

Antisocial Parallelism:
Avoiding, Hiding and Managing

Communication
Kathy Yelick

Associate Laboratory Director of Computing Sciences
Lawrence Berkeley National Laboratory

EECS Professor, UC Berkeley

“Big Data” Changes Everything…What about
Science?

Transforming Science: Finding Data

Computing Challenges:
•  Search for scientific data on the web
•  Automated metadata annotation / feature identification
•  Data: images, genomes, simulations, MRI, MassSpec,…

Scientific Workflow Today

Beamline
User

Experiment

Simulation & Analysis Framework

The Future of Experimental Science

Beamline
User

Data Pipeline

HPC Storage & Compute

Science
Gateway

N
ew

ex

pe
rim

en
t

sure simulate

P
rom

pt
A

nalysis
P

ipeline

compare

Experiment

Transforming experimental science:
“Superfacility” for Science

- 6 -

CETull@lbl.gov - 31 Aug 2015

Slot die printer

CETull@lbl.gov - 31 Aug 2015

HipGISAXS & RMC

GISAXS

Slot-die printing of
Organic photovoltaics

Computing Challenges:
•  Robotics, Special purpose processors at experiments
•  Mathematics / algorithm for real-time and offline analysis
•  Massive numbers of simulations for inverse problems
•  Networks and software for data movement, management

Science at the Boundary of Simulation
and Observation

Exascale is needed to simulate climate and analyze impacts
Simulation: Resolve clouds, predict sea level rise, and model precipitation
and ground water levels
Analysis: Quantify extreme events in simulations; predict ecosystem
response from the genomic level up

Adaptive Mesh Refinement
simulates sea level impacts from
melting of West Antarctic Ice Sheet

Deep learning algorithms identify
and help quantify extreme events

Computing Challenges:
•  Multimodal analysis from sensors, genomes, images…
•  High performance methods and implementations
•  Data-driven simulations to predict regional effects on

environment and weather events

Finding smaller signals in noisy, biased data:
Removing Systematic Bias in Cosmology

Example: Astrophysicists
discover early nearby
supernova

23 August 24 August 25 August
GB per night
Manually
analyzed

Graphical
models

Filtered

Crowd
sourced

Machine
Learning

New simulation models
and AMR code (Nyx)

Computing Challenges:
•  Better machine learning for event detection
•  Removing systematic bias in experimental data
•  Simulations to interpret data; data constrain simulations

Finding structure and function in noisy
data: Metagenomics data mining

Assembled
metagenomes

Recoding
Science, 2014

Kryptonia
Nature Com.

2016

Blind Spots
Nature Microbiol

2016 Earth Virome
 Submitted

Selenocysteine
Recoding

 A. Chemie in press

Novel Protein
folds

 in preparation Metagenomic
Protein clusters
 in progress

Biosynthetic
clusters

 in progress

Exascale is needed to understand and control the
microbiome
Metagenome analysis with high performance assembly and machine
learning; identify gene clusters for bio-manufacturing, the environment, and
health

Computing Challenges:
•  Distributed memory graph algorithms / hash tables
•  Low latency interconnects; low overhead communication
•  Algorithms to separate and assembly genomes
•  Many-to-Many comparisons against databases

Science Trends

•  Science needs (and will always need)
more computing

•  New science questions at the boundary
of simulation and observation

•  Changes to computing infrastructure
needed for open, reproducible science

10

Roadmap

✔ Science Trends
•  Political Trends
•  Technology Trends
•  Algorithmic Challenges

11

The Politics of High Performance
Computing

White House Announces the National
Strategic Computing Initiative (NSCI)

- 13 -

 THE WHITE HOUSE

 Office of the Press Secretary

For Immediate Release July 29, 2015

EXECUTIVE ORDER

- - - - - - -

CREATING A NATIONAL STRATEGIC COMPUTING INITIATIVE

 By the authority vested in me as President by the
Constitution and the laws of the United States of America,
and to maximize benefits of high-performance computing (HPC)
research, development, and deployment, it is hereby ordered as
follows:

 Section 1. Policy. In order to maximize the benefits of
HPC for economic competitiveness and scientific discovery, the
United States Government must create a coordinated Federal
strategy in HPC research, development, and deployment.
Investment in HPC has contributed substantially to national
economic prosperity and rapidly accelerated scientific
discovery. Creating and deploying technology at the leading
edge is vital to advancing my Administration's priorities and
spurring innovation. Accordingly, this order establishes the
National Strategic Computing Initiative (NSCI). The NSCI is a
whole-of-government effort designed to create a cohesive,
multi-agency strategic vision and Federal investment strategy,
executed in collaboration with industry and academia, to
maximize the benefits of HPC for the United States.

 Over the past six decades, U.S. computing capabilities have
been maintained through continuous research and the development
and deployment of new computing systems with rapidly increasing
performance on applications of major significance to government,
industry, and academia. Maximizing the benefits of HPC in the
coming decades will require an effective national response to
increasing demands for computing power, emerging technological
challenges and opportunities, and growing economic dependency on
and competition with other nations. This national response will
require a cohesive, strategic effort within the Federal
Government and a close collaboration between the public and
private sectors.

 It is the policy of the United States to sustain and
enhance its scientific, technological, and economic leadership
position in HPC research, development, and deployment through a
coordinated Federal strategy guided by four principles:

 (1) The United States must deploy and apply new HPC

technologies broadly for economic competitiveness and
scientific discovery.

 (2) The United States must foster public-private

collaboration, relying on the respective strengths of
government, industry, and academia to maximize the
benefits of HPC.

Five goals:
1.  Create systems that can apply

exaflops of computing power to
exabytes of data.

2.  Keep the United States at the
forefront of HPC capabilities.

3.  Improve HPC application
developer productivity.

4.  Make HPC readily available.
5.  Establish hardware technology

for future HPC systems. [DOE SC and NNSA] will execute a
joint program focused on advanced
simulation through a capable
exascale computing …

Advanced Computing: Not just for Simulation

Experimenta+on	 Theory	

Simula+on	
Data	Analysis	

-	14	-	

Compu+ng	

Comprehensive	
Test	ban	treaty	

Petascale	Compu+ng	for	Small	
Number	of	Hero	Simula+ons	

Science Needs Computing for Both Experiments (Data)
and Theory (Modeling and Simulation)

Experimenta+on	 Theory	

Simula+on	Data	Analysis	

Compu+ng	

Commercial	“Big	Data”	
Growth	in	Sequencers,	
CCDs,	etc.		

Future	Performance	from	
Exascale	Technology	

Compu+ng	founda+on	includes	
research	(math/stat	and	CS)	and	
facili+es	(data	and	compute)	

15	

US DOE Exascale Computing Project (ECP)

16 18 Exascale Computing Project

ECP Timeline

2016 2017 2018 2019 2020 2021 2022 2023 2025 2024 FY 2026

System Build NRE

Exascale
Systems

Site Prep

Testbeds & Prototypes
System expansion

Hardware Technology

Software Technology

Application Development

The Project has three phases:
•  Phase 1 – R&D before DOE facilities exascale systems RFP in 2019
•  Phase 2 – Exascale architectures and NRE are known. Targeted development
•  Phase 3 – Exascale systems delivered. Meet Mission Challenges

Proposed DOE Exascale Science Problems

Combustion

Materials Genomics Chemistry

Climate

Accelerators Astrophysics Cosmology

Subsurface

Urban

Carbon Capture

Earthquakes

Wind

QCD

Nuclei

Light Sources Power Grid Manufacturing Nuclear Power Fusion

41st List: The TOP10
Site Manufacturer Computer Country Cores Rmax

[Pflops]
Power
[MW]

1 National Supercomputing
Center in Wuxi NRCPC

Sunway TaihuLight
NRCPC Sunway SW26010,

260C 1.45GHz
China 10,649,600 93.0 15.4

2 National University of
Defense Technology NUDT

Tianhe-2
NUDT TH-IVB-FEP,

Xeon 12C 2.2GHz, IntelXeon Phi
China 3,120,000 33.9 17.8

3 Oak Ridge
 National Laboratory Cray

Titan
Cray XK7,

Opteron 16C 2.2GHz, Gemini, NVIDIA
K20x

USA 560,640 17.6 8.21

4 Lawrence Livermore
National Laboratory IBM

Sequoia
BlueGene/Q,

Power BQC 16C 1.6GHz, Custom
USA 1,572,864 17.2 7.89

5 RIKEN Advanced Institute
for Computational Science Fujitsu

K Computer
SPARC64 VIIIfx 2.0GHz,

Tofu Interconnect
Japan 795,024 10.5 12.7

6 Argonne
National Laboratory IBM

Mira
BlueGene/Q,

Power BQC 16C 1.6GHz, Custom
USA 786,432 8.59 3.95

7 Los Alamos NL /
Sandia NL Cray

Trinity
Cray XC40,

Xeon E5 16C 2.3GHz, Aries
USA 301,0564 8.10 4.23

8
Swiss National

Supercomputing Centre
(CSCS)

Cray
Piz Daint

Cray XC30,
Xeon E5 8C 2.6GHz, Aries, NVIDIA

K20x

Switzer-
land 115,984 6.27 2.33

9 HLRS – Stuttgart Cray
Hazel Hen
Cray XC40,

Xeon E5 12C 2.5GHz, Aries
Germany 185,088 5.64 3.62

10 King Abdullah University
of Science and Technology Cray

Shaheen II
Cray XC40,

Xeon E5 16C 2.3GHz, Aries
Saudi
Arabia 196,608 5.54 2.83

•  125.4 Pflop/s theoretical peak
•  SW26010 processor, 1.45 GHz
•  Node = 260 Cores (1 socket)

–  4 – core groups; 32 GB memory (DDR3)
•  40,960 nodes in the system

–  10,649,600 cores total
•  1.31 PB of primary memory
•  93 Pflop/s HPL, 74% peak
•  15.3 Mwatts (6 MF/Watt)

Node Node Node…

256 Nodes = 1 Supernode

Supernode

Node Node Node…

256 Nodes = 1 Supernode

Supernode

Node Node Node…

256 Nodes = 1 Supernode

Supernode

Node Node Node…

256 Nodes = 1 Supernode

Supernode

Cabinet
= 4

Super
nodes

Sunway TaihuLight

One piece of entire computing
strategy on applications, fabs,
architecture, software

Roadmap

✔ Science Trends
✔ Political Trends
•  Technology Trends
•  Algorithmic Challenges

20

Technology Trends

Computing is energy-constrained
At ~$1M per MW, energy costs are substantial
•  1 petaflop in 2008 used 3 MW
•  1 exaflop in 2018 at 200 MW “usual chip scaling”

22

The “New Normal” for Computer Architecture

1.E 02

1.E 01

1.E+00

1.E+01

01
/0
1/
92

01
/0
1/
96

01
/0
1/
00

01
/0
1/
04

01
/0
1/
08

01
/0
1/
12

01
/0
1/
16

M
em

or
y/
G
F(
Rm

ax
)!(
GB

)

Heavyweight Lightweight

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

01
/0
1/
92

01
/0
1/
96

01
/0
1/
00

01
/0
1/
04

01
/0
1/
08

01
/0
1/
12

01
/0
1/
16

KW

Heavyweight Lightweight Hybrid

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

01
/0
1/
92

01
/0
1/
96

01
/0
1/
00

01
/0
1/
04

01
/0
1/
08

01
/0
1/
12

01
/0
1/
16

Rm
ax

!(G
flo

ps
/s
ec
)

Heavyweight Lightweight

Hybrid Trend:!CAGR=1.88

(a)!Growth!in!Rmax

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

01
/0
1/
92

01
/0
1/
96

01
/0
1/
00

01
/0
1/
04

01
/0
1/
08

01
/0
1/
12

01
/0
1/
16

#!
of

!C
or
es

Heavyweight Lightweight

Hybrid Trend:!CAGR=1.67

(b)!Growth!in!Cores

(c)!Growth!in!System!Power (d)!Decrease!in!Relative!Mmeory Capacity

Figure 4.1: Historical Trends.

Feb. 28, 2013 viii

’92 ’96 ’00 ‘04 ‘08 ‘12 ‘16

12

10

 8

6

4

2

Megawatts
per machine
(Kogge/Shalf)

Goal: 1 Exaflop in 20 MW
 = 20 pJ / operation

Note: The 20 pJ / operation is
•  Independent of machine size
•  Independent of # cores used

per application
•  But “operations” need to be

useful ones

Missing Tihanhe-2 at 18MW

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07
1/
1/
19

92

1/
1/
19

96

1/
1/
20

00

1/
1/
20

04

1/
1/
20

08

1/
1/
20

12

1/
1/
20

16

1/
1/
20

20

1/
1/
20

24

En
er
gy

pe
rF

lo
p
(p
J)

Heavyweight Heavyweight Scaled Heavyweight Constant

Lightweight Lightweight Scaled Lightweight Constant

Heterogeneous Hetergeneous Scaled Historical

CMOS Projection Hi Perf CMOS Projection Low Power UHPC Goal

1/2
3/2
013

23

Multi-Core is NOT good enough! (need to
go to simpler cores)

Lightweight cores
OR Hybrid is the

only approach that
crosses the

exascale finish line

Can continue with
conventional x86

architectures if you
want.

Communication Consumes Energy

1

10

100

1000

10000
Pi

co
Jo

ul
es

now 2018

Latency is physics; bandwidth is money, …
 but overhead we can fix

24

On-Chip

Off-Chip

Roadmap

✔ Science Trends
✔ Political Trends
✔ Technology Trends
•  Algorithmic Challenges

25

Algorithm Challenge:
Communication

Analytics vs. Simulation Kernels:

7 Giants of Data 7 Dwarfs of Simulation
Basic statistics Monte Carlo methods
Generalized N-Body Particle methods
Graph-theory Unstructured meshes
Linear algebra Dense Linear Algebra
Optimizations Sparse Linear Algebra
Integrations Spectral methods
Alignment Structured Meshes

There are some differences between data and simulation algorithms, but
more similarities than differences. Some of the data algorithms use no
arithmetic (genomics) or lower precision (deep learning)

Never Waste Fast Memory

Don’t get hung up on the
“owner computes” rule.

28

Beyond Domain Decomposition: 2.5D Matrix
Multiply

 0

 20

 40

 60

 80

 100

256 512 1024 2048

P
e
rc

e
n
ta

g
e
 o

f
m

a
ch

in
e
 p

e
a
k

#nodes

2.5D MM on BG/P (n=65,536)

2.5D Broadcast-MM
2.5D Cannon-MM
2D MM (Cannon)

ScaLAPACK PDGEMM Perfect
Strong Scaling

•  Conventional “2D algorithms” use P1/2 x P1/2 mesh and minimal memory
•  New “2.5D algorithms” use (P/c)1/2 x (P/c)1/2 x c1/2 mesh and c-fold memory

•  Matmul sends c1/2 times fewer words – lower bound
•  Matmul sends c3/2 times fewer messages – lower bound

Word by Edgar
Solomonik and Jim
Demmel

Surprises:
•  Even Matrix Multiply had room for

improvement
•  Idea: make copies of C matrix (as in prior 3D

algorithm, but not as many)
•  Result is provably optimal in communication
Lesson: Never waste fast memory

Can we generalize for compiler writers?

29

Deconstructing 2.5D Matrix Multiply
Solomonick & Demmel

x

z

z

y

x
y •  Tiling the iteration space

•  2D algorithm: never chop k dim
•  2.5 or 3D: Assume + is

associative; chop k, which is à
replication of C matrix

k

j

i
Matrix Multiplication code has a 3D iteration space
Each point in the space is a constant computation (*/+)

for i
 for j
 for k

B[k,j] … A[i,k] … C[i,j] …
30

Lower Bound Idea on C = A*B
Iromy, Toledo, Tiskin

31

x

z

z

y

x
y

Cubes in black box with
 side lengths x, y and z
= Volume of black box
= x*y*z
= (#A□s * #B□s * #C□s)1/2

= (xz * zy * yx)1/2

k

(i,k) is in “A shadow” if (i,j,k) in 3D set
(j,k) is in “B shadow” if (i,j,k) in 3D set
(i,j) is in “C shadow” if (i,j,k) in 3D set

Thm (Loomis & Whitney, 1949)
 # cubes in 3D set = Volume of 3D set
 ≤ (area(A shadow) * area(B shadow) *
 area(C shadow)) 1/2

“A shadow”

“C shadow”

j

i

Generalizing Communication Lower Bounds
and Optimal Algorithms

•  For serial matmul, we know #words_moved = Ω (n3/M1/2),
attained by tile sizes M1/2 x M1/2

•  Thm (Christ,Demmel,Knight,Scanlon,Yelick):
For any program that “smells like” nested loops, accessing
arrays with subscripts that are linear functions of the loop
indices

 #words_moved = Ω (#iterations/Me)
 for some e we can determine
•  Thm (C/D/K/S/Y): Under some assumptions, we can

determine the optimal tiles sizes
–  E.g., index expressions are just subsets of indices

•  Long term goal: All compilers should generate
communication optimal code from nested loops

Implications for Arithmetic

•  Much of the work on compilers is based on
owner-computes
–  For MM: Divide C into chunks, schedule

movement of A/B
–  Data-driven domain decomposition partitions

data; but we can partition work instead
•  Ways to compute C “pencil”

1.  Serially
2.  Parallel reduction
3.  Parallel asynchronous (atomic) updates
4.  Or any hybrid of these

•  For what types / operators does this work?
–  “+” is associative for 1,2 rest of RHS is “simple”
–  and commutative for 3

33

Using x for C[i,j] here

x += …

x += …

x += …

x += …

Standard vectorization trick

Traditional (Naïve n2) Nbody Algorithm
(using a 1D decomposition)

•  Given n particles and p processors, size M
memory

•  Each processor has n/p particles
•  Algorithm: shift copy of particles to the left p

times, calculating all pairwise forces
•  Computation cost: n2/p
•  Communication cost: O(p) messages, O(n)

words
34

............
p

Communication Avoiding Version
(using a “1.5D” decomposition)

•  Divide p into c groups. Replicate particles within group.
–  First row responsible for updating all by orange, second all by green,…

•  Algorithm: shift copy of n/(p*c) particles to the left
–  Combine with previous data before passing further level (log steps)

•  Reduce across c to produce final value for each particle

•  Total Computation: O(n2/p);
•  Total Communication: O(log(p/c) + log c) messages,
 O(n*(c/p+1/c)) words

............

............

............

............

............

............

............

............

............

............

............

............

............

............

............

............

............

............

............

............

............

............

............

............

Limit: c ≤ p1/2

c

p/c

35

Challenge: Symmetry & Load Balance

•  Force symmetry (fij = -fji) saves
computation

•  2-body force matrix vs 3-body force cube

•  How to divide work equally?

6x save
of O(n3)! 2x save

of O(n2)

Koanantakool & Yelick

3-Way N-Body Animation

•  p=5, n=30
•  6 particles per processor
•  5x5 subcubes

Actual triplets

Equivalent
triplets in the
big tetrahedron

Koanantakool & Yelick

3-Way N-Body Animation

•  p=5, n=30
•  6 particles per processor
•  5x5 subcubes

Actual triplets

Equivalent
triplets in the
big tetrahedron

3-Way N-Body Animation

•  p=5, n=30
•  6 particles per processor
•  5x5 subcubes

Actual triplets

Equivalent
triplets in the
big tetrahedron

Koanantakool & Yelick

3-Way N-Body Animation

•  p=5, n=30
•  6 particles per processor
•  5x5 subcubes

Actual triplets

Equivalent
triplets in the
big tetrahedron

Koanantakool & Yelick

3-Way N-Body Speedup
D

ow
n is good

•  Cray XC30, 24k cores, 24k particles

22.1
x

Koanantakool & Yelick

Strong Scaling of .5D Algorithns
U

p is good

22x

Koanantakool & Yelick

Sparse-Dense Matrix Multiply Too!

•  Variety of algorithms that divide in or 2 dimensions

43

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

SummaABC-2

SummaABC-8

ColA-1
ColA-2

ColA-4
ColA-8

ColA-16
ColA-32

ColA-64
ColA-128

ColA-256
ColA-512

ColABC-1

ColABC-2

ColABC-4

ColABC-8

ColABC-16

ColABC-32

InnerABC-1

InnerABC-2

InnerABC-4

InnerABC-8

InnerABC-16

InnerABC-32

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

Execution Time vs. Replication Factor
(Edison, n=65536, nonzeroes per row=655, 12288 cores)

Computation
Idle
Replicate A
Replicate B
Shift A
Broadcast A
Broadcast B
Reduce C
Gather C

Algorithm - Replication Factor (c)

Koanantakool & Yelick

Have We Seen this Idea Before?

•  These algorithms also maximize parallelism
beyond “domain decomposition”
–  SIMD machine days

•  Automation depends on associative operator
for updates (e.g., M. Wolfe)

•  Also used for “synchronization avoidance” in
Particle-in-Cell code (Madduri, Su, Oliker,
Yelick)
–  Replicate and reduce optimization given p copies
–  Useful on vectors / GPUs

44

Koanantakool & Yelick

Avoid Latency and Implicit
Synchronization in Communication

•  Two-sided message passing (e.g., send/receive in
MPI) requires matching a send with a receive to
identify memory address to put data
–  Couples data transfer with synchronization, which is sometimes

what you want

•  Using global address space decouples synchronization
–  Pay for what you need!

address

message id

data payload

data payload
one-sided put message

two-sided message

network
 interface

memory

host
CPU

45

46

Avoid Synchronization from Applications

Cholesky
4 x 4

QR
4 x 4

Computations as DAGs
View parallel executions as the directed acyclic graph of the
computation

Slide source: Jack Dongarra

Event Driven LU in UPC

•  Assignment of work is static; schedule is dynamic
•  Ordering needs to be imposed on the schedule

–  Critical path operation: Panel Factorization
•  General issue: dynamic scheduling in partitioned memory

–  Can deadlock in memory allocation
–  “memory constrained” lookahead

some edges omitted

Sparse Cholesky

•  Fan-both algorithm by Jacquelin & Ng, in UPC++
48

�

OpenMP Loop Parallelism is the Wrong Level

49

!$OMP PARALLEL DO
 DO I=2,N
 B(I) = (A(I) + A(I-1)) / 2.0
 ENDDO
!$OMP END PARALLEL DO

•  OpenMP is popular for its convenient loop parallelism
•  Loop level parallelism is too coarse and too fine:

–  Too coarse: Implicit synchronization between loops limits
parallelism and adds overhead

–  Too fine: Need to create larger chunks of serial work by
combining across loops (fusion) to minimize data movement

Pipelining: Cholesky Inversion

3 Steps: Factor, Invert L, Multiply L’s

7

$#(&��(&(&�� �))!�������?���
�4;81>7D��-/?;=5E-?5;:�-8;:1��?���

���/;=1>�
$#(&���(&(&��-:0� �))!��
(41�9-?=5C�5>��

�C��

�?581�>5E1�5>��

�C��

��

$5<185:10������?����

Libraries

Abstraction Loop Parallelism

Accelerator Offload

Sources of Unnecessary Synchronization
Pipelining: Cholesky Inversion

3 Steps: Factor, Invert L, Multiply L’s

7

$#(&��(&(&�� �))!�������?���
�4;81>7D��-/?;=5E-?5;:�-8;:1��?���

���/;=1>�
$#(&���(&(&��-:0� �))!��
(41�9-?=5C�5>��

�C��

�?581�>5E1�5>��

�C��

��

$5<185:10������?����

Bulk
Synchrono

us Less
Synchronous

!$OMP PARALLEL DO
 DO I=2,N
 B(I) = (A(I) + A(I-1)) / 2.0
 ENDDO
!$OMP END PARALLEL DO

Analysi
s

% barriers Speedu
p

Auto 42% 13%
Guided 63% 14%

NWChem: most of barriers are unnecessary
(Corvette)

LAPACK: removing barriers ~2x faster
(PLASMA)

“Simple” OpenMP parallelism implicitly
synchronized between loops

The transfer between host and GPU can be slow
and cumbersome, and may (if not careful) get
synchronized

Cray Inc. SNL Workshop Apr 9-11

!$acc data copyin(cix,ci1,ci2,ci3,ci4,ci5,ci6,ci7,ci8,ci9,ci10,ci11,&
!$acc& ci12,ci13,ci14,r,b,uxyz,cell,rho,grad,index_max,index,&
!$acc& ciy,ciz,wet,np,streaming_sbuf1, &
!$acc& streaming_sbuf1,streaming_sbuf2,streaming_sbuf4,streaming_sbuf5,&
!$acc& streaming_sbuf7s,streaming_sbuf8s,streaming_sbuf9n,streaming_sbuf10s,&
!$acc& streaming_sbuf11n,streaming_sbuf12n,streaming_sbuf13s,streaming_sbuf14n,&
!$acc& streaming_sbuf7e,streaming_sbuf8w,streaming_sbuf9e,streaming_sbuf10e,&
!$acc& streaming_sbuf11w,streaming_sbuf12e,streaming_sbuf13w,streaming_sbuf14w, &
!$acc& streaming_rbuf1,streaming_rbuf2,streaming_rbuf4,streaming_rbuf5,&
!$acc& streaming_rbuf7n,streaming_rbuf8n,streaming_rbuf9s,streaming_rbuf10n,&
!$acc& streaming_rbuf11s,streaming_rbuf12s,streaming_rbuf13n,streaming_rbuf14s,&
!$acc& streaming_rbuf7w,streaming_rbuf8e,streaming_rbuf9w,streaming_rbuf10w,&
!$acc& streaming_rbuf11e,streaming_rbuf12w,streaming_rbuf13e,streaming_rbuf14e, &
!$acc& send_e,send_w,send_n,send_s,recv_e,recv_w,recv_n,recv_s)
 do ii=1,ntimes
 o o o
 call set_boundary_macro_press2
 call set_boundary_micro_press
 call collisiona
 call collisionb
 call recolor

84

Thanks to many Collaborators!

•  Jim Demmel
•  Dan Bonachea
•  Bill Carlson
•  Michael Driscoll
•  Marquita Ellis
•  Evangelos Georganas
•  Paul Hargrove
•  Costin Iancu
•  Khaled Ibrahim
•  Shoaib Kamil
•  Amir Kamil
•  Penporn Kaonantakool
•  Nick Knight
•  Leonid Oliker
•  Eric Roman

•  Parry Husbands
•  Eun-Jin Im
•  Jeff Jones
•  Brian Kazian
•  Arvind Krishnamurthy
•  C.J. Lin
•  Sabrina Merchant
•  Carelton Miyamoto
•  Mani Narayanan
•  Rajesh Nishtala Steve
•  Steinberg Jimmy Su
•  Randi Thomas
•  Noah Treuhaft
•  Chih-Po Wen
•  Siu-Man Yau

•  Hongzhang Shan
•  Edgar Solomonik
•  Erich Strohmaier
•  Rich Vuduc
•  Sam Williams
•  Yili Zheng
•  Greg Balls
•  Christian Bell
•  Soumen Chakrabarti
•  Wei Chen
•  Kaushik Datta
•  Etienne Deprit
•  Jason Duell
•  Tarek El-Ghazawi
•  Ed Givelberg

