Machine Learning for Science

Kathy Yelick Associate Laboratory Director for Computing Sciences

, Office of Science

Machine Learning on Images and Videos

Self-driving cars interact with human drivers

Office of

Machine Learning on language understanding

AliBaba's deep learning software beats humans at reading comprehension test

Office of

Machine Learning for Robotics

Robots

Artificial Intelligence, Machine Learning and Deep Learning

Office of

Three ingredients for machine learning

Data Algorithms

Machines

Office of

Science

- 6 -

AI Revolution in reasoning

Google's AlphGo Zero beats humans after self-training for 70 hours

The Data

Scientific data needs machine learning

Image / Video Processing

Text

Signal Processing

Graph Analytics (Relationships)

Genomics

Simulation Analytics

Office of

Detectors: the "sensory system" for science

Berkeley Lab advances detector technology for many fields of science, including (above CryoEM) biology, cosmology, material science, physics, and more.

Office of

Salmonella causes 1 million foodborne illnesses in the US, with 19,000 hospitalizations and 380 **deaths**.

Embedded sensors in infrastructure

Fiber-optic cables can be used a sensors for urban seismic hazard analysis, to monitor soil layer changes, detect nuclear explosions, and do global seismic imaging

Office of

Embedded sensors in infrastructure

Data analysis of power grid micro sensors trained to identify intrusion and other events

Office of

Climate Simulations

Preliminary CAM5 hi-resolution simulations (0.25°, prescribed aerosols)

Michael Wehner, Prabhat, Chris Algieri, Fuyu Li, Bill Collins Lawrence Berkeley National Laboratory

Kevin Reed, University of Michigan

Andrew Gettelman, Julio Bacmeister, Richard Neale National Center for Atmospheric Research

June 1, 2011

Office of

Science

Machine Learning for Science

The Algorithms

Finding Storms in Simulations

CoOfficetofs: Thorsten Kurth, 16an Yang, Ioannis Mitliagkas, Chrimachine Learning for Science Satistie Narayanan Sundaram, Amir Khosrowshahi, Michael Wehner, Bill Collins.

Climate Science Tasks

Classification

Classification + Localization

Object Detection

Instance Segmentation

Machine Learning for Science

Learn the relationship between features with Graphical Model Estimator

Source https://media4.s-nbcnews.com/i/newscms/2017_25/958456/150401-dna-strand-Machine Learning for Science

New Algorithm for HPC discovering regions and coregions

First of kind analysis at this scale using new algorithm and high performance computing at LBNL

Koanantakool, Oh, Buluc, Morozov, Oliker, Yelick, AISTAT 2018, to appear.

Office of

Science

Machine Learning for Science

Wearable MRI sensors + HPC Analytics

3) better quality of images

Machine Learning for Science

- 20 -

Real-Time Analytics in Health

3 min goal (1 sec/iteration) Michael Driscoll HPC optimization

Compressed Sensing Approach by Mike Lustig et al MRI results Wenwen Jiang

Office of

Machine Learning for Behavior in Energy Use

Office of

Science

Understanding energy and human behavior

How well do various algorithms work?

Sorted cluster by size

30

40

0.9 - 0.4

0.1

0.01

0.001

1e-04

1e-05

50

Kmeans

KMedoids

AKmeans

GMN

10

20

WardChebyshev

CompleteEuclidear CompleteChebyshe

AverageEuclidear

AverageChebyshe

What are the particular challenges in science?

Scale

- Data rates from detectors
- Machine scale, novelty and performance

Complexity

- Adaptive, hierarchical
- Multi-modal, noisy

Interpretability

- Explainable, understandable, robust
- Physically realizable

Office of

The Machines

NERSC Supercomputing for Science and Energy

State-of-the art computing for the broad DOE science community – over 7000 users, 700 applications

- 25 -

Office of

Deep Learning at 15 Petaflops

Berkeley Lab scientists new parallel algorithm for deep learning on climate and particle physics data at 15 Petaflops

= 4 x

Machine Learning for Science

Microbiome analysis uses high performance computing

Environment

Health

Office of

Science

Bio-Manufacturing

Microbiome analysis uses high performance computing

Microbiome analysis with machine learning

Similarities between genes (proteins)

Clusters of related ones

The Berkeley National Lab Advantage in ML for Science

Machine Learning for Science

Al is also revolutionizing science revolution

