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“Big Data” Changes Everything…What about Science?



Combine simulation and observation for next Cosmology breakthrough

Nyx	simula+on	of	Lyman	alpha	forest	using	AMR	

Reduce	systema?c	bias	in	observa?on	through	simula?on	of	~1	Gigaparsec	Baryon	
Acous?c	Oscilla?ons	in	the	Lyman	Alpha	Forest	and	~100	Gigaparsec	simula?on	of	
galaxy	clusters,	both	requiring	adap?ve	mesh	refinement	(AMR).	

Ki:	Peak	Na+onal	Observatory’s	Mayall	4-meter	telescope,	
planned	site	of	the	DESI	experiment	
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Climate models and microbial analysis together to predict the 
future of the environment
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Understand	interac?ons	between	environmental	microbiomes	and	climate	change	with	
kilometer	resolu+on	models	that	track	dynamic	3D	features	(with	AMR)	and																			
genome-enabled	analysis	of	environmental	sensors.		

Genomes	to	watersheds	Scien?fic	Focus	Area	
New	climate	modeling	methods,	including	AMR	
“Dycore”	produce	new	understanding	of	ice	



Understand and control energy with advanced light sources and 
materials modeling
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Diffraction Limit and Spatial 
Coherence Enabled by ALS-U 

Understand	and	control	the	direc?on	and	flow	of	energy	with	minimal	losses	using	
advanced	instruments,	high	fidelity	models,	and	high	throughput	simula?on	and	
analysis	for	applica?ons	in	energy,	environment	and	compu?ng,		

Materials	Project	 ALS-U	Upgrade	

new 
accumulator 
ring 

new ALS ring 

13,030	users	hosted	at	
NERSC	with	so?ware	co-
developed	by	CRD	

Discovering 
multivalent cathodes 



Science in embedded sensors:  Internet of Things
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Decision	Science	

Transporta?on	Modeling	 Power	Grid	Modeling	

Scenario	Predic?on,	Planning	

Figure 7: Hourly averaged actual usage is shown on the left. And hourly averaged predicted usage is
shown on the right. Triangles markers show the averaged temperature. As presented in Tables 4 and 5,
the predicted usage shows higher values than the actual usage, demonstrating that differing pricing policies
affect household usage patterns.

accurate short-term forecasts, our baseline model aims to capture intraday characteristics that persists for
years. Our tests show that one of the boosting technique, GTB, could incorporate important features such
as outdoor temperature and capture the core user behavior. For example, the baseline model from GTB
accurately reproduces the lag between the daily peak temperature and peak electricity usage.

The ultimate objective of our work is to evaluate the effectiveness of the different pricing schemes.
The new baseline is an important component. This preliminary work demonstrate that new approach is
promising, but additional work is needed to evaluate the effectiveness of this approach. For example, we
should to re-evaluate the features used in the regression models and systematically measure their impact.
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Roadmap for this talk

ü Science	at	the	boundary	of	simulaHon	and	
observaHon	

•  Science	data	challenges	
•  What	do	I	mean	by	Exascale?	
•  Exascale	challenges	for	Data	problems	

–  Programming	models	
–  Algorithms		
–  Architectures		
–  Systems	
–  Policies	

Science	data	challenges	



Science Data Growth is Outpacing Computing
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Old School Scientific Data Search



Automated Search, Meta-Data Analysis, and On-
Demand Simulation 

	 	 	 	 	 	

Metadata		
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[Ground]	

User	Interfaces	
[		e.g.,	Metadata	
Valida4on,	Search	
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training	data		

System	data	
using		

Figure 1: Conceptual System Overview. The figure shows the interaction of various system components
of ScienceSearch.

Challenge 2: Search needs to account for scale and lineage of data and the I/O challenges of future sys-
tems. Data search capabilities need to address scalability at various levels: a) machine learning algorithms
must generate metadata at the rate and scale of the data volumes being generated; b) the metadata generation
process must address the I/O challenges of the future exascale systems and, c) the metadata storage layer
needs to address scalability.
Challenge 3: The complexities and intricacies of scientific data, as well as, machine and deep learning
algorithms require a careful consideration of the human factors. Machine learning techniques can help
with learning about the data and generating metadata. However, this is not sufficient for scientific data, since
the complexity of the data often requires specialized domain knowledge and understanding. Automated
metadata generated from machine learning algorithms will likely need to be curated by humans to ensure
accuracy. Additionally, the machine learning model needs to understand the terms or signals that might
arise from a user’s query. Thus, it is important to understand how people interact and want to interact with
scientific data search and machine-generated metadata labels.
Project Objectives: Designing a data integration ecosystem. Our proposed techniques bring together
a unique blend of skills that includes machine learning, human-computer interaction, and experience with
scientific domains and users at facilities. Our goal is to make data a first-class discoverable resource at
supercomputing centers through the powerful concept of search.

Figure 1 shows the conceptual system architecture that will be enabled by the research proposed in this
proposal. The ScienceSearch framework has three key components: a) metadata generation, b) the Ground
[38] metadata storage framework, and c) an interface layer. The metadata generation framework uses a
variety of machine learning techniques to generate the context of the data from both application data, as
well as system level information. Ground is a data context service that provides the metadata storage layer.
The interface layer allows the users to interact with the system to verify and validate automated metadata
generated.

We envision the ScienceSearch framework will be available at supercomputing centers and users can
make their data available to the system. The ScienceSearch framework will use the data sets and, ecosystem
artifacts associated with the data (e.g., proposals, workflow and system logs, publications) to learn and
generate metadata labels. The ScienceSearch framework will use active learning to surface the metadata
labels to users for feedback. The users can validate, add, delete or edit labels. Similarly, we anticipate that

2

Jobs	submi^ed	by	“bots”	based	
on	queries;	algorithms	extract	
informa?cs	for	design	

Automated	metadata	extrac?on		
using	machine	learning		



Filtering, De-Noise and Curating Data

Arno	Penzias	and	Robert	Wilson	discover	
Cosmic	Microwave	Background	in	1965	

AmeriFlux	&	FLUXNET:	750	
users	access	carbon	sensor	data	
from	960	carbon	flux	data	years	



Roadmap for this talk

ü Science	at	the	boundary	of	simulaHon	and	
observaHon	

ü Science	data	challenges	
•  What	do	I	mean	by	Exascale?	
•  Exascale	challenges	for	Data	problems	

–  Programming	models	
–  Algorithms		
–  Architectures		
–  Systems	
–  Policies	

What	do	I	mean	by	Exascale?	



Orders	of	magnitude	increase	in	
performance	at	all	scales	

Exascale									=	

è ConHnued	growth	at	constant	energy	
è ConHnued	growth	at	constant	cost	



Computing is energy-constrained

At	~$1M	per	MW,	energy	costs	are	substan?al	
•  1	petaflop	in	2008	used	3	MW	
•  1	exaflop	in	2018	at	200	MW	“usual	chip	scaling”	
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The “New Normal” for Computer Architecture
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Figure 4.1: Historical Trends.
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Goal:	1	Exaflop	in	20	MW		
						=	20	pJ	/	operaHon	
	
Note:	The	20	pJ	/	operaHon	is		
•  Independent	of	machine	size		
•  Independent	of	#	cores	used	per	

applicaHon	
•  But	“operaHons”	need	to	be	

useful	ones	
	

Missing	Tihanhe-2	at	18MW,	Taihulight	at	15MW	



   

Challenge: Communication is expensive
Communication is expensive in time and energy 

Hard to change: Latency is physics; bandwidth is money! 
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Roadmap for this talk

ü Science	at	the	boundary	of	simulaHon	and	
observaHon	

ü Science	data	challenges	
ü What	do	I	mean	by	Exascale?	
•  Exascale	challenges	for	Data	problems	

–  Programming	models	
–  Algorithms		
–  Architectures		
–  Systems	
–  Policies	

Exascale	challenges	for	Data	problems	



Data vs. Simulation: The Irregularity Spectrum

Massive	
Indepen-
dent	Jobs	

	

Compute-
Intensive	

Nearest	
Neighbor		

	
	
	

All-to-All		
	
	
	

Random	
access,	

large	data		
	

Different	architectures?		Programming	models?	



PGAS: A programming model for exascale
• Global	address	space:	thread	may	directly	read/write	
remote	data	using	an	address	(pointers	and	arrays)	
							…	=	*gp;								ga[i]	=	…		

• Par//oned:	data	is	designated	as	local	or	global	
												shared	int	[	]	ga;			and			upc_malloc	(…)	
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A	programming	model	can	influence	how	programmers	think	



One-Sided Communication is Closer to Hardware

•  Hardware	does	1-sided	communicaHon	
•  Overhead	for	send/receive	messaging	is	worse	at	exascale		
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•  AdapHve	Mesh	Refinement	(AMR)	using	UPC++	
– Metadata	costs	make	flat	MPI	imprac?cal	
–  Replaced	communica?on	(retained	most	code)		
–  Hierarchical	algorithms	(UPC++/UPC++	or	MPI/MPI	best)		
	

One-sided PGAS (UPC++) in AMR

	Weiquin	Zhang,	Y.	Zheng	
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•  First-ever	whole-mantle	seismic	model	from	numerical	waveform	tomography	
•  Finding:	Most	volcanic	hotspots	are	linked	to	two	spots	on	the	boundary	
between	the	metal	core	and	rocky	mantle	1,800	miles	below	Earth's	surface.	
	

Science Impact: Whole-Mantle Seismic Model

Sco^	French,	Barbara	Romanowicz,	"Broad	plumes	rooted	at	the	base	of	the	Earth’s	mantle	
beneath	major	hotspots",	Nature,	2015	

Makss	unsolvable	
problems	solvable!	



Data Fusion for Observation with Simulation

•  Unaligned	data	from	observaHon	
•  One-sided	strided	updates		
•  Could	MPI-3.0	one-sided	do	this?		Yes,	but	not	well	so	far	
Sco^	French,	Y.	Zheng,	B.	Romanowicz,	K.	Yelick	



Sparse Cholesky in PGAS (UPC++)

Fan-both	algorithm	by	Jacquelin	&	Ng,	in	UPC++		

23	



Unstructured, Graph-based, Data analytics problem:  !
De novo Genome Assembly

•  DNA	sequence	consists	of	4	bases:	A/C/G/T	

•  Read:	short	fragment	of	DNA	sequence	that	can	be	read	by	a	
DNA	sequencing	technology	–	can’t	read	whole	DNA	at	once.	

•  De novo genome assembly: Reconstruct an 
unknown genome from a collection of short reads. 
–  Construc?ng	a	jigsaw	puzzle	without	having	the	picture	on	the	box 



Random Access Graph Analytics
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•  Genome	assembly	“needs	shared	memory”	

•  Low	overhead	communicaHon	
•  Remote	atomics	
•  ParHHons	for	any	structure	

Global	Address	Space	

Scales	to	15K+	cores	
Under	10	minutes	for	human	
First	ever	soluHon	

E.	Georganas,	A.	Buluc,	J.	Chapman,	S.	Hofmeyr,	C.	Aluru,	R.	Egan,	L.	Oliker,	D.	Rokhsar,	K.	Yelick		



Many types of distributed hash tables in HipMer

•  Global	update	only	
–  Can	aggregate	and	reorder	updates	

•  Global	read	only	
–  Some?mes	with	good	hash	locality	so	caching	helps	

•  Global	read-modify-write	of	elements	in	table	
–  Remote	atomics	

•  Local	read	and	write	
–  Separate	all-to-all	or	reduc?on	phase	



Strong scaling (human genome) on Cray XC30

•  Complete	assembly	of	human	genome	in	4	minutes	using	23K	cores.	
•  700x	speedup	over	original	Meraculous	(took	2,880	minutes	on	large	shared	memory	with	

some	Perl	code);	Some	problems	(wheat,	squid,	only	run	on	HipMer	version)	
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Roadmap for this talk

ü Science	at	the	boundary	of	simulaHon	and	
observaHon	

ü Science	data	challenges	
ü What	do	I	mean	by	Exascale?	
•  Exascale	challenges	for	Data	problems	

ü Programming	models	
–  Algorithms:	Communica?on	avoidance		
–  Architectures		
–  Systems	
–  Policies	

Exascale	challenges	for	Data	problems	



Beyond Domain Decomposition!
2.5D Matrix Multiply on BG/P, 16K nodes / 64K cores
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c	=	16	copies	

EuroPar’11	(Solomonik,	Demmel)	
SC’11	paper	(Solomonik,	Bhatele,	Demmel)	

	
Surprises:		
•  Even	Matrix	Mul?ply	had	room	for	improvement	
•  Idea:	make	copies	of	C	matrix		(as	in	prior	3D	
algorithm,	but	not	as	many)	

•  Result	is	provably	op?mal	in	communica?on	
	
Lesson:	Never	waste	fast	memory	
			And	don’t	get	hung	up	on	the	owner	computes	rule	
	
Can	we	generalize	for	compiler	writers?	
	
	



Deconstructing 2.5D Matrix Multiply 
Solomonick & Demmel 
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z 
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x 
y •  Tiling the iteration space 

•  2D algorithm: never chop k dim 
•  2.5 or 3D: Assume + is 

associative; chop k, which is à 
replication of C matrix 

k 

j 

i 
Matrix Multiplication code has a 3D iteration space 
Each point in the space is a constant computation (*/+) 
 

for i 
   for j 
      for k 

B[k,j]  … A[i,k] …  C[i,j] … 
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Lower Bound Idea on C = A*B 
Iromy, Toledo, Tiskin 
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Cubes in black box with 
   side lengths x, y and z 
= Volume of black box 
= x*y*z 
= (#A□s * #B□s * #C□s )1/2 

= ( xz * zy * yx)1/2 
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(i,k) is in “A shadow” if (i,j,k) in 3D set  
(j,k) is in “B shadow” if (i,j,k) in 3D set  
(i,j)  is in “C shadow” if (i,j,k) in 3D set 
 
Thm (Loomis & Whitney, 1949) 
     # cubes in 3D set = Volume of 3D set 
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Generalizing Communication Lower Bounds and 
Optimal Algorithms

•  For	serial	matmul,	we	know	#words_moved	=		Ω	(n3/M1/2),	
atained	by	Hle	sizes	M1/2	x	M1/2	

•  Thm	(Christ,Demmel,Knight,Scanlon,Yelick):			For	any	
program	that	“smells	like”	nested	loops,	accessing	arrays	with	
subscripts	that	are	linear	func+ons	of	the	loop	indices	

											#words_moved	=			Ω	(#itera+ons/Me)	
					for	some	e	we	can	determine	
•  Thm	(C/D/K/S/Y):	Under	some	assumpHons,	we	can	

determine	the	opHmal	Hles	sizes	
–  E.g.,	index	expressions	are	just	subsets	of	indices	

•  Long	term	goal:	All	compilers	should	generate	
communicaHon	opHmal	code	from	nested	loops	



Implications for Compilers

•  Much	of	the	work	on	compilers	is	based	on	
owner-computes	
–  For	MM:	Divide	C	into	chunks,	schedule	movement	of	A/B	
–  Data-driven	domain	decomposi?on	par??ons	data;	but	

we	can	par??on	work	instead	
•  Ways	to	compute	C	“pencil”	

1.  Serially	
2.  Parallel	reduc?on	
3.  Parallel	asynchronous	(atomic)	updates	
4.  Or	any	hybrid	of	these	

•  For	what	types	/	operators	does	this	work?	
–  “+”	is	associa?ve	for	1,2	rest	of	RHS	is	“simple”	
–  and	commuta?ve	for	3	

33	

Using	x	for	C[i,j]	here	

x	+=	…	

x	+=	…	

x	+=	…	

x	+=	…	

Standard	vectoriza+on	trick	



Communication Avoiding Version !
(using a “1.5D” decomposition)

•  Divide	p	into	c	groups.		Replicate	parHcles	within	group.	
–  First	row	responsible	for	upda?ng	all	by	orange,	second	all	by	green,…	

•  Algorithm:	shi?	copy	of	n/(p*c)	parHcles	to	the	le?	
–  Combine	with	previous	data	before	passing	further	level		(log	steps)	

•  Reduce	across	c	to	produce	final	value	for	each	parHcle	
•  Total	Computa?on:	O(n2/p);		
•  Total	Communica?on:	O(log(p/c)	+	log	c)	messages,		
																																											O(n*(c/p+1/c))	words	
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Limit:	c	≤	p1/2	

c	

p/c	

Driscoll,	Georganas,	Koanantakool,	Solomonik,	Yelick	



Challenge: Symmetry & Load Balance

•  Force	symmetry	(fij = -fji) saves	computaHon	
•  2-body	force	matrix	vs	3-body	force	cube	

•  How	to	divide	work	equally?	

6x save 
of O(n3)! 2x save 

of O(n2) 

Koanantakool	&	Yelick	



3-Way N-Body Animation

•  p=5,	n=30	
•  6	parHcles	per	processor	
•  5x5	subcubes	

Actual	triplets	

Equivalent	triplets	in	
the	big	tetrahedron	

Koanantakool & Yelick 
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3-Way N-Body Speedup
D

ow
n is good 

•  Cray	XC30,	24k	cores,	24k	parHcles	

22.1x	

Koanantakool & Yelick 



Strong Scaling of .5D Algorithns
U

p is good 

22x 

Koanantakool & Yelick 



Analytics vs. Simulation Kernels: 

7	Giants	of	Data	 7	Dwarfs	of	SimulaHon	
Basic	sta?s?cs Monte	Carlo	methods	
Generalized	N-Body	 Par?cle	methods	
Graph-theory	 Unstructured	meshes	
Linear	algebra	 Dense	Linear	Algebra	
Op?miza?ons	 Sparse	Linear	Algebra	
Integra?ons	 Spectral	methods	
Alignment	 Structured	Meshes	



Dense	
Matrix	
Vector	
(BLAS2)	

Sparse	-	
Sparse	
Matrix	
Product	

(SpGEMM)	

Sparse	Matrix	
Times	

Mul?ple	
Dense	Vectors	

(SpMM)	

Sparse	
Matrix-
Dense	
Vector	
(SpMV)	

Sparse	
Matrix-
Sparse	
Vector	

(SpMSpV)	

Increasing	arithme?c	intensity	

Graphical	
Model	

Structure	
Learning	(e.g.,	
CONCORD)	

Clustering	
(e.g.,	MCL,	
Spectral	

Clustering)	

Logis?c	
Regression,	
Support	
Vector	

Machines	

Dimensionality	
Reduc?on	(e.g.,	
NMF,	CX/CUR,	

PCA)	

Machine Learning Mapping to Linear Algebra

Deep	Learning	
(Convolu?onal	
Neural	Nets)	

Sparse	-	
Dense	
Matrix	
Product	
(SpDM3)	

Dense	
Matrix	
Matrix	
(BLAS3)	

Aydin	Buluc	



Sparse-Dense Matrix Multiply Too!

•  Variety	of	algorithms	that	divide	in	or	2	dimensions	

44	
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Koanantakool & Yelick 



Communication Overlap Complements Avoidance
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Performance	results	on	Cray	XE6		
(24K	cores,	32k	×	32k	matrices)	

2.5D	+	Overlap	
2.5D	(Avoiding)	
2D	+	Overlap	
2D	(Original)	

Even	with	communicaHon-opHmal	algorithms	(minimized	
bandwidth)	there	are	sHll	benefits	to	overlap	and	other	things	
that	speed	up	networks	
SC’12	paper	(Georganas,	González-Domínguez,	Solomonik,	Zheng,	Touriño,	Yelick)	



Roadmap for this talk

ü Science	at	the	boundary	of	simulaHon	and	
observaHon	

ü Science	data	challenges	
ü What	do	I	mean	by	Exascale?	
•  Exascale	challenges	for	Data	problems	

ü Programming	models	
ü Algorithms		
–  Architectures		
–  Systems	
–  Policies	

Exascale	challenges	for	Data	problems	



Data processing with special purpose hardware

47!

•  General	trend	towards	specializa?on	for	con?nued	
performance	growth	

•  Data	processing	(on	raw	data)	will	be	first	in	science	

Par?cle	Tracking	with	Neuromorphic	chips	

Compu?ng	in	Detectors	
FPGAS	for	genome	analysis	

Deep	learning	processors	for	image	analysis	

And	can	we	also	use	these	for	simula?on?	



Productive Programming

•  High	failure	rate	
•  Slow	network	
•  Fast	(local)	disk	

Speed	
Run	programs	up	to	100x	faster	than	Hadoop	
MapReduce	in	memory,	or	10x	faster	on	disk.	

And	Spark	is	sHll	10x+	
slower	than	MPI	



Systems configured for data-intensive science

NERSC	Cori	has	data	par??on	(Phase	1,	Haswell)		pre-exascale	(Phase	2,	KNL	preproduc?on)	
WAN-to-Cori	op?mized	for	streaming	data:	100x	faster	from	LCLS	to	Cori	and	Globus	to	CERN	



Containers for HPC Systems
•  Data	analysis	pipelines	are	oken	large,	complex	sokware	stacks	
•  NERSC	Shiker	(with	Cray),		supports	containers	for	HPC	systems	
•  Used	in	HEP	and	NP	projects	 	 	 		 	 		 		(ATLAS,	ALICE,	
STAR,	LSST,	DESI)	

-	50	-	

NSHIFTERStartup	Time	



ESnet: Exponential data growth drives capacity
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IP	Routed	
LHC	Overlay	
Point	to	Point	big	data	

100 Exabytes/year by 2024! 

Traditional IP 
Transatlantic 
Big science data 

Science	DMZ	to	deliver	bandwidth	to	the	end	users	
																																																					OSCARS	for	bandwidth	reserva?on		

Science	DMZ	
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HPC Computing Policies



Cloud Computing Policies



Thanks to many collaborators



And to Ken Kennedy

“Take	care	of	your	students	
and	the	rest	will	take	care	of	
itself.”	


