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Abstract. We study some properties of subtree-prune-and-regraft (SPR) operations on leaf-
labelled rooted binary trees in which internal vertices are totally ordered. Since biological events
occur with certain time ordering, sometimes such totally-ordered trees must be used to avoid
possible contradictions in representing evolutionary histories of biological sequences. Compared
to the case of plain leaf-labelled rooted binary trees where internal vertices are only partially
ordered, SPR operations on totally-ordered trees are more constrained and therefore more dif-
ficult to study. In this paper, we investigate the unit-neighbourhood U

�
T � , defined as the set of

totally-ordered trees one SPR operation away from a given totally-ordered tree T . We construct
a recursion relation for �U �

T ��� and thereby arrive at an efficient method of determining �U �
T ��� .

In contrast to the case of plain rooted trees, where the unit-neighbourhood size grows quadrati-
cally with respect to the number n of leaves, for totally-ordered trees �U �

T ��� grows like O
�
n3 � .

For some special topology types, we are able to obtain simple closed-form formulae for �U �
T ��� .

Using these results, we find a sharp upper bound on �U �
T ��� and conjecture a formula for a sharp

lower bound. Lastly, we study the diameter of the space of totally-ordered trees measured using
the induced SPR-metric.

Keywords: subtree prune regraft, ordered trees, neighbourhood, recombination

1. Introduction

Leaf-labelled binary trees, also known as binary phylogenetic trees, are widely used in
representing evolutionary histories of biological sequences. Furthermore, some prob-
lems in evolutionary genetics naturally involve considering more than a single tree, and
it therefore is important to have a method of comparing trees. Exactly how dissimilar-
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ities between trees should be measured depends on the kind of trees being considered,
as well as on the underlying problem.

A case in which one is inevitably led to use a collection of trees is the study of
genealogies subject to recombination. Recombination can cause different regions in
DNA sequences to have different evolutionary histories. In such a case, one is often
interested in knowing how two trees differ in their topologies, the main idea being that
a quantitative measure of the difference in tree topologies should reflect the number of
detectable recombination events.

A type of tree rearrangement operation useful for studying topology changes due to
recombination is the so-called subtree-prune-and-regraft (SPR) operation [1,6]. As the
name indicates, an SPR operation roughly involves cutting an edge from a tree T , thus
“pruning” a subtree t from T , and then “regrafting” t onto somewhere in the remaining
part of T . One important point to note is that the precise definition of an SPR operation
depends on the type of the tree on which the operation is being performed.

In [5], SPR operations on trees were used to address the problem of determining the
minimum number of recombination events while constructing possible minimal evo-
lutionary histories. This problem was first considered by Hein in [2], where unrooted
trees were used. The main result of the work in [5] is that if the minimum number of
recombination events is to be determined correctly for any data, then the right kind of
trees and the right kind of distance between trees must be used. More exactly, the kind
of trees which should be used are leaf-labelled rooted binary trees called ordered trees,
in which internal vertices are totally ordered. Moreover, the induced SPR-metric on
the space of ordered trees correctly quantifies the number of recombination events, and
therefore it is of interest to study SPR operations on ordered trees.

The focus of this paper is to study some properties of SPR operations on ordered
trees. This paper is a sequel to our earlier paper [4], which considered similar questions
for SPR operations on plain leaf-labelled rooted binary trees where internal vertices are
only partially ordered. In comparison to the case of plain rooted trees, SPR operations
on ordered trees are more difficult to study, and this fact is clearly reflected in our
work. As in [4], we investigate the unit-neighbourhoodU � T � , defined as the set of trees
one SPR operation away from a given tree T . In relation to recombination, the unit-
neighbourhood size �U � T ��� gives the number of trees one recombination event away
from T . To obtain an efficient method of determining �U � T ��� for arbitrary tree topology,
we construct a recursion relation, from which we are able to derive simple closed-form
formulae for �U � T ��� for some special topology types. In [4], it was shown that for plain
rooted trees the unit-neighbourhoodsize grows quadratically with respect to the number
n of leaves. In this paper, we show that �U � T ��� grows like O � n3 � for ordered trees. We
find a sharp upper bound on �U � T ��� , and using this result we construct bounds on the
diameter of the space of ordered trees. In addition, we conjecture a formula for a sharp
lower bound on �U � T ��� .

This paper is organised as follows. In Section 2, we define some notations and termi-
nologies to be used throughout the paper. A more precise definition of SPR operations is
provided there as well. The aforementioned recursion relation for �U � T ��� is constructed
in Section 3, whereas special topology types with closed-form formulae for �U � T ��� are
discussed in Section 4. In Section 5, we consider sharp bounds on �U � T ��� . We conclude
in Section 6 with a brief look into the diameter of the space of ordered trees.
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Note. We have written a computer program to check all our results for n � 8.

2. Preliminaries

In this section, we describe the kind of trees to be considered in this paper and introduce
the notion of SPR operations on such trees. Some definitions are taken verbatim from
[4].

2.1. Trees

In this paper, we consider leaf-labelled rooted binary trees whose branch lengths are
not specified. The discrete space of leaf-labelled rooted binary trees with n leaves is
denoted by � r

n . To be distinguished from ordered trees, which we presently define, a
tree in � r

n is sometimes called a plain rooted tree. For n � 2, a tree in � r
n has n labelled

degree-1 vertices called leaves; n � 2 unlabelled degree-3 vertices; and a distinguished
vertex of degree 2 called the root. A 1-leaved tree consists of a single labelled degree-0
vertex which serves as both the root and the leaf. The leaves of an n-leaved tree are
bijectively labelled by a finite set L of n elements. In the remainder of this paper, when
we say a tree without any qualification, we shall mean a leaf-labelled rooted binary tree.

An n-leaved rooted binary tree contains 2n � 2 edges. A pendant edge is an edge
incident with a leaf, and a cherry is a 2-leaved subtree. For any (sub)tree s, we denote
by � � s � the number of leaves in s. It was shown by Schröder [3] that the number of
inequivalent leaf-labelled rooted binary trees with n leaves is

R � n � : � ��� r
n ��� � 2n � 3 � !! � � 2n � 3 �	� � 2n � 5 �
�������� 3 � 1 � � 2n � 2 � !

2n � 1 � n � 1 � ! �
In a rooted tree T ��� r

n , time flows vertically from the root to the leaves, and we use
t � v � to denote the time associated to a vertex v. We say that a vertex v � T is a descendant
of a vertex u � T if there exists a path from u to v which goes strictly forward in time; u
is called an ancestor of v. The set � v1 � v2 � ���� � vn � 2 � of degree-3 vertices in T ��� r

n is a
partially ordered set whose binary relation denoted � is given by ancestral relation; we
say that vi � v j if vi is an ancestor of v j. Two degree-3 vertices vi and v j in T ��� r

n are
incomparable if vi is not in the path to the root from v j and vice versa. An ordered tree is
a leaf-labelled rooted binary tree whose corresponding set � v1 � v2 � ��� � vn � 2 � of degree-3
vertices is a totally ordered set under the binary relation � a defined by age ordering; we
say that u � a v if and only if t � u ��� t � v � . In an ordered tree, t � vi ���� t � v j � if i �� j. Note
that vi � a v j if v j is a descendant of vi. If there exists no ancestral relation between vi

and v j, then either vi � a v j or v j � a vi is allowed. If t � u ��� t � v � , or equivalently u � a v,
we say that v is younger than u. All degree-3 vertices in a tree are younger than the
root. Two trees equivalent as plain rooted trees are distinct as ordered trees if the age
ordering of their degree-3 vertices are different. For example, the two trees shown in
Figure 1(a) are inequivalent ordered trees which are equivalent as plain rooted trees.

The parent p � v � of a vertex v is an ancestor of v which is adjacent to v. Let I � v � be
the number of degree-3 vertices whose associated times lie between t � v � and t � p � v � � ,
i.e. I � v � counts the number of intermediate degree-3 vertices between t � v � and t � p � v � � .
For example, I � u � � 0 and I � u ! � � 1, where u and u ! are as indicated in Figure 1(a). Let
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Figure 1: (a) Inequivalent ordered trees which are equivalent as plain rooted trees. (b) Illustration
of some notations defined in the text.

v be a vertex in T of degree 2 or higher. Then, we use Sv to denote the subtree whose
root is v. Furthermore, we let SL

v and SR
v denote the two subtrees of Sv whose roots are

adjacent to v. By convention, SL
v (resp. SR

v ) is drawn on the left (resp. right). If v is
the root of T , then we define TL : � SL

v and T R : � SR
v . See Figure 1(b) for a schematic

depiction of these definitions.
The space of ordered trees with n leaves is denoted by � o

n , and the number of
inequivalent ordered trees with n leaves, for n � 2, is

D � n � : � � � o
n ���

n

∏
k � 2

�
k
2 � � n! � n � 1 � !

2n � 1 � (2.1)

This formula can be proved using induction on the number of leaves as follows. There
exists a unique 2-leaved ordered tree and D � 2 ��� 1. Given n labelled leaves, consider
going backwards in time until exactly two leaves find a common ancestor. There are�

n
2 � inequivalent such configurations. The number of inequivalent configurations further

back in time is just the number of ordered trees with n � 1 leaves. In summary, D � n � ��
n
2 � D � n � 1 � � �

n
2 � ∏n � 1

k � 2

�
k
2 � � ∏n

k � 2

�
k
2 � .

The number Ω � T � of ordered trees corresponding to a plain rooted tree T depends
on the topology of T . More exactly, the correspondence goes as follows. Let dL � v � (resp.
dR � v � ) denote the number of degree-3 vertices which are left (resp. right) descendants
of v. (Here, “left” and “right” refer to whether a descendant vertex is contained in SL

v or
in SR

v . In the tree shown on the left hand side of Figure 1(a), for example, dL � root �	� 2
and dR � root ��� 1, whereas dL � p � u � �
� 1 and dR � p � u � �
� 0.) Then, it is not difficult to
show that

Ω � T � � ∏
v� vertices in T of degree 2 or higher

∆ � v � �

where ∆ � v � : � � dL � v �
	 dR � v � � ! �
� dL � v � !dR � v � !  .
2.2. SPR Operations on Plain Rooted Trees

The precise definition of an SPR operation depends on the type of the tree on which
the operation is being performed. In general, the more constraints a tree has, the more
restrictive an SPR operation has to be. We begin our discussion with plain leaf-labelled
rooted trees. There are three kinds of SPR operations that can be performed on leaf-
labelled rooted trees. Illustration of these operations is shown in Figure 2. In what fol-
lows, let T (resp. T ! ) denote a tree before (resp. after) an SPR operation. The notation
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s1 s2 s3 s4 s5

s3 s4 s5s2s1 s3s2s5s1 s4 s1 s3 s4 s5 s2
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ec
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T

eb

ea

T1 T2 T3

Figure 2: Illustration of SPR operations on plain rooted trees.

T � s denotes the part of T obtained from removing a subtree s and the edge incident with
the root of s but not contained in s. In words the three SPR operations are as follows.

(1) An edge e is cut to prune a subtree s, not T L or T R, and s is regrafted onto a pre-
existing edge in the remaining part T � s of T , thus creating a new degree-3 vertex.
The vertex in T � s where e used to be incident gets removed. The root of T remains
the root of T ! . (In Figure 2, T � T1 is an example of this kind. The edge eb is cut
and then regrafted onto the edge ea.)

(2) Let eL and eR, respectively, be the edges which join T L and T R to the root of T .
The notations L and R can be interchanged in the following description: The edge
eL is cut to prune T L, and T L is regrafted onto a pre-existing edge in T R. The edge
eR gets removed and the vertex which used to be joined to the root of T via eR

becomes the root of T ! . (In Figure 2, T � T2 is an example of this kind. The edge
ec can be cut and regrafted onto ea. The root of T L containing s1 � s2 and s3 before
the SPR operation then becomes the root of T2.)

(3) Let r denote the root of T . An edge e is cut to prune a subtree s, not T L or T R. A
new root r ! is created and an edge is formed from r ! to r. Lastly, s is joined to r ! .
(In Figure 2, T � T3 is an example of this kind. The edge eb is cut and the pruned
subtree s2 gets joined to the new root. )

2.3. SPR Operations on Ordered Trees

For ordered trees, we impose an additional restriction on the definition of SPR op-
erations. Consider a subtree s of an ordered tree T ��� o

n . Let u be the parent of the root
of s. An operation which prunes and regrafts s to transform T � � o

n into T ! ��� o
n is de-

fined to satisfy the following additional property: For any two vertices vi � v j � T neither
being u, if vi � a v j before the SPR operation, then vi � a v j after the SPR operation, and
vice versa.
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l1 l4l2 l3 l6l5 l1 l5l4 l2 l3 l6

T1 T2

e

v2v3

v1

Figure 3: An example of ordered trees which are more than one SPR operation apart.

The two ordered trees T1 and T2 shown in Figure 3 are more than one SPR operation
away from each other. If T1 and T2 were plain rooted trees, then the subtree containing
l4 and l5 could be pruned and regrafted onto the edge e to transform T1 into T2. Such an
operation is forbidden for ordered trees, however, because the ordering of the degree-3
vertices v2 and v3 would change by the operation. As a result, at least 2 SPR operations
are required to transform T1 into T2, and vice versa.

3. The Unit-Neighbourhood of an Ordered Tree

Let dSPR � T � T ! � denote the minimum number of SPR operations required to transform
T into T ! . The unit-neighbourhood of an n-leaved ordered tree T is defined as

U � T �	� � T ! ��� o
n dSPR � T � T ! � � 1 � �

In this section, we discuss how the size �U � T ��� can be computed in a systematic way.

3.1. Moving Below the Youngest Degree-3 Vertex

Consider an n-leaved ordered tree T . The part of the tree below the youngest degree-
3 vertex is illustrated in Figure 4. We are interested in knowing how many inequivalent
ordered trees can be obtained by pruning a leaf labelled li � L �
� ln � 1 � ln � and regrafting
it onto a pendant edge below level t but not on the cherry containing ln � 1 and ln. There
are � n � 2 � ways of choosing a leaf for pruning and � n � 3 � ways of choosing a pendant
edge for regrafting. But, not all � n � 2 � � n � 3 � such SPR operations lead to distinct
ordered trees, and the resulting number of inequivalent ordered trees depends on the
topology of the original tree T . Let us examine how over-counting can arise.

Perhaps the best way to illustrate how the above-mentioned counting should work is
through an explicit example. Consider the example shown in Figure 5, where, for ease

ln ln � 1 ln � 2 ln � 3 l2 l1

t

Figure 4: Schematic depiction of the bottom of an n-leaved ordered tree. The youngest degree-3
vertex in the tree is the one to which ln � 1 and ln are joined to form a cherry.
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t0

t2

t6
t5

t1

t3
t4

t7

l9 l7 l6 l5 l4 l3 l2 l1l8

e7 e5 e4 e3 e2 e1e6

Figure 5: An example of a 9-leaved ordered tree where the problem of over-counting described
in Section 3.1 can arise in several ways. For some pendant edges, the part below t7 is labelled
according to the leaf label.

of discussion, we have given labels to the parts below t7 for some pendant edges. To
avoid being long-winded, let li

� e j denote pruning li and regrafting it onto e j below
level t7. Then, note that l6

� e7 leads to the same ordered tree as that obtained from
l7
� e6. Likewise, l1

� e2 is equivalent to l2
� e1. More generally, the number of over-

counting due to this kind of symmetry is c � T � � 1, where c � T � is the number of cherries
in T ; here, � 1 is for the cherry containing ln and ln � 1.

Over-counting can arise in another way as well. For example, l4
� e5 is equivalent

to l5
� e4. Similarly, l1

� e3 is equivalent to l3
� e1 and l2

� e3 is equivalent to l3
� e2.

It is important to note, however, that l3
� e4 is not equivalent to l4

� e3. The presence of
intermediate degree-3 vertices between t2 and t5 distinguishes the ordered tree obtained
by l3

� e4 from that obtained by l4
� e3. More generally, the number of over-counting

due to this kind of symmetry is equal to the number of leaves, other than ln and ln � 1,
satisfying the following: Let v denote the parent vertex of the leaf. Then, � i � the parent
p � v � of v is incident with a pendant edge, and � ii � there is no intermediate degree-3
vertex between t � v � and t � p � v � � . The number of such leaves is given by summing the
following quantity over all degree-3 vertices v except for the youngest one, which is the
root of the cherry containing ln and ln � 1:

w � v � : � δI
�
v � � 0 δ � � Sp � v ��� Sv � � 1 �

δ � � SL
v � � 1 	 δ � � SR

v � � 1 	 � (3.2)

Here, δa � b is the Kronecker delta function and the remaining notations have been defined
in Section 2.1. The first delta function in (3.2) makes sure that there are no intermediate
degree-3 vertices between t � v � and t � p � v � � ; the second delta function makes sure that
the parent vertex p � v � is incident with a pendant edge; the last delta function counts the
number of pendant edges incident with v.

It is straightforward to check that there are no other sources of over-counting. In
summary, the number of inequivalent ordered trees obtained from the SPR operations
being considered here is

� n � 2 � � n � 3 � ��
 c � T � � 1 	 ∑
v �� youngest

w � v �� � : � n � 2 ��� n � 3 � � b � T � � (3.3)
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� l5

l1 l2 l3 l4 l6l1 l2 l3 l4 l5 l6

T T � l5

v

Figure 6: An example of pruning without regrafting for a 6-leaved ordered tree.

where the sum is over all degree-3 vertices except for the youngest one. Just to demon-
strate how this works, let us return to the example shown in Figure 5. Let vi denote the
vertex at ti. Then, one obtains

w � v1 � � 0 � w � v2 �	� 1 � w � v3 �
� 0 � w � v4 �	� 0 � w � v5 �	� 0 � w � v6 � � 2 �
Therefore, since n � 9 and C � T ��� 3 in the present example, � n � 2 ��� n � 3 � � b � T �
�
� 9 � 2 � � 9 � 3 � � � 3 � 1 	 1 	 2 � � 37, which, as one can check explicitly, is the correct
answer.

3.2. Pruning without Regrafting

We here define an operation which reduces the number of leaves in a tree by one. In an
n-leaved ordered tree T , let v denote a degree-3 vertex with a leaf labelled lk adjacent to
it. Then, T � lk is defined as an � n � 1 � -leaved tree obtained by removing v, lk and the
edge joining them, and then connecting the two other edges which used to be incident
with v into a single edge. An example is shown in Figure 6.

3.3. A Recursion for �U � T ��� : The Bottom-Up Approach

Proposition 3.1. For n � 4 and T � � o
n , the size of the unit-neighbourhood U � T �

satisfies the recursion relation

�U � T ��� � 2 � n2 � 2n � 2 � � � h � 1 � � 1 � δh � 0 � � b � T �
	 �U � T � ln ��� � (3.4)

where ln is a leaf with its parent vertex p � ln � being the youngest degree-3 vertex in T ,
b � T � is defined as in (3.3), and h : � I � p � ln � � , i.e. the number of intermediate degree-3
vertices between t � p � ln � � and t � p � p � ln � � � .
Remark. Note that �U � T ��� � 2, for all T ��� o

3 , serves as the boundary condition for the
recursion.

Proof. There are 3 distinct cases we need to consider. These cases are illustrated in
Figure 7. In each case, let v be the youngest degree-3 vertex in T ; that is, let v be
the parent vertex of ln. We first do a “coarse counting” of the number of additional
moves which are made possible because of the presence of v, i.e. we want to count
the number of moves which would be absent if the cherry containing ln � 1 and ln were
instead a single-leaved subtree. Then, for each of the 3 cases illustrated in Figure 7, we
shall analyse which moves included in the “coarse counting” lead to equivalent ordered
trees, thus eliminating all over-counting.

The following “coarse counting” of moves is common to all three cases:
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v
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ln ln � 1 ln � 2
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en en � 1
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�
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p
�
v ���
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�
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en

ec

t
�
v � ea

en � 1
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ln ln � 1

t
�
p
�
v ���

(c)

en � 2 en

ea

eb

v

Figure 7: Illustration of the three possible cases in the proof of Proposition 3.1. (a) h � 0. (b)
h �� 0 and p

�
v � is not the root. (c) h �� 0 and p

�
v � is the root.

(a) 	 2 � n � 2 � from moving other pendant edges to en or en � 1.
(b) 	 � n2 � n � 2 � from cutting en or en � 1 and then attaching it somewhere above t � v � .

There are ∑n � 2
k � 1 � k 	 1 � � � n2 � n � 2 � � 2 distinct regions above t � v � , depending on

which edge and which time interval is chosen. Note that moving en or en � 1 to
somewhere below t � v � leads to a tree topology already included here.

(c) 	 2 from cutting en or en � 1 and then attaching it to the root.
(d) 	 � n � 2 � � n � 3 � � b � T � inequivalent moves from pruning any of l1 � ���� � ln � 2 and

then regrafting it somewhere below t � v � but not onto en or en � 1. These moves have
been discussed in Section 3.1.

So far we have counted 2 � n � 2 � 	 � n2 � n � 2 � 	 2 	 � n � 2 � � n � 3 � � b � T � �
2 � n � 1 � 2 � b � T � moves, not all of which are inequivalent. We now account for possi-
ble over-counting. In each case, the notation used conforms to the corresponding figure.

Case 1 (h � 0):
In this case, since v is the youngest degree-3 vertex, the descendant subtree of p � v � not
containing v must contain exactly one leaf. Moreover, since n � 4, p � v � cannot be the
root. We refer to Figure 7(a) in the following discussion:

(1-1) � 2: Cutting en or en � 1 and then attaching it to ea does not change the topology.
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(1-2) � 4: Moving en (resp. en � 1) to ec is equivalent to pruning ln � 2 and regrafting it
onto en (resp. en � 1). Also, moving en (resp. en � 1) to eb is equivalent to pruning
ln � 2 and then regrafting it onto en � 1 (resp. en). These lead to double-counting in
(a) and (b) of the above list.

Case 2 (h �� 0 and p � v � is not the root):
Shown in Figure 7(b) is a partial depiction of an ordered tree which falls into this case.

(2-1) � 2: Cutting en or en � 1 and then attaching it to ea does not change the topology.
(2-2) � 2: Cutting en or en � 1 and then attaching it to eb leads to a tree topology also

included in part (d) of the above list.
(2-3) � 2: Moving en (resp. en � 1) to ec is equivalent to moving en � 1 (resp. en) to ed.
(2-4) � � h � 1 � : Let E be the edge joining v with p � v � . Pruning ln and then regrafting it

somewhere on E is equivalent to doing the same thing to ln � 1. Other than ea and
eb, which we have already considered above, there are h � 1 intervals in E.

Case 3 (h �� 0 and p � v � is the root):
An example of this case is shown in Figure 7(c).

(3-1) � 2: Cutting ln or ln � 1 and then attaching it to ea does not change the topology.
(3-2) � 2: Cutting en or en � 1 and then attaching it to eb leads to a tree topology also

included in part (d) of the above list.
(3-3) � 2: Moving en (resp. en � 1) to ec is equivalent to moving en � 1 (resp. en) to the

root. This leads to double-counting in (b) and (c) of the above list.
(3-4) � � h � 1 � : Let E be the edge joining v with p � v � . Pruning ln and then regrafting it

somewhere on E is equivalent to doing the same thing to ln � 1. Other than ea and
eb, which we have already considered above, there are h � 1 intervals in E.

In summary, over-counting in each case contributes � � 6 	 � h � 1 � � 1 � δh � 0 �  , and
thus the number of inequivalent ordered trees in U � T � which arise due to the presence
of v is 2 � n � 1 � 2 � b � T � � � 6 	 � h � 1 ��� 1 � δh � 0 �  , which can be written as 2 � n2 � 2n � 2 �
� � h � 1 � � 1 � δh � 0 �  � b � T � . The remaining number of inequivalent ordered trees in U � T �
is given by �U � T � ln ��� . This completes our proof of the proposition.

3.4. Solving for �U � T ���
The recursion shown in (3.4) can be carried out sequentially until a 3-leaved ordered
tree is reached. Many terms in such an expansion can be summed explicitly to obtain
a simpler formula for �U � T ��� . Before we proceed, we introduce an additional notation
which will shortly prove convenient. Let l be a leaf adjacent with the youngest vertex in
an ordered tree T . Then, P � T � is defined as the ordered tree T � l obtained by pruning
l from T . In a similar vein, P k � T � is recursively defined by pruning from Pk � 1 � T � a
leaf adjacent to the youngest vertex in P k � 1 � T � . The initial condition is P 0 � T �	� T .

Now, since �U � T ! ��� � 2 for all 3-leaved ordered trees T ! and 2 	 ∑n
k � 4 2 � k2 � 2k � 2 �

� 1
3 � n 	 3 � � n � 2 � � 2n � 5 � , the unit-neighbourhood size of T with degree-3 vertices

� v1 � ���� � vn � 2 � can be written as

�U � T ���
� 1
3
� n 	 3 � � n � 2 � � 2n � 5 � �

n � 2

∑
i � 1

� I � vi � � 1 ��� 1 � δI
�
vi � � 0 �

�
n � 4

∑
k � 0

�
c � P k � T � � � 1 	 w � P k � T � � 	 � (3.5)
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Figure 8: Examples of special topology types with closed-form formulae for �U �
T ��� . (a) An 8-

leaved caterpillar tree. (b) A 9-leaved alternating-comb tree.

Here, c � P k � T � � is the number of cherries in P k � T � and w � P k � T � � denotes

∑
v� not the youngest in P k � T � w � v � �

where w � v � is defined as in (3.2). We observe that (3.5) is considerably more compli-
cated than the corresponding formula for plain rooted trees (c.f. Proposition 3.2. of [4]).
Also, because the negative terms in (3.5) are at most of O � n2 � , the unit-neighbourhood
size �U � T ��� for an ordered tree T is of O � n3 � . This is in contrast to the case of plain
rooted trees, where the unit-neighbourhood size grows quadratically with respect to n.

4. Some Special Cases with Closed-Form Formulae

The formula for �U � T ��� shown in (3.5) is not in closed-form, but it may take on a simple
form if we focus on a specific topology type. In this section, we consider three special
topology types with closed-form formulae for �U � T ��� . Results from this section will be
used in the next section.

4.1. Caterpillar Trees

A caterpillar tree is a tree of the type illustrated in Figure 8(a). We have the following
result for the size of the unit-neighbourhood:

Proposition 4.1. Let n � 3. For an n-leaved caterpillar tree T ,

�U � T ��� � 1
6
� 4n3 � 9n2 � 19n 	 42 � � (4.6)

Proof. Let us analyse the unevaluated sums appearing in (3.5). Note that I � vi � � 0, and
therefore � 1 � δI

�
vi � � 0 � � 0, for all degree-3 vertices vi in a caterpillar tree. Moreover,

since a caterpillar tree contains exactly one cherry and since if T is a caterpillar tree,
then so is P k � T � , we conclude that c � P k � T � ��� 1 for all 0 � k � n � 4. Finally, since
w � T ! � � j � 3 for a j-leaved caterpillar tree, (3.5) is equal to 1

3 � n 	 3 ��� n � 2 ��� 2n � 5 � �
∑n

j � 4 � j � 3 � � 1
6 � 4n3 � 9n2 � 19n 	 42 � � which is our desired result.
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In [4], it was shown that, for τ an n-leaved caterpillar tree regarded as a plain rooted
tree, the unit-neighbourhood size �U � τ ��� is given by 3n2 � 13n 	 14.

4.2. Alternating-Comb Trees

We here define a new topology type which contains two caterpillar trees as subtrees. An
example of this new topology type is shown in Figure 8(b). More exactly, an alternating-
comb tree T is defined as an ordered tree such that TL (resp. T R) is a caterpillar tree
with � n

2 � (resp. � n
2 � ) leaves, and the age-ordered sequence of degree-3 vertices in T

alternates between T L and T R. Here, � � � is the ceiling function, whereas � � � is the floor
function. The following proposition shows that alternating-comb trees also admit a very
simple closed-form formula for the unit-neighbourhood size.

Proposition 4.2. Let n � 3. For an n-leaved alternating-comb tree T ,

�U � T ��� � 1
3
� 2n3 � 3n2 � 20n 	 39 � � (4.7)

Proof. Let 4 � m � n and let � v1 � v2 � ���� � vm � 2 � label the set of all degree-3 vertices
in an m-leaved alternating-comb tree T ! so that t � v1 � � t � v2 ��� ��� � t � vm � 2 � . Then,
I � v1 �	� 0 and I � vi �	� 1 for all 2 � i � m � 2, and therefore � I � vi � � 1 ��� 1 � δI

�
vi � � 0 �	� 0

for all 1 � i � m � 2. Furthermore, from the definition of w � v � in (3.2), we conclude that
w � v1 � � 0, since � � Sp

�
v1 � � Sv1 �	� 1 for an m-leaved alternating-comb tree where m � 4.

Also, for all 2 � i � m � 2, we have w � vi �
� 0 because δI
�
vi � � 0 � 0. Lastly, we note that

c � T ! � � 2.
Now, since P k � T � , for all 0 � k � n � 4, also is an alternating-comb tree if T is

an alternating-comb tree, the above discussion leads to the following non-vanishing
contributions to (3.5):

�U � T ����� 1
3
� n 	 3 ��� n � 2 ��� 2n � 5 � � 
 n � 4

∑
k � 0

c � P k � T � � � 1
� 1

3
� n 	 3 ��� n � 2 ��� 2n � 5 � � � n � 3 � �

which is equal to the (4.7).

4.3. Cherry-Descending Trees

Consider the n-leaved ordered tree shown in Figure 9. It contains � n � 1
2 � cherries, of

which � n � 1
2 � � 1 are ordered in sequentially decreasing order as shown in the figure.

Note that the value of the expression n 	 1 � 2 � n � 1
2 � shown in the figure is 2 if n is odd

or 3 if n is even. For n � 3 and n � 4, cherry-descending trees and caterpillar trees are
the same.

Proposition 4.3. Let n � 3. For an n-leaved cherry-descending tree T ,

�U � T ��� � 1
6



4n3 � 9n2 � 13n 	 42 � 3 � 2n 	 3 ��� n � 1

2  	 9

� � n � 1
2  � 2 �

� (4.8)



Properties of SPR Operations on Totally-Ordered Phylogenetic Trees 13

t�
n � 1

2 ��� 1 cherries

in decreasing order

n � 1 � 2
�

n � 1
2 � leaves

Figure 9: An n-leaved cherry-descending tree. There are � n � 1
2 � cherries in this tree.

Proof. We apply the main recursion (3.4) in the bottom-up fashion until what is left is a
caterpillar tree T ! with n � � � n � 1

2 � � 1 � leaves. From Proposition 4.1, we know �U � T ! ��� .
We wish to examine what the other terms in the recursion contribute to �U � T ��� . In the
following discussion, we keep in mind that the number of times that the recursion must
be applied before T ! is reached is

� � n � 1
2 � � 1 � . Adding up the terms like the first one

on the right hand side of (3.4) gives

n

∑
i � n � � � n � 1

2 � � 1 �
	 1

2 � i2 � 2i � 2 � � (4.9)

Furthermore, since I � v � � n � � n � 1
2 � � 1, for all degree-3 vertices v below t, the sum of

the terms like � � h � 1 � � 1 � δh � 0 � gives

�
�

n � � n � 1
2  � 2 � � � n � 1

2  � 1 ��� (4.10)

Lastly, one can show that w � P k � T � � � n � 2 � n � 1
2 � 	 1 	 k and that c � P k � T � � � 1 �� n � 1

2 � � 1 � k, thus yielding

�
� n � 1

2 � � 2

∑
k � 0

b � P k � T � �
� �
�

n � � n � 1
2  � � � n � 1

2  � 1 ��� (4.11)

Summing �U � T ! ��� , (4.9), (4.10) and (4.11) gives (4.8).

5. Sharp Bounds on �U � T ���

In this section, we study sharp lower and upper bounds on �U � T ��� . We define

δmin � n � � min
T �� n

�U � T ��� and δmax � n �	� max
T �� n

�U � T ��� �
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Plain Rooted Trees Ordered Trees

n R
�
n � δmin

�
n � δmax

�
n � D

�
n � δmin

�
n � δmax

�
n �

3 3 2 2 3 2 2
4 15 10 12 18 13 13
5 105 24 28 180 35 38
6 945 44 52 2,700 75 81
7 10,395 70 84 56,700 135 146
8 135,135 102 124 1,587,600 220 237

Table 1. The minimum and the maximum values of �U �
T ��� for plain rooted trees and for ordered

trees. These have been determined via computer-aided exhaustive search.

where � n is either � o
n or � r

n , depending on whether plain rooted trees or ordered trees
are being considered. We have written a computer program which computes the unit-
neighbourhood size �U � T ��� through exhaustive comparison of trees, and therefore, for
small number n of leaves, the minimum and the maximum values of �U � T ��� can be
determined via explicit computation. Table 1 shows the result of such computation for
n � 8.

In [4], closed-form formulae for δmin � n � and δmax � n � were derived for plain rooted
trees, and they agree with our exhaustive search results summarised in the first part of
Table 1. The goal of this section is to construct closed-form formulae for the numbers
shown in the second part of Table 1 pertaining to ordered trees.1

5.1. The Maximum Unit-Neighbourhood Size

We first establish the following proposition regarding alternating-comb trees defined
in Section 4.2:

Proposition 5.1. In the case of ordered trees with n leaves, where n � 3, alternating-
comb trees have the maximum unit-neighbourhood size.

Proof. We shall prove this statement by induction on n. For n � 3 and n � 4, all ordered
trees have �U � T ��� � 2 and �U � T ��� � 13, respectively. For n � 5, one can explicitly show
that a 5-leaved alternating-comb tree T has �U � T ����� 38, which is the maximum value.
Suppose that the statement in the proposition is true for all 3 � n � k � 1, where k � 6.
We now use (3.4) to compute �U � T ��� , where T is a k-leaved alternating-comb tree. Let
lk be a leaf adjacent with the youngest vertex in T . Then, we note that T � lk also is
an alternating-comb tree if T is an alternating-comb tree. It therefore follows from the
induction hypothesis that �U � T � lk ��� � δmax � k � 1 � . Furthermore, because I � p � lk � � � 1
and b � T � � 1 if T is a k-leaved alternating-comb tree, the remaining terms in (3.4)
contribute 2 � k2 � 2k � 2 � � 1. In summary, �U � T ����� δmax � k � 1 � 	 2 � k2 � 2k � 2 � � 1 �Now, suppose that T ! is an arbitrary k-leaved ordered tree and that lk be a leaf
adjacent with the youngest vertex in T ! . Then, it follows from (3.4) that

�U � T ! ����� �U � T ! � lk ��� 	 2 � k2 � 2k � 2 � � � I � p � lk � � � 1 � � 1 � δI
�
p
�
lk � � � 0 � � b � T ! � �

1 Incidentally, we take this opportunity to report an error in Table 1 of [5], which shows incor-
rect values of δmin

�
n � and δmax

�
n � for ordered trees. In that work, ordered trees in �U �

T � � which
are equivalent to T as plain rooted trees were accidentally omitted in the exhaustive search.
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Figure 10: 7-leaved ordered trees which are not alternating-comb trees but still with the maxi-
mum unit-neighbourhood size.

Clearly, � I � p � lk � � � 1 � � 1 � δI
�
p
�
lk � � � 0 � is non-negative. Furthermore, every tree contains

at least one cherry, so c � T ! ��� 1. Suppose that c � T ! � � 1. Then, T ! must be a caterpillar
tree, so b � T ! � � w � T ! � � k � 3, which is greater than 1 since k � 6. Suppose that c � T ! � �
1. Then, clearly b � T ! �
� c � T ! � � 1 	 w � T ! � � 1, since w � T ! � is non-negative. Thus, for
all k-leaved ordered trees T ! , we must have b � T ! � � 1. Combining this result with the
fact that �U � T ! � lk ����� δmax � k � 1 � , we conclude that �U � T ! ����� �U � T ��� . In other words,
�U � T ��� � δmax � k � . This completes our induction.

The following sharp upper bound on �U � T ��� now follows straightforwardly from
Proposition 4.2 and Proposition 5.1:

Corollary 5.2. For ordered trees with n-leaves, where n � 3,

δmax � n � � 1
3
� 2n3 � 3n2 � 20n 	 39 � � (5.12)

As it should be, the formula given in (5.12) is consistent with the numerical val-
ues obtained from our computer-aided exhaustive search (c.f. Table 1). Also, we point
out that alternating-comb trees are not the only type of trees with the maximum unit-
neighbourhood size. For example, the 7-leaved ordered trees shown in Figure 10 also
have δmax � 7 �	� 146 as their unit-neighbourhood size.

5.2. The Minimum Unit-Neighbourhood Size

For plain rooted trees, it was shown in [4] that caterpillar trees have the minimum
unit-neighbourhood size. For ordered trees, however, that no longer holds true. For ex-
ample, for n � 5, the formula for cherry-descending trees (c.f. (4.8)) always leads to
a smaller value than that for caterpillar trees (c.f. (4.6)). In fact, the formula shown in
(4.8) agrees with our exhaustively-determined numerical values of δmin � n � for ordered
trees shown in Table 1. Moreover, for n � 8, we have explicitly checked that an ordered
tree has the minimum unit-neighbourhood size if and only if it is a cherry-descending
tree. This is in contrast with the maximum size case, where several different topology
types can have the maximum unit-neighbourhood size.

It does not seem straightforward to show that cherry-descending trees have the min-
imum unit-neighbourhood size for all n � 3. Hence, based on the successful match, for
n � 8, with the numerical values shown in Table 1, we propose the following conjecture:
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Conjecture 5.3. For ordered trees with n-leaves, where n � 3,

δmin � n � � 1
6
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� � n � 1
2  � 2 �

�
Note that this would imply that the difference between δmax � n � and δmin � n � for

ordered trees grows like O � n2 � , although both δmax � n � and δmin � n � are of O � n3 � .

6. Diameter of � o
n

In the same spirit as the work done in [1] and in [4] for unrooted trees and plain rooted
trees, respectively, we obtain the following result for ordered trees:

Proposition 6.1. Let diamSPR( � o
n ) denote the diameter of � o

n , defined as the maxi-
mum value of dSPR � T � T ! � over all trees T � T ! ��� o

n . Then,

2
3

n � o � n � � diamSPR( � o
n ) � n � 2 �

Proof. Following [1], we can use � δmax � n �  diamSPR
� � o

n � � D � n � to obtain the above lower
bound for diamSPR( � o

n ). Here, D � n � is the number of ordered trees (c.f. (2.1)), whereas
δmax � n � is given by (5.12). Using Stirling’s approximation for the factorial function and
carrying out a similar set of steps as in [1], one can show that limn � ∞ diamSPR( � o

n ) � n �
2 � 3 and thus obtain the proposed lower bound. For the upper bound, the proof from [4]
for plain rooted trees can be applied to ordered trees as well.

Note. For plain rooted trees, the lower bound on diamSPR( � r
n ) obtained using the same

approach as above is n � 2 � o � n � [4].
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