Languages and Compilers for Exascale Science

Kathy Yelick Professor of Electrical Engineering and Computer Sciences U.C. Berkeley

Associate Laboratory Director Computing Sciences Lawrence Berkeley National Laboratory

Office of Science

NERSC Supercomputing for Science and Energy

State-of-the art computing for the broad science community – over 7000 users, 700 applications

Office of

Exascale computing, combined with state-of-the-art mathematical models, algorithms, software techniques and data will enable breakthrough science

Exascale Computing Project (US DOE ECP) to Impact Broad HPC landscape

The Science Challenges at Exascale

Office of

Science

- 5 -

Exascale Science

Data Growth is Outpacing Computing Growth

Office of Science

Mathematics will provide Exasacle Science Capabilities

A 1 TeV electronpositron collider

1MWe chemical looping reactor

Adaptive Mesh Refinement

Subsurface Geo-mechanical

chemical evolution of fracking

Source of heaviest elements

Scalable (Sparse) Solvers

Gene clusters for biomanufacturing

Defects, interfaces and disorder in functional materials

Regional-scale model to simulate structures

Dark energy equation of state

Catalytic conversion of biomass-derived intermediates

Large neutron-rich nuclei and nuclear binding

Berkeley Lab has demonstrated unsurpassed ability to harness the power of advanced mathematics and computer science for high-impact science.

Former cosmology breakthrough (Nobel prize)

More accurate way to measure

Office of

Science

Image: wikipedia

Recent cosmology breakthrough in observation

Cosmology observations drive simulations

BERKELEY LAB

- Science: Dark Energy, Dark Matter, Gravitational Waves, Neutrino Mass
- Computation: factor of X100 increase in science reach, order of magnitude improvement in modeling accuracy and predictability

	DES		DESI		CN	AB-S4		ST C		
Sky Survey										
CME	3-S3		DESI -		• CMB-	S4 ——	LSST —			
Simulation Requirements										
Large Initia	e-scale N-b I sub-grid	ody, Medi models	um Hydro	Large-sc Improve	ale N-body d sub-grid	y & Hydro models	Extreme Complex	scale N-b sub-grid	ody, Hydro models	
Required Performance										
		200 P	flops			Exaflop	S			
2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	202
	U.S. D		, Office of			P PI: Salman I	Habib (ANI)			

Precision Cosmology: Simulation Frontiers

Simulation Volume

Office of Science

US DOE ECP PI: Salman Habib (ANL)

Cosmology at the Exascale

Synthetic galaxy catalog for LSST generated with HACC and Galacticus codes

Office of

Science

Simulation of Lyman-Alpha Forest with Nyx, used to estimate neutrino mass and as a standard ruler.

Exascale is needed to model and interpret the latest observations

Improve understanding of Dark Energy, Dark Matter, Primordial Gravitational Waves, Neutrino Mass, and parametrics such as the Hubble Constant

Astrophysics at the Exascale

Less than a second after ignition, the flame breaks through the surface of an expanded white dwarf (using AMR)

Office of

Science

Expanding debris from a supernova explosion (red) running over and shredding a nearby star (blue)

Exascale is needed to identify the source of the heaviest elements

Understand rapid neutron capture process (r-process) by simulating scenarios: corecollapse supernovae, neutron star mergers, and accreting black holes

Subsurface Science at the Exascale

Exascale is needed for impacts of energy extraction and waste storage on subsurface integrity

Simulate an entire field of well bores and their interaction through the reservoir over 100 year timescales. Simulate the evolution of a fracture system in caprock subject to geomechanical and geochemical stresses over scales from pore (micron) to 100 meters

Subsurface science requires modeling across scales

Science

Exascale Science

Combining codes to deliver new science capability

Accelerator Science at the Exascale

Simulation of laser-plasma acceleration with wavefronts of laser light (red and blue); the wake fields are accelerating (pale blue) or decelerating (orange). Right shows wake in "boosted" frame of reference.

Exascale is needed to simulate future accelerators

Goal: Model a chain of up to a hundred plasma acceleration stages in a few days, for the design of a 1 TeV electron-positron high-energy collider

Office of Science

US DOE ECP PI: Jean Luc Vay (LBNL) Exascale Science

Cancer Analytics at the Exascale

Metastatic cancer classification and genetics improve treatment [Cell 2015] One third of all cancers caused by mutations in RAS genes Combinatorial explosion with number of genomic features considered

Exascale is needed to develop cell-specific interventions

Mapping genetic susceptibility to cancer and its outcomes; intracellular molecular signaling in complex mutational backgrounds; combine genetic, genomic, and clinical data

Office of Science

Cancer Analytics at the Exascale

Deep-Learning at Scale on HPC systems

Identified extreme climate events using supervise (left) and semisupervised (right) deep learning. Green = ground truth, Red = predictions (confidence > 0.8). [NIPS 2017]

Deep Learning at 15 PF on NERSC Cori (Cray + Intel KNL)

- Trained in 10s of minutes on 10 terabyte datasets, millions of Images

Office of

Science

- 9600 nodes, optimized on KNL with IntelCaffe and MKL (NERSC / Intel collaboration)
- Synch + Asynch parameter update strategy for multi-node scaling (NERSC / Stanford)

Evan Racah, Christopher Beckham, Tegan Maharaj, Samira Ebrahimi Kahou, Prabhat, Christopher Pal, Evan Racah (LBNL, Ecole Poly. Montreal, Microsoft)

Genome Science at the Exascale

Thermophilic microbial mat in West Thumb Geyser Basin, Yellowstone National Park

Office of

Science

Compact CRISPR systems found in deep underground Crystal Geyser bacteria (Banfield)

Exascale is needed to characterize microbial communities

Metagenome analysis with high performance assembly and machine learning; identify gene clusters for energy, environment, biomanufacturing and health

Environment: orders of magnitude harder than humans

De novo genome assembly

С

BERKELEY LAB

Read	l multiple	Histogram k-		DFS walk k-mer	Va	rious graph
times	s. Chop	mers (eliminate		graph (stored as	op	erations (more
reads	s into k-mers	errors)		hash table)	ha	sh tables)
	U.S. DEPARTMENT OF	Office of	- 23 -			Exascale Science

Multi-Node Strong Scaling

• HipMer scales efficiently to 100's and 1000's of nodes

- Minimum aggregate memory required
- Scales linearly on node, KNL (68 cores)
- Requires high injection rate, low latency
- Would benefit from remote hardware atomics

U.S. DEPARTMENT OF

Office of

Exascale Science in analytics from embedded sensors

Exascale simulation and combined analytics

Infrastructure planning	Scenario analysi e.g., emergency response	s, Behavioral analysis, human in the loop	Policy and ecnomics
	Office of	25	Evascale Scienc

Whole-Mantle Seismic Model Using

- First-ever whole-mantle seismic model from numerical waveform tomography
- *Finding: Most* volcanic hotspots are linked to two spots on the boundary between the metal core and rocky mantle 1,800 miles below Earth's surface.

Scott French, Barbara Romanowicz, Nature, 2015

Data Fusion for Observation with Simulation

- Unaligned data from observation
- One-sided strided updates

Scott French, Y. Zheng, B. Romanowicz, K. Yelick

Computer Science breakthroughs at the Exascale

End of Transistor Density Scaling

ITRS now sets the end of transistor shrinking to the year 2021

Technology Scaling Trends *The many ends of "Moore's" Law*

RGY Office of Science

Source: John Shalf and Kunle Olukotun, Lance Hammond, Herb Sutter, and Burton Smith

Device alternatives require lower clock \rightarrow more parallelism

Specialization: End Game for Moore's Law

NVIDIA builds deep learning appliance with P100 Tesla's

Intel buys deep learning startup, Nervana

Office of Science

Google designs its own Tensor Processing Unit (TPU)

The biggest concern for Exascale application developers is the need to write and maintain multiple versions of their software and the uncertainty over what the architectures will be.

Problem 1: Languages

Why develop new languages?

- Productivity: higher level syntax
 - We need a language
- Correctness: static analysis can eliminate errors
 - We need a compiler (front-end)
- Performance: optimizations
 - We need a compiler (back-end)

Language design enforces clarity in concepts

- But you need to "know your audience"
 - Need to rewrite installed base of code (anti-productivity)
 - Risk of compiler disappearing (maintainability)
 - Syntax matters (familiarity)

• Language adoption is often about its libraries

Real-Time MRI Challenge

Compressed Sensing Approach by Mike Lustig et al

Matrix-free (loop optimization) vs. Matrix-full

Loops	Structured matrices	Matrices
Operators as loop nests	Operators as matrices with structure that compiler can optimize	Operators as arbitrary sparse matrices

Office of

Python-Based Domain-Specific Language (EDSL)

Optimized MRI Pipeline

Haswell

Xeon Phi (KNL)

GPU (Pascal)

- Original Numpy code on Haswell: 87 sec/iteration
- Runtime optimization reorganize tree of operators (matrices + FFTs) cognizant of matrix structure
- Library or custom matrix kernels

Problem 2: Compilers

Reports of our death have been greatly exaggerated

Auto- SIMDiz	ation	Auto- parallelism for	
vectorization for vector processors	Auto- parallelization for SMPs	attached accelerators	Auto- parallelization for HPC

Architecture difficulty (related to granularity of parallelism)

Autotuner	Domain specific (in degrees of specificity)	General	General
code		purpose	purpose
generation		strongly typed	loosely typed

Language difficulty

Programming for diverse (specialized) architectures

- Two "unsolved" compiler problems:
 - dependence analysis and
 Domain-Specific Languages help with this
 - accurate performance models Autotuning avoids this problem
- Autotuners are code generators plus search

Libraries vs. DSLs (domain-specific languages)

What code generators do we have?

Dense Linear Algebra	Atlas
Spectral Algorithms	FFTW, Spiral
Sparse Linear Algebra	OSKI
Structured Grids	TBD
Unstructured Grids	
Particle Methods	
Monte Carlo	

Stencils are both the most important motifs and a gap in our tools

DSLs popular outside scientific computing

Developed for Image Processing Halide

- 10+ FTEs developing Halide
- 50+ FTEs use it; > 20 kLOC

HPGMG (Multigrid on Halide)

Halide Algorithm by domain expert

- Halide Schedule either
 - Auto-generated by autotuning with opentuner
 - Or hand created by an optimization expert

Halide performance

- Autogenerated schedule for CPU
- Hand created schedule for GPU
- No change to the algorithm

Approach: Small Compiler for Small Language

- Snowflake: A DSL for Science Stencils
 - Domain calculus inspired by Titanium, UPC++, and AMR in general

- Complex stencils: red/black, asymmetric
- Update-in-place while preserving provable parallelism
- Complex boundary conditions: key to Adaptive Meshes

Snowflake performance

- Performance on the HPGMG application benchmark using all the features of Snowflake
- Competitive with hand-optimized performance
- Within 2x of optimal roofline

Open Problem: Compiling for communication optimality...

... with irregular loop nests and sparsity

Data Movement is Expensive

CPU cycle time vs memory access time

Source: http://csapp.cs.cmu.edu/2e/figures.html, http://csapp.cs.cmu.edu/3e/figures.html

Data Movement is Expensive

Office of

Science

Hierarchical energy costs.

Image: http://slideplayer.com/slide/7541288/

Beyond Domain Decomposition

2.5D Matrix Multiply on BG/P, 16K nodes / 64K cores

Surprises:

- Even Matrix Multiply had room for improvement
- Idea: make copies of C matrix (as in prior 3D algorithm, but not as many)
- Result is provably optimal in communication

Lesson: Never waste fast memory And don't get hung up on the owner computes rule

Can we generalize for compiler writers?

EuroPar'11 (Solomonik, Demmel) SC'11 paper (Solomonik, Bhatele, Demmel)

Deconstructing 2.5D Matrix Multiply

Solomonick & Demmel

- Tiling the iteration space
- 2D algorithm: never chop k dim
- 2.5 or 3D: Assume + is associative; chop k, which is → replication of C matrix

Matrix Multiplication code has a 3D iteration space Each point in the space is a constant computation (*/+)

for i for j for k C[i,j] ... A[i,k] ... B[k,j] ...

Office of

Using .5D ideas on N-body

- n particles, k-way interaction.
 - Molecules, stars in galaxies, etc.
- Most common: 2-way N-body

• Best algorithm is to divide n particles into p groups??

No!

Communication Avoiding 2-way N-body (using a "1.5D" decomposition)

- Divide p into c groups
- Replicate particles across groups
- **Repeat**: shift copy of n/(p*c) particles to the left within a group
- Reduce across c to produce final value for each particle

Total Communication: O(log(p/c) + log c) messages,

O(n*(c/p+1/c)) words

Cray XE6; n=24K particles, p=6K cores

Execution Time vs. Replication Factor

Strong Scaling

Parallel Efficiency on BlueGene/P (n=262,144)

Office of

Science

Koantakool & Yelick

Challenge: Symmetry & Load Balance

- Force symmetry (f_{ii} = -f_{ii}) saves computation
- 2-body force matrix vs 3-body force cube

• How to divide work equally?

Koanantakool & Yelick

Communication-Avoiding 3-body

- 6 particles per processor lacksquare
- 5x5 subcubes

Communication optimal. Replication by c decreases #messages by C³ and #words by C²

3-Way N-Body Speedup

• Cray XC30, 24k cores, 24k particles

Office of Science

Koanantakool & Yelick

Perfect Strong Scaling

Office of Science

Koanantakool & Yelick

Sparse-Dense Matrix Multiply Too!

Variety of algorithms that divide in or 2 dimensions

Office of

Science

59

Koanantakool et al

100x Improvement

Linear Algebra is important to Machine Learning too!

Increasing arithmetic intensity

Office of Science Aydin Buluc, Sang Oh, John Gilbert, Kathy Yelick

Problem 3: Runtimes

What we love about Partitioned Global Address Space Programming (PGAS)

Key: Never cache remote data (trivially coherent)

Convenience

- Build large shared structures
- Read and write data "anywhere" (global), "anytime" (asynchronous) and without the other thread (one-sided)

Performance control

Explicit control over data layout, direct use of RDMA hardware

Global address space

HipMer is all about the runtime and data structures

K-mer Analysis
 (synchronous) irregular all-to-all

2) Contig Generation

asynchronous remote insert (aggregate and overlap) and get

3) Alignment

asynchronous remote insert and lookup (software caching)

4) Scaffolding & Gap Closing asynchronous remote insert and lookup (software caching)

Graph algorithms (hash tables) in genome assembly

Graph construction, traversal, and all later stages are written in UPC to take advantage of its global address space

Office of

Science

65

Lessons learned and open problem

- Asynchronous one-sided communication model changes algorithmic intuition
- Machines still require aggregation, even if it's asynchronous
- Understanding side-effects of usage is key
 - Insert-only phase, lookup-only phase, marking elements but not changing table, etc.
 - Caching of hash table depends on the statics (useful in some phases, not others)
- This model should not be built for each application

Summary

- Exascale computing will deliver science breakthroughs
 - In simulation and data analytics
 - But requires advances in models, algorithms, languages, compilers and runtime systems
- Languages must be matched to user needs
 - Domain specific languages and application level libraries
- Compiler techniques are key to performance
 - Novel delivery mechanisms (runtimes, DLS, libraries,...)
- Runtime systems
 - Lightweight communication still matters, but better synchronization models are needed

