatial locality in these data structures, but the data structures sometimes use caching to

provide temporal locality for applications that can exploit it.

Hash Table: A common parallel programming paradigm requires that a set of processors cooperatively

access a sparse address space. For boolean function manipulation, for example, this address space contains

functions in the form of DAGs [BRB90]. For search problems, the processors generate sets of states in the

space as they iterate over a subset of the space. The hash table provides a sparse address space distributed

across the processor, with a well-behaved hash function providing a natural load balance. Each processor

owns a local portion of the space, which it accesses efficiently, as well as a port into the global structure.

Trie: Memoizing intermediate solutions may speed up many types of search problems. The phylogeny

problem[Fel82] uses this technique for determining the evolutionary history for a set of species based on

their characters. The kernel of this algorithm explores the space of all subsets of characters searching for

incompatibilities with a proposed evolutionary history. The search space may be pruned by ignoring the

character sets that are either subsets of character sets already found compatible or supersets of character

sets already found incompatible. Storing character sets in a trie provides an efficient implementation of

the subset detection operation.
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Replicated List: The replicated list provides efficient support for iterating over a set of objects, provided

the elements in the list have small size, such as pointers. In particular, the notion of reordered and incomplete

iterations are naturally supported. This involves application knowledge of the locality of the iteration space.

E.g., if data elements for some iterations are remote, the application may choose to issue a prefetch and/or

skip over these elements. The replicated list is built on top of a generic object layer, which implements

a distributed shared memory by supporting variable size objects and a user-defined meaning of object

consistency. It is the software generalization of shared memory protocols on Tempest [RLW94].

The replicated list has been used in the Gröbner basis algorithm, and applies to Knuth-Bendix style

theorem provers [YG92]. Other potential uses are in Barnes-Hut type particle simulations. Critical to

the use of the replicated list is understanding the commutativity and idempotence of the operations.

While it is widely recognized that increased application control of shared memory operations improves

performance [GLL+90, LLG+90], we have found that control at the read/write level of abstraction is

insufficient.

2.3 Scheduling Structures

Task queue: Many task-parallel MIMD applications depend on some implementation of a distributed

task pool to explore a task tree (or task DAG in the more general case). The task queue is an example

of a generic interface providing basic functionality of this nature. This abstraction has been used in a

symbolic algebra algorithm, a tridiagonal eigenproblem solver, a sparse Cholesky factorization program,

and a computational biology program.

3 Performance Issues

The overheads of parallelization comprise the time the processors spend doing useless computation, i.e.,

computation that is not required by the sequential implementation, the time they spend in communication,

and the time they are idle. Each type of overhead is reduced in Multipol code using a combination of the

techniques outlined below.

3.1 Latency Masking

The latency of remote operations can cause idle time if the processor waits for the operation to complete. A

remote operation simply reads or writes remote memory or executes a small remote procedure, for example,

a lock acquisition. Thus, the term latency refers to both the message transit time and the time required

for remote processing. The remote computation time is not necessarily overhead, but time spent waiting

for completion is. The total latency can be quite large when the network is slow, when the application has

highly irregular communication patterns that make it impossible to make optimal scheduling decisions, or

when the remote requests require nontrivial computation time.

Techniques such as pipelining remote operations and multithreading can be used to hide latency. Even

on a machines like the CM-5 with relatively low communication latency, the benefits from message overlap

are noticeable: message pipelining of simple remote read and write operations can save as much as 30%

[KY94] and overlap of higher level operations in the Gröbner basis application saves about 10%. On

workstation networks with longer hardware latencies and expensive remote message handlers, the savings

should be even higher.
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The latency hiding techniques require the operations be nonblocking, or split-phase. In Multipol, oper-

ations that would normally be long-running with unpredictable delay are divided into separate fixed-length

threads. Multipol operations execute local computation and may initiate remote communication, but they

never wait for remote computation to complete. Instead, long-running operations take a synchronization

counter as an argument, which the caller can use to determine if the operation has completed. This leads to

a relaxed consistency model for the data types, which is weaker than either sequential consistency [Lam79]

or linearizability [HW90]. A operation completes sometime between the initiation and synchronization

point, but no other ordering is guaranteed.

Several applications can take advantage of relaxed consistency models. For bulk-synchronous problems

such as EM3D [CDG+93], cell simulation [Ste94], and n-body solvers, data structure updates are delayed

until the end of a computation phase, at which point all processors wait for all updates to complete. In

Gröbner basis and the phylogeny application, which have characteristics of a search problem, the set of

“found” values are stored in a lazily updated structure.

3.2 Locality

Locality is crucial when communication cost is large. One way to improve locality is to reduce the volume of

communication. Techniques for reducing communication can be either static or dynamic. Static techniques

include partitioning, which attempts to divide up the data set into loosely dependent partitions among the

processors, and replication, which keeps a copy of mostly-read data on each processor. Dynamic techniques

include caching, which maintain multiple copies of the data depending on the its runtime usage. For these

techniques, relaxed consistency may be used to further reduce communication.

Many applications can take advantage of these relaxed data structures because there is no strict ordering

on updates. In the phylogeny application and Gröbner basis problem, not only are updates to the global

set of results lazy, but each processor keeps partially completed cached copies of this set. This yields a

correct, albeit different, execution than the sequential program [CY93, Jon94].

3.3 Communication Cost Reduction

Some communication cannot be avoided, but its cost can be reduced by minimizing the number of messages

(as opposed to the volume) and by using less expensive unacknowledged messages. For machines like the

Paragon and workstation networks, which have high communication start-up (known as α in the α − β

cost model), the former is very important. Many small messages are aggregated into one large physical

message to amortize the overhead. Several other systems, including Parti and LPARX, also use message

aggregation. Even for machines such as CM5, which have small hardware packets and therefore a nearly

fixed overhead per word, it may still be advantageous to aggregate messages to reduce the amount of

flow-control communication for sending arbitrary-sized messages which cannot fit into a machine packet.

Message aggregation can be performed statically by the programmer, or dynamically by the runtime system.

The second technique for reducing communication cost is to avoid acknowledgement traffic. Acknowl-

edgements may consume a significant fraction of available bandwidth when the messages are small. In the

hash table, a factor of 2 in performance was gained when split-phase inserts with acknowledgements were

replaced by batches of inserts followed by periodic global synchronization points.
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3.4 Multi-ported Structures

In addition to communication overhead, many parallel applications lose performance on the local compu-

tation. Languages that support a global view of distributed data structures, for example, may incur costs

from translating global indices into local ones [Ste94] or from checking whether a possibly remote address is

actually local [CDG+93]. Message passing models in which objects cannot span processor boundaries avoid

these overheads, but lose the ability to form abstractions across processors. We propose a compromise,

which each data structure has both a local view, which refers to the sub-object that is on the processor,

and the global view, which refers to the entire distributed data structures. For example, many of the data

structures allow for iteration over the local components of the object, and for operations that modify or

observe only at the local data. In this sense, the data structures are multi-ported: each processor has its

own fast handle to a structure, while access to the global structure is also permitted.

3.5 Load Balance

Load balance of data structures requires that the data be spread evenly among the processors to avoid

hot spots. Scheduling involves the assignment of tasks to processor to keep all processors busy. There

is typically a trade-off between locality and load balance which can be resolved used either static or

dynamic techniques. For data structures with high remote access costs, static load balance and scheduling

techniques such as the owner-compute rule can be used to reduce communication. For data structures

with little remote access cost, dynamic strategies such as randomization can be used to increase processor

efficiency. A mixed strategy where dynamic scheduling is combined with locality considerations is also

possible.

4 The Runtime Layer

A Multipol program consists of a collection of threads running on each processor, where the number of

physical processors is exposed so that the programmer can optimize for locality. Multipol threads serve two

purposes. They are invoked locally to hide the latency of split-phase operations and can also be invoked

remotely to perform asynchronous communication. The Multipol runtime system provides support for

thread management, as well as a global address space spanning the local memory of all processors. In this

section, we describe the runtime support in Multipol.

4.1 Overview of Multipol threads

Multipol threads are designed to facilitate the composition of multiple data structures, and the porting

of the runtime system. This section describes the features of Multipol threads and explains our design

decisions.

Multipol threads run atomically to completion without preemption or suspension. Atomicity of thread

execution reduces the amount of locking required, and makes it easy to implement common read-modify-

write operations. Since threads are not preempted, spinning is prohibited – to suspend a computation

awaiting the result of a long latency operation, the thread that issues the operation explicitly creates a

continuation and passes the required state. The issuing thread then terminates, and its continuation thread

can be scheduled to resume the computation when the result becomes available. Synchronization between
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the continuation thread and the completion of the operation is achieved by waiting for a counter to exceed

a given value.

Because the programmer explicitly specifies the state to be passed to the continuation, there is no need

to implement a machine dependent thread package for saving the processor state and managing separate

stacks. Our approach improves the portability of the runtime system, and may have lower thread overheads

for machines with large processor states.

The runtime system provides a two-level scheduling interface for threads. The programmer can write

custom schedulers to schedule the data structure or application threads. The runtime system, for example,

uses a FIFO scheduler for interprocessor communication, and applications such as discrete event simulators

can have their own priority based schedulers. The top-level system scheduler guarantees that each custom

scheduler is called once within finite time, and the frequency of calls can be configured by the programmer.

The scheduling interface localizes scheduling decisions to the custom schedulers, which can be individu-

ally fine-tuned for performance. It also facilitates the composition of data structures, or the addition of new

runtime support. The scheduling policy used by one data structure can be changed without introducing

anomalies, such as unexpected livelock or deadlock, into other parts of the program.

The Multipol threads are designed for direct programming, in contrast to compiler-controlled threads

such as TAM [CSS+91], in that Multipol provides more flexibility such as arbitrary size threads and custom

schedulers. A set of macros can be used to facilitate programming. These macros make the Multipol

programs resemble sequential programs with blocking operations (as opposed to thread continuations with

split-phase operations).

4.2 The Multipol communication primitives

The runtime system supports two types of communication primitives: remote thread invocation and bulk

accesses of the global memory. A thread may be invoked on a remote processor to perform asynchronous

communication, such as requesting remote data, or to generate more computation, such as dynamically

assigning work to processors. Invoking a remote thread is a non-blocking operation which returns immedi-

ately, and its completion guarantees that the remote thread will be invoked in finite time. The programmer

can also use bulk, unbuffered put and get primitives to access remote data. The put and get operations are

split-phase operations which use a counter to synchronize the calling computation when all data arrive at

the destination.

The runtime system aggregates messages to improve communication efficiency for programs that gen-

erate many small, asynchronous messages. These messages are accumulated into large physical messages

to better amortize the communication start-up overhead. Experiments with SWEC show that message

aggregation can reduce the running time by as much as 50% on machines such as the IBM SP1.

4.3 Porting the Multipol runtime system

Porting the runtime system consists of defining the machine dependent constants (such as the number

of processors available), installing custom schedulers for the architecture, and implementing the network

primitives. Two principal network primitives need to be ported: the barrier synchronization of all processors

(blocking), and a nonblocking store primitive. The store primitive transfers a block of data from a local

buffer to a remote address and invokes a remote handler upon completion. Store is nonblocking, returning
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when the operation can be guaranteed to complete in finite time. The data is unbuffered, and the primitive

takes a counter as input to inform the sender when the local buffer can be reused. Ports of the runtime

system to active message and send/receive architectures exist.

5 The Data Structures

This section describes a few of the Multipol data structures, their interfaces, implementations, and perfor-

mance characteristics.

5.1 Hash Table

The Multipol hash table provides three general types of operations – synchronous, distributed and local.

The synchronous operations create and destroy must be called on all processors. The distributed op-

erations (insert, lookup, testNset) are called locally on each processor and may access the distributed

structure through the local port. Strictly local operations allow the processor to iterate over, count, and

clear its local portion of the hash table. Note that the local operations perform no synchronization, and

their interaction with concurrent distributed operations is undefined. Thus, the multi-ported nature of the

hash table give good performance at a cost of weaker semantics.

The hash table distributes the buckets over the processors, and uses chaining to resolve collisions.

Insert and lookup are implemented using an owner-computes rule – keys and data are sent to the processor

managing the bucket. The hash table uses the runtime primitives to support split-phase operations. For

insert, lookup and testNset, the user may synchronize a thread on the result by specifying a counter.

Insert become unacknowledged if the counter is omitted – sync may then be used to detect termination

of all outstanding operations for bulk synchronous algorithms.

The hash table demonstrates two performance techniques in Multipol – latency masking and used of

one-way communication. As an example, we coded a search problem which finds solutions for a simple

puzzle. The algorithm iterates between a current set of states and a new set generated by valid moves. For

the problem size we considered, about 100,000 positions are explored.

We compare three implementations. In the naive blocking algorithm, each processor iterates over the

positions in its local set and performs a blocking insert into the hash table. On a 32-node CM5, this

version takes 27.9 seconds. To pipeline the inserts, the processors wait on the synchronization counters

at the end of the iteration. With pipelining, the running time is reduced to 16.4 seconds. A further

optimization is to eliminate acknowledgement traffic by using a global synchronization point at the end of

each iteration. The search now takes only 11.0 seconds. See Figure 3 for a complete speedup curve on the

search problem.

5.2 Replicated list

The replicated list, like the hash table, holds a set of values for search-like applications. The creation and

destruction routines are similar to those on the hash table, and there are append and remove operations,

which are long-latency operations similar to hash table insert. Like the hash table, the list also has an

iterator for traversing the local elements. The difference is that the local iterator on the hash table produces

disjoint subsets of the elements, whereas the replicated list iterator does not. In the replicated list, each

local iteration produces a subset of all the elements, whose union across processors is the complete set.
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Two design decisions improve performance of the list. First, the list is replicated fairly aggressively: it

is consistent except when a processor has an outstanding split-phase operation. Complete replication is

acceptable when the list is used to store only global pointers or object ID’s (as against actual values). In

the Gröbner basis application, for example, the list is use to store the final answer, which is small relative to

the total data that is accessed during the computation. Second, the list sits on top of a general distributed

object library (described below) which manages the global address space. Thus, while the view of the list

of object identifiers is usually consistent, the cached objects associated with them are communicated lazily.

The list is designed for a relatively smaller set of large objects.

5.3 Object layer

The object layer is a general abstraction for caching contiguous objects. Because of its generality, the

interface is rather large, so only a few of the operation are outlined here. While the set of routines is rather

complicated, especially the sequencing requirements between operations, this must be compared with the

even more complicated synchronization protocols that are hidden within the layer. The complexity of the

interface comes from its generality and from our desire to provide useful mechanisms rather than fixed

memory consistency policies. We expect most uses of this data structure to be hidden within another

distributed structure like the replicated list, hash table, or trie.

Mol create creates a new object and registers it into the object space. A unique ID for this object

(recognized eventually on all processors) is created and returned. This is a long running routine, so a

counter is taken as input. Objects are read locally using Mol read acquire and Mol read release. This

style is needed for atomic version upgrades and garbage collection. Mol valid sync is a long-running

operation to validate a given object, which may be stale or unavailable. Mol modify and Mol destroy

are (long-running) operations to modify or delete an object. They bump input counters when the remote

operation completes.

High read throughput is achieved by replicating the object identifiers aggressively. However, the appli-

cation dictates how aggressively the actual objects are cached. The Gröbner basis application makes use

of such flexibility by working with a subset of the data and allowing the copies to become out of date. One

disadvantage of providing this flexibility in software is that the overhead of a cache hit is prohibitive for

small objects. The application writer must evaluate this cost for the object size of interest.

5.4 Event Graph

The event graph is a data structure with some spatial locality from the application domain. In addition to

basic construction and destruction functions, the event graph has operations to send an event along a set

of outgoing edges, receive events from an incoming edge, and a global snapshot function, which presents a

consistent global view of the data structure to the program. The operations all have split-phase interfaces

for latency masking.

The events are stored at the receiving processors, so that all receive operations can be handled quickly.

To reduce the communication and memory requirements, we combine events that are sent to different graph

nodes on the same processor. The space for caching is pre-allocated and the number of readers is known

from the static graph structure. Experiments with SWEC timing level circuit simulator show that 5% to

20% of the events can be found in the cache for a small circuit.
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Sending an event requires that the buffer space be available on all fanout edges. We replicate the flow-

control state of the buffer at the receiving and the broadcasting processors. The replicas are conservative

summaries of the true fanout buffer states, so that most events can proceed without requiring flow control.

Experiments with SWEC show that as much as 64% to 98% of the sending operations can complete without

blocking, depending on the size of the buffer space. The amount of memory allocated to the event graph

can be adjusted to fit different machines or applications. Since the event graph is the only distributed data

structure in SWEC, allocating more memory generally leads to better performance. Experiments show

that the running time can be reduced by 30% when the edges can hold 64 instead of 16 outstanding events.

After a processor accepts an event, flow control messages must be sent to free up buffer space. Rather

than sending a flow-control message for each event, we provide an interface whereby the programmer can

explicitly issue an update after some number of events are received. By aggregating such update messages,

their number can be reduced by 10% to 50%.

By combining all these techniques, the conservative parallel SWEC kernel simulating a small circuit

with 129 subcircuits shows speedup up to 3.65 and 5.30 on the 8-node Paragon and SP1 respectively, and

9.90 on a 32-node CM5 (See Figure 4 for the speedup curves). These numbers are based on a simulation,

where it is easier to control and measure the effects of individual optimizations. However, the data structure

was motivated by a parallel implementation of SWEC using optimistic scheduling, which shows a speedup

of 55 for a large circuit on a 64-node CM5[WY93].

5.5 Oct-Tree

To provide an efficient implementation of an oct-tree, two important issues need to addressed: how to

spread the oct-tree across processors to obtain good load balance without sacrificing locality, and how to

decrease the cost of accessing remote nodes.

For good load balancing, the tree needs to be partitioned across processors so that all processors compute

equal numbers of inter-particle interactions. To preserve locality, it is beneficial to partition the tree so

that each processor gets complete sub-trees. These two goals unfortunately conflict. Warren and Salmon

describe an algorithm for mapping an oct-tree across processors. Our goal in Multipol is to decrease the

cost of the access operations for a given layout. In particular, we decrease the number of remote accesses

as well as decrease the cost of a remote access by reordering the inter-particle interactions. The standard

per-processor algorithm is as follows:

for each particle P owned by me

for all particles R that P needs to interact with

Interact P with R

We reverse the loops, which has the advantage that each remote particle R is fetch once and used

multiple times. However, there are some important considerations in obtaining an efficient implementation

of this high level description. R should be fetched only if there is some local particle P that requires the

remote value. Storing the local particles in a multi-list data structure allows us to locate all the particles

that need to interact with R without having to search through the entire list of local particles.
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Our approach guarantees that the number of remote accesses made is the minimum required for the

entire computation. We also reduce the cost of a remote accesses by making the operation split-phase, and

pre-fetching across iterations.

5.6 Task Queue

The task queue provides dynamic load balancing of a set of value, which are typically structures used to

identify tasks. The three main functions of the task queue object are to inject a new task, extract an

existing task, and detect quiescence of the system. From the performance perspective, a more important

internal functionality is load balancing. In addition to creation and destruction operations, the task queue

has functions to insert and remove tasks. The removal operation is a long-running operation with a

synchronization counter, allowing the processor to perform other work if the requested task is unavailable.

The only other long-running operation is for termination detection, since this requires global agreement

among the processors.

There is an enormous literature on dynamic load balancing and we have two implementations: one

that uses a simple randomized load balancing scheme [CRY94] and another that uses heuristics for locality

along with round-robin task pushing. Both of these work well for the applications in which locality is not

a major concern, including Gröbner basis, the phylogeny problem, and a symmetric eigenvalue code [Sin].

However, more sophistication in task assignment will likely be required for other applications, that have

partitioned data sets.

6 Related Work

Several research efforts are related to ours: general libraries and systems software, application specific

libraries, customized shared memory software, and systems for performance portability.

Libraries and software systems. Recent research has yielded a variety of runtime support like the

Concert system [KC93], the Chare kernel [SK91, KK93], and the compiler-controlled threaded abstract ma-

chine [CSS+91], and programming languages like COOL [CGH], Concurrent Aggregates [And93], pSather [FLR92]

and pC++ [BBG+93]. As language-based approaches, they encapsulate default policies for data and task

assignment. When tasks involve dynamic data structures, execution time and data access patterns cannot

be predicted by the compiler. Since no policy is likely to be universally applicable, user overrides are also

permitted. Thus, these systems provide mechanisms but no general understanding of application perfor-

mance with respect to data structure design and implementation, or how to address these issues in a new

application.

Another thread of work has been the development of application-specific distributed data structures, in-

cluding irregular grids [BSS91], the LPARX library for writing adaptive mesh codes [Bad91], B-trees [WW90],

sets [Dal86] and oct-trees [WS93]. Some early Fortran versions of irregular grid code can be improved by

message aggregation using the PARTI library [BSS91]. In contrast, we look at significantly more irregular,

dynamic, and even non-deterministic problems.

Shared memory semantics. The programmer’s most intuitive notion of shard memory is sequential

consistency, which specifies that accesses to shared memory are an arbitrary merge of accesses from all

11



the processors, but each has atomic effect [Lam79]. Release consistency relaxes this by permitting limited

reordering of the processor order of accesses, with hardware instructions to commit all outstanding writes

when the program needs this property to proceed [LLG+90]. Adve and Hill have designed a formalism

and expressed these and other variants of shared access specification [AH90]. Weihl’s thesis makes a case

for reordering accesses more aggressively than possible in hardware by using more application informa-

tion [Wei88]. We have carried this idea even further in the Gröbner basis program [CY93, CY94], the

Oct-tree code, and the Phylogeny program.

Portable parallel programming. Alverson [AN93] introduced the notion of effectively portability and

developed the runtime system Chameleon, which separates the abstract interface of the data structures

from their implementation for portability. Crowl [CL94] developed the programming language Natasha,

which supports “forall” like control abstractions and multiple implementations of the abstractions. The pro-

grammer explicitly selects the implementation using annotations in the source programs. Neither Alverson

nor Crowl addressed the composition of multiple data structures. Brewer [Bre94] proposed a systematic

approach to tuning parallel programs based on statistical sampling. However, his work addressed the

sequential composition of algorithms, but not the parallel composition of irregular data structures.

7 Conclusions

The Multipol library fills the gap in the parallel software tools for programming irregular applications

on distributed memory machines. In this paper we have identified some of the primary issues in the

design of distributed data structures – namely locality, load-balance, latency hiding, and communication

elimination. All of these performance issues are complicated by the variations across architectures, which

make it difficult to effectively manage resources. This lead to the development of portable runtime layer

and data structures that tune themselves to the architecture.

The irregular applications described here represent some of the more challenging problems for paral-

lelism. The library approach proves to be a good compromise between hand-coded applications that are

machine-specific and pure language and compiler approaches, which give too little control to the application

programmer. The split-phase interfaces are a concession to performance demands. While they complicate

the interface from the client’s perspective, they significantly improve performance on distributed memory

machines. The use of one-way communication eliminates acknowledgement traffic and is a significant per-

formance enhancement for data structures with small messages. The multi-ported aspect of the structures

allows the users to switch between global and local views, providing the abstraction of the former and

performance of the latter.
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Figure 1: Comparison of the Hashed Oct-Tree approach suggested by Warren and Salmon with our Loop
interchange approach based on bytes read per inter-particle interaction.
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Figure 2: Speedups for the Phylogeny problem using the three implementations of the Trie.
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Figure 3: Speedups for the triangle puzzle using the hash table.
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Figure 4: Speedups for the parallel SWEC kernel using the event graph.
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Figure 5: Speedups for the eigenvalue problem using the task queue.
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