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“Big Data” Changes Everything…What about 
Science? 



Transforming Science: Finding Data 

Computing Challenges: 
•  Search for scientific data on the web 
•  Automated metadata annotation / feature identification 
•  Data: images, genomes, simulations, MRI, MassSpec,… 
  



Scientific Workflow Today 
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The Future of Experimental Science 
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Transforming experimental science:  
“Superfacility” for Science 
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Slot die printer 
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HipGISAXS & RMC 

GISAXS 
 
 
 
 
Slot-die printing of  
Organic photovoltaics  

Computing Challenges:  
•  Robotics, Special purpose processors at experiments 
•  Mathematics / algorithm for real-time and offline analysis 
•  Massive numbers of simulations for inverse problems 
•  Networks and software for data movement, management 



Science at the Boundary of Simulation 
and Observation 

Exascale is needed to simulate climate and analyze impacts  
Simulation: Resolve clouds, predict sea level rise, and model precipitation 
and ground water levels 
Analysis: Quantify extreme events in simulations; predict ecosystem 
response from the genomic level up 
 

Adaptive Mesh Refinement 
simulates sea level impacts from 
melting of West Antarctic Ice Sheet 

Deep learning algorithms identify 
and help quantify extreme events 

Computing Challenges: 
•  Multimodal analysis from sensors, genomes, images… 
•  High performance methods and implementations  
•  Data-driven simulations to predict regional effects on 

environment and weather events 



Finding smaller signals in noisy, biased data: 
Removing Systematic Bias in Cosmology 

Example: Astrophysicists 
discover early nearby 
supernova   

23 August 24 August 25 August 
GB per night 
Manually 
analyzed 

Graphical 
models 

Filtered 

Crowd 
sourced 

Machine 
Learning 

New simulation models 
and AMR code (Nyx) 

Computing Challenges: 
•  Better machine learning for event detection 
•  Removing systematic bias in experimental data 
•  Simulations to interpret data; data constrain simulations 



Finding structure and function in noisy 
data: Metagenomics data mining 

Assembled 
metagenomes 

  
  

  

  
  

  

  

Recoding 
Science, 2014 

Kryptonia 
Nature Com.  

2016 

Blind Spots 
Nature Microbiol 

2016 Earth Virome 
    Submitted 

Selenocysteine  
Recoding 

    A. Chemie in press 

Novel Protein  
folds 

    in preparation Metagenomic  
Protein clusters 
    in progress 

Biosynthetic  
clusters 

    in progress 

Exascale is needed to understand and control the 
microbiome 
Metagenome analysis with high performance assembly and machine 
learning; identify gene clusters for bio-manufacturing, the environment, and 
health 

Computing Challenges:  
•  Distributed memory graph algorithms / hash tables 
•  Low latency interconnects; low overhead communication 
•  Algorithms to separate and assembly genomes 
•  Many-to-Many comparisons against databases 



Science Trends 

•  Science needs (and will always need) 
more computing 

•  New science questions at the boundary 
of simulation and observation 

•  Changes to computing infrastructure 
needed for open, reproducible science 
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Roadmap 

✔ Science Trends 
•  Political Trends 
•  Technology Trends 
•  Algorithmic Challenges 
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The Politics of High Performance 
Computing 



White House Announces the National 
Strategic Computing Initiative (NSCI) 
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 THE WHITE HOUSE 

 Office of the Press Secretary 

                                                                  

For Immediate Release                              July 29, 2015 
 
 

EXECUTIVE ORDER 
 

- - - - - - - 
 

CREATING A NATIONAL STRATEGIC COMPUTING INITIATIVE 
 
 
 By the authority vested in me as President by the 
Constitution and the laws of the United States of America, 
and to maximize benefits of high-performance computing (HPC) 
research, development, and deployment, it is hereby ordered as 
follows: 
 
 Section 1.  Policy.  In order to maximize the benefits of 
HPC for economic competitiveness and scientific discovery, the 
United States Government must create a coordinated Federal 
strategy in HPC research, development, and deployment.  
Investment in HPC has contributed substantially to national 
economic prosperity and rapidly accelerated scientific 
discovery.  Creating and deploying technology at the leading 
edge is vital to advancing my Administration's priorities and 
spurring innovation.  Accordingly, this order establishes the 
National Strategic Computing Initiative (NSCI).  The NSCI is a 
whole-of-government effort designed to create a cohesive, 
multi-agency strategic vision and Federal investment strategy, 
executed in collaboration with industry and academia, to 
maximize the benefits of HPC for the United States. 
 
 Over the past six decades, U.S. computing capabilities have 
been maintained through continuous research and the development 
and deployment of new computing systems with rapidly increasing 
performance on applications of major significance to government, 
industry, and academia.  Maximizing the benefits of HPC in the 
coming decades will require an effective national response to 
increasing demands for computing power, emerging technological 
challenges and opportunities, and growing economic dependency on 
and competition with other nations.  This national response will 
require a cohesive, strategic effort within the Federal 
Government and a close collaboration between the public and 
private sectors. 
 
 It is the policy of the United States to sustain and 
enhance its scientific, technological, and economic leadership 
position in HPC research, development, and deployment through a 
coordinated Federal strategy guided by four principles: 
 
 (1)  The United States must deploy and apply new HPC 

technologies broadly for economic competitiveness and 
scientific discovery. 

 
 (2)  The United States must foster public-private 

collaboration, relying on the respective strengths of 
government, industry, and academia to maximize the 
benefits of HPC. 

  

Five goals: 
1.  Create systems that can apply 

exaflops of computing power to 
exabytes of data.  

2.  Keep the United States at the 
forefront of HPC capabilities.  

3.  Improve HPC application 
developer productivity.  

4.  Make HPC readily available.  
5.  Establish hardware technology 

for future HPC systems.  [DOE SC and NNSA] will execute a 
joint program focused on advanced 
simulation through a capable 
exascale computing …  



Advanced Computing: Not just for Simulation

Experimenta+on	 Theory	

Simula+on	
Data	Analysis	

-	14	-	

Compu+ng	

Comprehensive	
Test	ban	treaty	

Petascale	Compu+ng	for	Small	
Number	of	Hero	Simula+ons	



Science Needs Computing for Both Experiments (Data) 
and Theory (Modeling and Simulation)

Experimenta+on	 Theory	

Simula+on	Data	Analysis	

Compu+ng	

Commercial	“Big	Data”	
Growth	in	Sequencers,	
CCDs,	etc.		

Future	Performance	from	
Exascale	Technology	

Compu+ng	founda+on	includes	
research	(math/stat	and	CS)	and	
facili+es	(data	and	compute)	
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US DOE Exascale Computing Project (ECP) 

16 18 Exascale Computing Project 

ECP Timeline 

2016 2017 2018 2019 2020 2021 2022 2023 2025 2024 FY 2026 

System Build NRE 

Exascale 
Systems 

Site Prep 

Testbeds & Prototypes 
System expansion 

Hardware Technology 

Software Technology 

Application Development 

The Project has three phases: 
•  Phase 1 – R&D before DOE facilities exascale systems RFP in 2019 
•  Phase 2 – Exascale architectures and NRE are known. Targeted development 
•  Phase 3 – Exascale systems delivered. Meet Mission Challenges   



Proposed DOE Exascale Science Problems 

Combustion 

Materials Genomics  Chemistry 

Climate 

Accelerators Astrophysics Cosmology 

Subsurface 

Urban 

Carbon Capture 

Earthquakes 

Wind 

QCD 

Nuclei 

Light Sources Power Grid Manufacturing Nuclear Power Fusion 



41st List: The TOP10 
# Site Manufacturer Computer Country Cores Rmax 

[Pflops] 
Power 
[MW] 

1 National Supercomputing  
Center in Wuxi NRCPC 

Sunway TaihuLight 
NRCPC Sunway SW26010,  

260C 1.45GHz 
China 10,649,600 93.0 15.4 

2 National University of  
Defense Technology NUDT 

Tianhe-2 
NUDT TH-IVB-FEP,  

Xeon 12C 2.2GHz, IntelXeon Phi 
China 3,120,000 33.9 17.8 

3 Oak Ridge 
 National Laboratory Cray 

Titan 
Cray XK7,  

Opteron 16C 2.2GHz, Gemini, NVIDIA 
K20x 

USA 560,640 17.6 8.21 

4 Lawrence Livermore  
National Laboratory IBM 

Sequoia 
BlueGene/Q,  

Power BQC 16C 1.6GHz, Custom 
USA 1,572,864 17.2 7.89 

5 RIKEN Advanced Institute 
for Computational Science  Fujitsu 

K Computer 
SPARC64 VIIIfx 2.0GHz,  

Tofu Interconnect  
Japan 795,024 10.5 12.7 

6 Argonne  
National Laboratory IBM 

Mira  
BlueGene/Q,  

Power BQC 16C 1.6GHz, Custom 
USA 786,432 8.59 3.95 

7 Los Alamos NL / 
Sandia NL Cray 

Trinity 
Cray XC40,  

Xeon E5 16C 2.3GHz, Aries  
USA 301,0564 8.10 4.23 

8 
Swiss National 

Supercomputing Centre 
(CSCS) 

Cray 
Piz Daint 

Cray XC30,  
Xeon E5 8C 2.6GHz, Aries, NVIDIA 

K20x 

Switzer-
land 115,984 6.27 2.33 

9 HLRS – Stuttgart Cray 
Hazel Hen 
Cray XC40,  

Xeon E5 12C 2.5GHz, Aries  
Germany 185,088 5.64 3.62 

10 King Abdullah University 
of Science and Technology Cray 

Shaheen II 
Cray XC40, 

Xeon E5 16C 2.3GHz, Aries 
Saudi 
Arabia 196,608 5.54 2.83 



•  125.4 Pflop/s theoretical peak  
•  SW26010 processor, 1.45 GHz 
•  Node = 260 Cores (1 socket) 

–  4 – core groups; 32 GB memory  (DDR3) 
•  40,960 nodes in the system 

–  10,649,600 cores total 
•  1.31 PB of primary memory  
•  93 Pflop/s HPL, 74% peak   
•  15.3 Mwatts (6 MF/Watt) 

Node Node Node…

256 Nodes = 1 Supernode

Supernode

Node Node Node…

256 Nodes = 1 Supernode

Supernode

Node Node Node…

256 Nodes = 1 Supernode

Supernode

Node Node Node…

256 Nodes = 1 Supernode

Supernode

Cabinet
= 4 

Super 
nodes

Sunway TaihuLight 

One piece of entire computing 
strategy on applications, fabs, 
architecture, software 



Roadmap 

✔ Science Trends 
✔ Political Trends 
•  Technology Trends 
•  Algorithmic Challenges 
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Technology Trends 



Computing is energy-constrained 
At ~$1M per MW, energy costs are substantial 
•  1 petaflop in 2008 used 3 MW 
•  1 exaflop in 2018 at 200 MW “usual chip scaling” 

22 

The “New Normal” for Computer Architecture
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Multi-Core is NOT good enough!  (need to 
go to simpler cores) 

Lightweight cores 
OR Hybrid is the 

only approach that 
crosses the 

exascale finish line 

Can continue with 
conventional x86 

architectures if you 
want. 



   

Communication Consumes Energy 

1 
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now 2018 

Latency is physics; bandwidth is money, … 
         but overhead we can fix 
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On-Chip 

Off-Chip 



Roadmap 

✔ Science Trends 
✔ Political Trends 
✔ Technology Trends 
•  Algorithmic Challenges 
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Algorithm Challenge: 
Communication 



Analytics vs. Simulation Kernels:  

7 Giants of Data 7 Dwarfs of Simulation 
Basic statistics Monte Carlo methods 
Generalized N-Body Particle methods 
Graph-theory Unstructured meshes 
Linear algebra Dense Linear Algebra 
Optimizations Sparse Linear Algebra 
Integrations Spectral methods 
Alignment Structured Meshes 

There are some differences between data and simulation algorithms, but 
more similarities than differences.  Some of the data algorithms use no 
arithmetic (genomics) or lower precision (deep learning) 



Never Waste Fast Memory 

Don’t get hung up on the 
“owner computes” rule. 
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Beyond Domain Decomposition: 2.5D Matrix 
Multiply 
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2.5D MM on BG/P (n=65,536)

2.5D Broadcast-MM
2.5D Cannon-MM
2D MM (Cannon)

ScaLAPACK PDGEMM Perfect 
Strong Scaling 

•   Conventional “2D algorithms” use P1/2  x   P1/2 mesh  and  minimal memory 
•   New “2.5D algorithms” use (P/c)1/2  x (P/c)1/2  x c1/2  mesh  and c-fold memory 

•   Matmul sends c1/2 times fewer words – lower bound 
•   Matmul sends c3/2 times fewer messages – lower bound 

Word by Edgar 
Solomonik and Jim 
Demmel 

Surprises:  
•  Even Matrix Multiply had room for 

improvement 
•  Idea: make copies of C matrix  (as in prior 3D 

algorithm, but not as many) 
•  Result is provably optimal in communication 
Lesson: Never waste fast memory 
 
Can we generalize for compiler writers? 
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Deconstructing 2.5D Matrix Multiply 
Solomonick & Demmel 

x 

z 

z 

y 

x 
y •  Tiling the iteration space 

•  2D algorithm: never chop k dim 
•  2.5 or 3D: Assume + is 

associative; chop k, which is à 
replication of C matrix 

k 

j 

i 
Matrix Multiplication code has a 3D iteration space 
Each point in the space is a constant computation (*/+) 
 

for i 
   for j 
      for k 

B[k,j]  … A[i,k] …  C[i,j] … 
30 



Lower Bound Idea on C = A*B 
Iromy, Toledo, Tiskin 

31

x 

z 

z 

y 

x 
y 

Cubes in black box with 
   side lengths x, y and z 
= Volume of black box 
= x*y*z 
= (#A□s * #B□s * #C□s )1/2 

= ( xz * zy * yx)1/2 

k 

(i,k) is in “A shadow” if (i,j,k) in 3D set  
(j,k) is in “B shadow” if (i,j,k) in 3D set  
(i,j)  is in “C shadow” if (i,j,k) in 3D set 
 
Thm (Loomis & Whitney, 1949) 
     # cubes in 3D set = Volume of 3D set 
     ≤ (area(A shadow) * area(B shadow) * 
         area(C shadow)) 1/2 

“A shadow” 

“C shadow” 

j 

i 



Generalizing Communication Lower Bounds 
and Optimal Algorithms 

•  For serial matmul, we know #words_moved =  Ω (n3/M1/2), 
attained by tile sizes M1/2 x M1/2 

•  Thm (Christ,Demmel,Knight,Scanlon,Yelick):                  
For any program that “smells like” nested loops, accessing 
arrays with subscripts that are linear functions of the loop 
indices 

           #words_moved =   Ω (#iterations/Me) 
     for some e we can determine 
•  Thm (C/D/K/S/Y): Under some assumptions, we can 

determine the optimal tiles sizes 
–  E.g., index expressions are just subsets of indices 

•  Long term goal: All compilers should generate 
communication optimal code from nested loops 



Implications for Arithmetic 

•  Much of the work on compilers is based on 
owner-computes 
–  For MM: Divide C into chunks, schedule 

movement of A/B 
–  Data-driven domain decomposition partitions 

data; but we can partition work instead 
•  Ways to compute C “pencil” 

1.  Serially 
2.  Parallel reduction 
3.  Parallel asynchronous (atomic) updates 
4.  Or any hybrid of these 

•  For what types / operators does this work? 
–  “+” is associative for 1,2 rest of RHS is “simple” 
–  and commutative for 3 

33 

Using x for C[i,j] here 

x += … 

x += … 

x += … 

x += … 

Standard vectorization trick 



Traditional (Naïve n2) Nbody  Algorithm 
(using a 1D decomposition) 

•  Given n particles and p processors, size M 
memory 

•  Each processor has n/p particles  
•  Algorithm: shift copy of particles to the left p 

times, calculating all pairwise forces 
•  Computation cost: n2/p 
•  Communication cost: O(p) messages, O(n) 

words 
34 
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Communication Avoiding Version  
(using a “1.5D” decomposition) 

•  Divide p into c groups.  Replicate particles within group. 
–  First row responsible for updating all by orange, second all by green,… 

•  Algorithm: shift copy of n/(p*c) particles to the left 
–  Combine with previous data before passing further level  (log steps) 

•  Reduce across c to produce final value for each particle 

•  Total Computation: O(n2/p);  
•  Total Communication: O(log(p/c) + log c) messages,  
                                           O(n*(c/p+1/c)) words 

............ ............ ............ ............ ............ ............ ............ ............ 

............ ............ ............ ............ ............ ............ ............ ............ 

............ ............ ............ ............ ............ ............ ............ ............ 

............ ............ ............ ............ ............ ............ ............ ............ 

............ 

............ 

............ 

............ 

............ 

............ 

............ 

............ 

............ 

............ 

............ 

............ 

............ 

............ 

............ 

............ 

............ 

............ 

............ 

............ 

Limit: c ≤ p1/2 

c 

p/c 
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Challenge: Symmetry & Load Balance 

•  Force symmetry (fij = -fji) saves 
computation 

•  2-body force matrix vs 3-body force cube 

•  How to divide work equally? 

6x save 
of O(n3)! 2x save 

of O(n2) 

Koanantakool & Yelick 



3-Way N-Body Animation 

•  p=5, n=30 
•  6 particles per processor 
•  5x5 subcubes 

Actual triplets 

Equivalent 
triplets in the 
big tetrahedron 

Koanantakool & Yelick 
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3-Way N-Body Animation 

•  p=5, n=30 
•  6 particles per processor 
•  5x5 subcubes 

Actual triplets 

Equivalent 
triplets in the 
big tetrahedron 

Koanantakool & Yelick 



3-Way N-Body Speedup 
D

ow
n is good 

•  Cray XC30, 24k cores, 24k particles 

22.1
x 

Koanantakool & Yelick 



Strong Scaling of .5D Algorithns 
U

p is good 

22x 

Koanantakool & Yelick 



Sparse-Dense Matrix Multiply Too! 

•  Variety of algorithms that divide in or 2 dimensions 
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Koanantakool & Yelick 



Have We Seen this Idea Before? 

•  These algorithms also maximize parallelism 
beyond “domain decomposition” 
–  SIMD machine days 

•  Automation depends on associative operator 
for updates (e.g., M. Wolfe) 

•  Also used for “synchronization avoidance” in 
Particle-in-Cell code (Madduri, Su, Oliker, 
Yelick) 
–  Replicate and reduce optimization given p copies 
–  Useful on vectors / GPUs 
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Koanantakool & Yelick 



Avoid Latency and Implicit 
Synchronization in Communication 

•  Two-sided message passing (e.g., send/receive in 
MPI) requires matching a send with a receive to 
identify memory address to put data 
–  Couples data transfer with synchronization, which is sometimes 

what you want 

•  Using global address space decouples synchronization 
–  Pay for what you need!   

address 

message id 

data payload 

data payload 
one-sided put message 

two-sided message 

network 
 interface 

memory 

host 
CPU 
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Avoid Synchronization from Applications 

Cholesky 
4 x 4 

QR 
4 x 4 

Computations as DAGs 
View parallel executions as the directed acyclic graph of the 
computation  

Slide source: Jack Dongarra



Event Driven LU in UPC 

•  Assignment of work is static; schedule is dynamic 
•  Ordering needs to be imposed on the schedule 

–  Critical path operation: Panel Factorization 
•  General issue: dynamic scheduling in partitioned memory 

–  Can deadlock in memory allocation 
–  “memory constrained” lookahead 
 

some edges omitted 



Sparse Cholesky 

•  Fan-both algorithm by Jacquelin & Ng, in UPC++  
48 
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OpenMP Loop Parallelism is the Wrong Level 

49 

!$OMP PARALLEL DO  
   DO I=2,N 
     B(I) = (A(I) + A(I-1)) / 2.0 
   ENDDO 
!$OMP END PARALLEL DO 

•  OpenMP is popular for its convenient loop parallelism 
•  Loop level parallelism is too coarse and too fine: 

–  Too coarse: Implicit synchronization between loops limits 
parallelism and adds overhead 

–  Too fine: Need to create larger chunks of serial work by 
combining across loops (fusion) to minimize data movement 



Pipelining: Cholesky Inversion 

3 Steps: Factor, Invert L, Multiply L’s 

7 

$#(&��(&(&�� �))!�������?���
�4;81>7D��-/?;=5E-?5;:�-8;:1��?���

���/;=1>�
$#(&���(&(&��-:0� �))!��
(41�9-?=5C�5>��


�C��


�?581�>5E1�5>��

�C��

��

$5<185:10������?����

Libraries 

Abstraction Loop Parallelism 

Accelerator Offload 

Sources of Unnecessary Synchronization 
Pipelining: Cholesky Inversion 

3 Steps: Factor, Invert L, Multiply L’s 
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!$OMP PARALLEL DO  
   DO I=2,N 
     B(I) = (A(I) + A(I-1)) / 2.0 
   ENDDO 
!$OMP END PARALLEL DO 

Analysi
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% barriers Speedu
p 

Auto 42% 13% 
Guided 63% 14% 

NWChem: most of barriers are unnecessary 
(Corvette) 

LAPACK: removing barriers ~2x faster 
(PLASMA) 

“Simple” OpenMP parallelism implicitly 
synchronized between loops 

The transfer between host and GPU can be slow 
and cumbersome, and may (if not careful) get 
synchronized 
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!$acc data copyin(cix,ci1,ci2,ci3,ci4,ci5,ci6,ci7,ci8,ci9,ci10,ci11,& 
!$acc& ci12,ci13,ci14,r,b,uxyz,cell,rho,grad,index_max,index,& 
!$acc& ciy,ciz,wet,np,streaming_sbuf1, & 
!$acc&    streaming_sbuf1,streaming_sbuf2,streaming_sbuf4,streaming_sbuf5,& 
!$acc&    streaming_sbuf7s,streaming_sbuf8s,streaming_sbuf9n,streaming_sbuf10s,& 
!$acc&    streaming_sbuf11n,streaming_sbuf12n,streaming_sbuf13s,streaming_sbuf14n,& 
!$acc&    streaming_sbuf7e,streaming_sbuf8w,streaming_sbuf9e,streaming_sbuf10e,& 
!$acc&    streaming_sbuf11w,streaming_sbuf12e,streaming_sbuf13w,streaming_sbuf14w, & 
!$acc&    streaming_rbuf1,streaming_rbuf2,streaming_rbuf4,streaming_rbuf5,& 
!$acc&    streaming_rbuf7n,streaming_rbuf8n,streaming_rbuf9s,streaming_rbuf10n,& 
!$acc&    streaming_rbuf11s,streaming_rbuf12s,streaming_rbuf13n,streaming_rbuf14s,& 
!$acc&    streaming_rbuf7w,streaming_rbuf8e,streaming_rbuf9w,streaming_rbuf10w,& 
!$acc&    streaming_rbuf11e,streaming_rbuf12w,streaming_rbuf13e,streaming_rbuf14e, & 
!$acc&    send_e,send_w,send_n,send_s,recv_e,recv_w,recv_n,recv_s) 
  do ii=1,ntimes 
         o o o  
      call set_boundary_macro_press2 
      call set_boundary_micro_press 
      call collisiona 
      call collisionb 
      call recolor 
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