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Machine Learning on Images and Videos
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Self-driving	cars	interact	with	human	drivers	
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Machine Learning on language understanding
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AliBaba’s	deep	learning	so@ware	beats	humans	at	reading	comprehension	test	
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Machine Learning for Robotics
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Robots	
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Artificial Intelligence, Machine Learning and Deep Learning
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ArDficial	Intelligence	

Machine	Learning	

Deep	Learning	

StaDsDcs	and	mathemaDcs,	
including	opDmizaDon	and	

linear	algebra	
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Three ingredients for machine learning
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Data	

Algorithms	

Machines	
Fig. 3. Schematic representation of an MS-D network with w = 2 and
d = 3. Colored lines represent 3 ⇥ 3 dilated convolutions, with each color
representing a different dilation. Note that all feature maps are used for
the final output computation.

architecture uses dilated convolutions. A dilated convolution
D

h,s with dilation s2 Z+ uses a dilated filter h that is nonzero
only at distances that are a multiple of s pixels from the center.⇤
Recently, it was shown that dilated convolutions are able to cap-
ture additional features in DCNNs that use the traditional scal-
ing approach (23). Furthermore, instead of having each layer
operate at a certain scale as in existing DCNNs, in the mixed-
scale approach each individual channel of a feature map within a
single layer operates at different scale. Specifically, we associate
the convolution operations for each channel of the output image
of a certain layer with a different dilation:

gij (zi�1)=

ci�1X

k=0

D
hijk ,sij z

k
i�1. [3]

The proposed mixed-scale approach alleviates many of the dis-
advantages of the standard downscaling and upscaling approach.
First, large-scale information about the image quickly becomes
available in early layers of the network through relatively large
dilations, making it possible to use this information to improve
the results of deeper layers. Furthermore, information at a cer-
tain scale can be used directly to inform decisions at other scales
without having to pass through layers at intermediate scales. Sim-
ilar advantages were recently found when training large multi-
grid architectures (24). No additional parameters have to be
learned during training, since the mixed-scale approach does not
include learned upscaling operations. This results in smaller net-
works that are easier to train. Finally, although dilations sij must
be chosen in advance, the network can learn which combina-
tions of dilations to use during training, making identical mixed-
scale DCNNs applicable across different problems (experi-
ments below).

Dense Connections. When using convolutions with reflective
boundaries, the mixed-scale approach has an additional advan-
tage compared with standard scaling: All network feature maps
have the same number of rows and columns as the input and
output image, i.e., mi =m and ni =n for all layers i , and hence,
when computing a feature map for a specific layer, we are not
restricted to using only the output of the previous layer. Instead,
all previously computed feature maps {z0, . . ., zi�1}, including
the input image x, can be used to compute the layer output zi .
Thus, we change the channel image computation 1 and the con-
volutional operation 3 to

z

j
i = � (gij ({z0, . . ., zi�1}) + bij )

gij ({z0, . . ., zi�1}) =
i�1X

l=0

cl�1X

k=0

D
hijkl ,sij z

k
l . [4]

⇤Alternatively, dilated convolutions can be defined without using dilated filters by
changing the convolution operation itself; see ref. 23 for a detailed explanation.

Similarly, to produce the final output image y, all feature maps
can be used instead of only those of the last layer. We call this
approach of using all previously computed feature maps densely
connecting a network.

In a densely connected network, all feature maps are maxi-
mally (re)used: If a certain useful feature is detected in a fea-
ture map, it does not have to be replicated in other layers to
be used deeper in the network, as in other DCNN architec-
tures. As a result, significantly fewer feature maps and train-
able parameters are required to achieve the same accuracy in
densely connected networks compared with standard networks.
The smaller number of maps and parameters makes it easier to
train densely connected networks, reducing the risk of overfitting
and enabling effective training with relatively small training sets.
Recently, a similar dense-connection architecture was proposed
which relied on a relatively small number of parameters (25);
however, in ref. 25 the dense connections were used only within
small sets of layers at a single scale, with traditional downscal-
ing and upscaling operations to acquire information at different
scales. Here, we combine dense connections with the mixed-scale
approach, enabling dense connections between the feature maps
of the entire network, resulting in more efficient use of all feature
maps and an even larger reduction of the number of required
parameters.

MS-D Neural Networks. By combining mixed-scale dilated convo-
lutions and dense connections, we can define a DCNN archi-
tecture that we call the MS-D network architecture. Similar to
existing architectures, an MS-D network consists of several lay-
ers of feature maps. Each feature map is the result of apply-
ing the same set of operations given by Eq. 4 to all previous
feature maps: dilated convolutions with 3 ⇥ 3 pixel filters and
a channel-specific dilation, summing resulting images pixel by
pixel, adding a constant bias to each pixel, and finally apply-
ing a ReLU activation function. The final network output is
computed with the same set of operations applied to all fea-
ture maps, using 1 ⇥ 1 pixel filters instead of 3 ⇥ 3 pixel fil-
ters. In other words, channels of the final output image are com-
puted by taking linear combinations of all channels of all feature
maps and applying an application-specific activation function to
the result:

y
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j
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!
. [5]

Different ways of choosing the number of channels per layer are
possible. Here, we use a simple approach with each layer hav-
ing the same number of channels, denoted by the network width
w , and the number of noninput and nonoutput layers of the net-
work denoted by the network depth d . A graphical representa-
tion of an MS-D network with w =2 and d =3 is shown in Fig. 3.
The parameters that have to be learned during training are the
convolution filters hijkl and biases bij of Eq. 4 and the weights

Fig. 4. (A–C) Example of the segmentation problem of the simulated
dataset, with (A) the single-channel input image, (B) the correct segmen-
tation with labels indicated by color, and (C) the output of a trained MS-D
network with 200 layers.

256 | www.pnas.org/cgi/doi/10.1073/pnas.1715832114 Pelt and Sethian
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Google’s	AlphGo	Zero	beats	humans	a@er	self-training	for	70	hours	

Machine	Learning	for	Science	
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The Data
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Scientific data needs machine learning
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Image	/	Video	Processing	 Text	

Signal	Processing	 SimulaDon	AnalyDcs	Graph	AnalyDcs	(RelaDonships)	

Genomics	
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Detectors: the “sensory system” for science
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Berkeley	Lab	advances	detector	technology	for	many	fields	of	science,	including	(above	
CryoEM)	biology,	cosmology,	material	science,	physics,	and	more.	
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Reconstructed	Bacteriophage	P22	
which	can	aXack	Salmonella	in	
foods	

Salmonella	causes	1	million	
foodborne	illnesses	in	the	US,	
with	19,000	hospitalizaDons	
and	380	deaths.	
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Embedded sensors in infrastructure
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Fiber-opDc	cables	can	be	used	a	sensors	for	urban	seismic	hazard	analysis,	to	monitor	
soil	layer	changes,	detect	nuclear	explosions,	and	do	global	seismic	imaging	
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Embedded sensors in infrastructure
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Data	analysis	of	power	grid	micro	sensors	trained	to	idenDfy	intrusion	and	
other	events	
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Climate Simulations
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The Algorithms
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Finding Storms in Simulations

Ground Truth 
Prediction 

Contributors: Thorsten Kurth, Jian Yang, Ioannis Mitliagkas, Chris Pal, Nadathur 
Satish, Narayanan Sundaram, Amir Khosrowshahi, Michael	Wehner,	Bill Collins.	

Machine	Learning	for	Science	-	16	-	



UNIVERSITY OF 
CALIFORNIA 

Office of 
Science 

Climate Science Tasks
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Learn the relationship between 
features with Graphical Model 
Estimator

18	Source:	hXps://media4.s-nbcnews.com/i/newscms/2017_25/958456/150401-dna-strand-
mn-1645_9d74198e59853eb79be3124a876ad4fd.jpg	 Machine	Learning	for	Science	
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New Algorithm for HPC discovering regions and co-
regions

receiving	info	from	the	
senses	

listening	
controlling	the	eyes	

Baseline	parcella6on	from	Glasser		
[Glasser	et	al.	2016]	

Koanantakool,	Oh,	Buluc,	Morozov,	Oliker,	Yelick,	AISTAT	2018,	to	appear.	

Automa6c	parcella6on	from	fMRI	
data	alone	

First	of	kind	analysis	at	this	scale	using	new	algorithm	and	high	
performance	compu6ng	at	LBNL	

Machine	Learning	for	Science	



UNIVERSITY OF 
CALIFORNIA 

Office of 
Science 

Wearable MRI sensors + HPC Analytics
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Cartesian	 2D	Radial	Spiral	

3D	Radial	

Many	Types	of	MIR	Scans	

StochasDc	 Stack	of	
Spirals	Wearable	MIR	sensors	[Arias	UCB]		

Compressed	sensing	algorithms	[LusDg,	UCB]		

Goals:		
1)  reduce	6me	in	MRI		
2)  improve	pa6ent	experience		
3)  beIer	quality	of	images	
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Real-Time Analytics in Health

Compressed	Sensing	Approach	by	Mike	LusDg	et	al	
MRI	results	Wenwen	Jiang	

3	min	goal	(1	sec/iteraDon)	
Michael	Driscoll	HPC	opDmizaDon	

Machine	Learning	for	Science	-	21	-	
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Machine Learning for Behavior in Energy Use
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Understanding	energy	and	human	behavior	

Machine	Learning	for	Science	

How	well	do	various	algorithms	work?	
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What are the particular challenges in science?

Scale	
• Data	rates	from	detectors	
• Machine	scale,	novelty	and	performance	

Complexity	
• AdapDve,	hierarchical	
• MulD-modal,	noisy	

Interpretability	
• Explainable,	understandable,	robust	
• Physically	realizable	
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NERSC Supercomputing for Science and Energy
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State-of-the	art	compu6ng	for	the	broad	DOE	science	
community	–	over	7000	users,	700	applica6ons	

Machine	Learning	for	Science	
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Deep Learning at 15 Petaflops
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Berkeley	Lab	scienDsts	new	parallel	algorithm	for	deep	learning	on	climate	and	
parDcle	physics	data	at	15	Petaflops	

	=	4	x	
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Microbiome analysis uses high performance computing

-	27	-	 Machine	Learning	for	Science	

Environment										Health															Bio-Energy						Bio-Manufacturing	
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Microbiome analysis uses high performance computing
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Microbiome analysis with machine learning
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SimilariDes	between	genes	(proteins)	 Clusters	of	related	ones	

New	science,	impossible	
without	HPC	
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The Berkeley National Lab Advantage in ML for Science

HPC	and	
networking		
Systems	
and	

ExperCse	

Applied	
Math		

Driven	by	
Science	

Team	
Science		

End-to-end	
SoluCons	

Advanced	
Detectors	

Data	
source		
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AI is also revolutionizing science revolution
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CETull@lbl.gov - 31 Aug 2015 
 

Slot die printer 

CETull@lbl.gov - 31 Aug 2015 
 

HipGISAXS & RMC	

GISAXS	
	
	
	
	
	
Slot-die	prinDng	of		
Organic	photovoltaics		
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