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Science is poised for transformation

Part 1



Old School Scientists: The Lone Scientist



Team Science



New Scientists

17-year-old	Bri.any	Wegner	creates	breast	cancer	detec6on	tool	that	is	99%	
accurate	on	a	minimally	invasive,	previously	inaccurate	test.	
									Machine	Learning	+		Online	Data	+	Cloud	Compu9ng	



Experimental Science is Changing

•  sdf	



Old School Scientific Workflow



Computing, experiments, networking and expertise 
in a “Superfacility” for Science
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Slot die printer 

CETull@lbl.gov - 31 Aug 2015 
 

HipGISAXS & RMC	

GISAXS	
	
	
	
	
Slot-die	prin.ng	of		
Organic	photovoltaics		

Liu	et	al,	“Fast	prin.ng	
and	in	situ	morphology	
…”.	Adv	Mater.	2015		



Old School HPC: only for Simulation

Experimenta.on	 Theory	

Simula.on	
Data	Analysis	

Compu.ng	
9	



HPC is equally important in experimentation

Experimenta.on	 Theory	

Simula.on	Data	Analysis	

Compu.ng	

Growth	in	Sequencers,	
CCDs,	sensors,	etc.		
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Integration of Simulation and Observational Science

-	11	-	

Intermediate	Palomar	Transient	Factory	
•  Nightly	images	transferred	
•  Subtrac9ons,	machine	learning	
•  Candidates	in	database	in	<	5	minutes	
•  Simula9ons	aid	in	interpre9ng	data	
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Yi Cao, et al. (2015) Nature,
“A	strong	ultraviolet	pulse	from	
a	newborn	Type	Ia	supernova”	
	



Old School Scientific Data Search



Automated Search, Meta-Data Analysis, and On-
Demand Simulation 
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User	Interfaces	
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using		

Figure 1: Conceptual System Overview. The figure shows the interaction of various system components
of ScienceSearch.

Challenge 2: Search needs to account for scale and lineage of data and the I/O challenges of future sys-
tems. Data search capabilities need to address scalability at various levels: a) machine learning algorithms
must generate metadata at the rate and scale of the data volumes being generated; b) the metadata generation
process must address the I/O challenges of the future exascale systems and, c) the metadata storage layer
needs to address scalability.
Challenge 3: The complexities and intricacies of scientific data, as well as, machine and deep learning
algorithms require a careful consideration of the human factors. Machine learning techniques can help
with learning about the data and generating metadata. However, this is not sufficient for scientific data, since
the complexity of the data often requires specialized domain knowledge and understanding. Automated
metadata generated from machine learning algorithms will likely need to be curated by humans to ensure
accuracy. Additionally, the machine learning model needs to understand the terms or signals that might
arise from a user’s query. Thus, it is important to understand how people interact and want to interact with
scientific data search and machine-generated metadata labels.
Project Objectives: Designing a data integration ecosystem. Our proposed techniques bring together
a unique blend of skills that includes machine learning, human-computer interaction, and experience with
scientific domains and users at facilities. Our goal is to make data a first-class discoverable resource at
supercomputing centers through the powerful concept of search.

Figure 1 shows the conceptual system architecture that will be enabled by the research proposed in this
proposal. The ScienceSearch framework has three key components: a) metadata generation, b) the Ground
[38] metadata storage framework, and c) an interface layer. The metadata generation framework uses a
variety of machine learning techniques to generate the context of the data from both application data, as
well as system level information. Ground is a data context service that provides the metadata storage layer.
The interface layer allows the users to interact with the system to verify and validate automated metadata
generated.

We envision the ScienceSearch framework will be available at supercomputing centers and users can
make their data available to the system. The ScienceSearch framework will use the data sets and, ecosystem
artifacts associated with the data (e.g., proposals, workflow and system logs, publications) to learn and
generate metadata labels. The ScienceSearch framework will use active learning to surface the metadata
labels to users for feedback. The users can validate, add, delete or edit labels. Similarly, we anticipate that
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Jobs	submiSed	by	“bots”	based	
on	queries;	algorithms	extract	
informa.cs	for	design	

Automated	metadata	extrac.on		
using	machine	learning		



ASCR Facilities need to adapt 

Part 2



ESnet: Exponential data growth drives capacity
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IP	Routed	
LHC	Overlay	
Point	to	Point	big	data	

100 Exabytes/year by 2024! 

Traditional IP 
Transatlantic 
Big science data 

Science	DMZ	to	deliver	bandwidth	to	the	end	users	
																																																					OSCARS	for	bandwidth	reserva.on		

Science	DMZ	



ESnet: Discovery Unconstrained by Geography

LCLS/NERSC/Esnet	Superfacility	demo	for	
Photosystem	II		

à	3x	network	traffic	

ESnet-6 Upgrade Options trade off risk and capability 

Software Defined Networking 
§  Programmable switches may 

improve cost and speed 
§  Adapt lower level network 

layers for major science flows 

Packet Optical 
§  Combine hardware for 

packetization/routing 
with optical transport 

§  Lower cost 

§  Keep packet and optical 
separate with current 
fixed routing tables 

§  Known technology 

Current Architecture 

Network performance enables efficiency of centralized computing 



Systems configured for data-intensive science

NERSC	Cori	has	data	par..on	(Phase	1,	Haswell)		pre-exascale	(Phase	2,	KNL	preproduc.on)	
WAN-to-Cori	op.mized	for	streaming	data:	100x	faster	from	LCLS	to	Cori	and	Globus	to	CERN	



Real-time queue prototyped at NERSC

-	18	-	

•  In	1998	dedicated	hardware;	now	prototype	queue	on	Cori	
•  <1%	of	NERSC	alloca9on	
•  Cryo-Em,	Mass	spec,	Telescopes,	Accelerator,	Light	sources	

Cryo-EM:	Image	classifica.on	
Nogales	Lab	

ALS:	3D	Reconstruc.on,	
rendered	on	SPOT	web	portal	

PTF:	Image	subtrac.on	pipeline	



Containers for HPC Systems
•  Data	analysis	pipelines	are	oden	large,	complex	sodware	stacks	
•  NERSC	Shider	(with	Cray),		supports	containers	for	HPC	systems	
•  Used	in	HEP	and	NP	projects	 	 	 	 	 	 	 	 	

	(ATLAS,	ALICE,	STAR,	LSST,	DESI)	

-	19	-	

NSHIFTERStartup	Time	



ASCR Research challenges are 
substantial

Part 3



Designing	
mathema.cal	

algorithms	to	allow		
real-.me	analysis	next	
to	the	equipment	

New	algorithms	to	
transform		manual		into	
automa.c		analysis	

Inven.ng	new	math	
and	models	to	match	

new	acquisi.on	
technologies					

Robust	and	reliable	
codes	and	data	flow:		

workflow	environments	

	Cultural	and	
Sociological	Challenges	

Compare	and	integrate	
mul.ple	analysis	tools		

Mul.-modal:	Building	
the	math	that	fuses	
informa.on	from	

mul.ple	experiments		

CAMERA:	Math	for	the	Facili9es	

Fluctua.on	
scaSering	and	
single	par.cle	
imaging		for		the	
LCLS	

Automa.c	image	
processing	for	the	
ALS/GE	

Real-.me	streaming	
ptychography—ALS,	delivered	
to	NSLS2,	LANL,	BESSY,		

Workflow	and	
access	to	remote	
supercomputers:	
XiCAM	for	ALS,	
SSRL,	APS,	NSLS2	

SFM/TEM	+	GISAXS	

CAMERA	
workshop	on	
Tomography:	
Joint	with	APS,	
ESRF,	
DIAMOND,	
LNLS,	LLNL,	
SSRL,….,		



	Discrete	mathema9cs/	
Computa9onal	geometry	
								
		

ALS	
Molecular	Foundry	

NCEM	

APS	
SSRL	

DIAMOND	(UK)	

CLS	(Canada)	

ESRF	(Grenoble)	

JCAP	
PHaSE	

JCESR	

EFRC	Gas	Separa9on	

NSLS-2	

BES	Nanoporous	Materials	
BES	Func9onal	Electronic	Materials	

LBNL	
LLNL/LANL	

BNL	

NERSC	
OLCF	

SIESTA,	CP2K,	ImageJ,	Fiji	

Universi9es:	e.g.:	Berkeley,	Northwestern,	Georgia	Tech,	Rice,	UCSD,	
U.I.C,	McMaster,	Aus9n,	Stanford,…	

(Bosch,	Samsung,	Intel,GE,…)		

ALCF	

PETRA	III	(Germany)	

ANL	

LCLS	

ORNL	

Probabilis9c	Graphical	Models	

Itera9ve	Phasing	

	Spectral	analysis	

Model-based	reconstruc9on	

	Constrained	op9miza9on	

	New	mathema9cal	modeling	
		

Machine	learning,	feature	
detec9on,	persistent	homology		

Fast	PDE	solvers:	(Level	Set,	DG,…)	

			

Linear	Algebra	(Selected	inversion,		
fast	pseudoinverse	approxima9on,...)	

Materials	Design	(Zeo++)	

Electronic	Structure	(PEXSI)	

Image	Analysis/Tomography		(QuantCT,F3D)	

Ptychography	(SHARP)	

Fluctua9on/Single	Par9cle	

GISAXS			

=LABS	 =Universi9es	
=ASCR	Facili9es	

	=BES	(and		other)	Facili9es	
=BES	Centers/Internat.	

=3Rd	Party	Codes	 =Industry	

CAMERA:	Making	the	connec9ons	



Analytics vs. Simulation Kernels: 

7	Giants	of	Data	 7	Dwarfs	of	Simula9on	
Basic	sta.s.cs Monte	Carlo	methods	
Generalized	N-Body	 Par.cle	methods	
Graph-theory	 Unstructured	meshes	
Linear	algebra	 Dense	Linear	Algebra	
Op.miza.ons	 Sparse	Linear	Algebra	
Integra.ons	 Spectral	methods	
Alignment	 Structured	Meshes	



Dense	
Matrix	
Vector	
(BLAS2)	

Sparse	-	
Sparse	
Matrix	
Product	

(SpGEMM)	

Sparse	Matrix	
Times	

Mul.ple	
Dense	Vectors	

(SpMM)	

Sparse	
Matrix-
Dense	
Vector	
(SpMV)	

Sparse	
Matrix-
Sparse	
Vector	

(SpMSpV)	

Increasing	arithme.c	intensity	

Graphical	
Model	

Structure	
Learning	(e.g.,	
CONCORD)	

Clustering	
(e.g.,	MCL,	
Spectral	

Clustering)	

Logis.c	
Regression,	
Support	
Vector	

Machines	

Dimensionality	
Reduc.on	(e.g.,	
NMF,	CX/CUR,	

PCA)	

Machine Learning Mapping to Linear Algebra

Deep	Learning	
(Convolu.onal	
Neural	Nets)	

Sparse	-	
Dense	
Matrix	
Product	
(SpDM3)	

Dense	
Matrix	
Matrix	
(BLAS3)	

Aydin	Buluc	



Software implementations at scale in pipeline

MicroCT 
imaging 

Segmentation 
Topological 
Analysis 

Visualization Analysis 

Source

Sink

l

s

Simulation 



Interactive Analytics using Jupyter

Science notebooks through 
Jupyter (iPython)

•  Widely used in science
•  Interactive HPC LDRD

Deployed at NERSC:
•  >100 users pre-production



Fernando	Perez	et	al	



Random Access Analytics
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Shared Private 

…
 

x 

x 

y 
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•  Genome	assembly	“needs	shared	memory”	

•  Low	overhead	communica9on	
•  Remote	atomics	
•  Par99ons	for	any	structure	

Global	Address	Space	

Scales	to	15K+	cores	
Under	10	minutes	for	human	
First	ever	solu9on	

E.	Georganas,	A.	Buluc,	J.	Chapman,	S.	Hofmeyr,	C.	Aluru,	R.	Egan,	L.	Oliker,	D.	Rokhsar,	K.	Yelick		



Data Fusion for Observation with Simulation

•  Unaligned	data	from	observa9on	
•  One-sided	strided	updates		

ScoS	French,	Y.	Zheng,	B.	Romanowicz,	K.	Yelick	
Hawaii	hotspot	geology	



Productive Programming

•  High	failure	rate	
•  Slow	network	
•  Fast	(local)	disk	

Speed	
Run	programs	up	to	100x	faster	than	Hadoop	
MapReduce	in	memory,	or	10x	faster	on	disk.	

And	Spark	is	s9ll	10x+	
slower	than	MPI	



SPARK Analytics on HPC
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App Fetch JVM

You	do	need	a	good	TCPJ	

Cluster	 Cluster	with	RDMA	 HPC	

SPARK	on	HPC	vs.	clusters	
Network,	I/O,	and	virtualiza.on	all	key	to	performance	

Chaimov,	Malony,	Iancu,	Ibrahim,	Canon,	Srinivasan	



Architectures for Data vs. Simulation

Massive	
Indepen-
dent	Jobs	
for	Analysis	

and	
Simula9on	

Compute-
Intensive	
Dense	LA	
for	Deep	
Learning	
and	

Simula9on	

Nearest	
Neighbor	
Simula9on	

All-to-All	
Simula9on	
(3D	FFTs)	

and	
analysis	

Random	
access,	

large	data	
Analysis	

Different	architectures	for	simula9on?		Can	
simula9on	use	data	architectures?			



Data processing with special purpose hardware

32!

•  General trend towards specialization for continued 
performance growth!

•  Data processing (on raw data) will be first in DOE!

Par.cle	Tracking	with	Neuromorphic	chips	

Compu.ng	in	Detectors	
FPGAS	for	genome	analysis	

Deep	learning	processors	for	image	analysis	



Extreme Data Science

The	scien9fic	process	is	poised	to	undergo	a	
radical	transforma9on	based	on	the	ability	
to	access,	analyze,	simulate	and	combine	

large	and	complex	data	sets.					



Computing and 
Data Facilities 

Expertise 

User Community 

Experimental 
Facilities 

Superfacility: Integrated network of experimental and 
computational facilities and expertise

A single interconnected 
“facility” where data is 
acquired, stored, analyzed 
and served 

Methods, models, analytics, and software 

Sequencers 

Light Sources 

Telescopes 

Particle 
Detectors 

Microscopes 

Execution plan: one 
science area at a time 


