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Abstract

Many applications in genetic analyses utilize sampling distributions, which describe the
probability of observing a sample of DNA sequences randomly drawn from a population.
In the one-locus case with special models of mutation, such as the infinite-alleles model or
the finite-alleles parent-independent mutation model, closed-form sampling distributions
under the coalescent have been known for many decades. However, no exact formula
is currently known for more general models of mutation that are of biological interest.
In this paper, models with finitely-many alleles are considered, and an urn construction
related to the coalescent is used to derive approximate closed-form sampling formulae for
an arbitrary irreducible recurrent mutation model or for a reversible recurrent mutation
model, depending on whether the number of distinct observed allele types is at most three
or four, respectively. It is demonstrated empirically that the formulae derived here are
highly accurate when the per-base mutation rate is low, which holds for many biological
organisms.
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1. Introduction

An important problem in genetic analyses concerns computing the probability of observ-
ing a randomly drawn sample of chromosomes under a given model of evolution. Popular
applications of this probability computation include maximum likelihood estimation of model
parameters and ancestral inference (see [19] for a nice introduction). The coalescent [14], [15]
is a useful mathematical framework for performing model-based full-likelihood analyses, but
in most cases it is intractable to obtain a closed-form formula for the probability of a given
dataset. A well-known exception to this complication is the celebrated Ewens sampling formula
(ESF) [3], which describes the stationary probability distribution of a sample configuration
under the one-locus infinite-alleles model in the coalescent or the diffusion limit. A Pólya-like
urn model interpretation [9] of the formula has been known for some time, and recently a new
combinatorial proof of the ESF has been provided [6]. Furthermore, the ESF also arises in
several interesting contexts outside biology, including random partition structures; the ESF
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is a special case of the two-parameter sampling formula [17], [18] for exchangeable random
partitions. See [1] for examples of other interesting combinatorial connections.

In the case of finitely-many alleles, a closed-form sampling formula is known [20] only for
the parent-independent mutation (PIM) model, in which the probability of mutating from allele
j to allele i depends only on the child allele i. For a general non-PIM mutation model, finding
an exact, closed-form sampling formula has remained a challenging open problem.

In this paper we make progress on this problem by deriving approximate, closed-form
sampling formulae that are highly accurate when the mutation rate is low. More precisely, given
a sample configuration n and the model parameters (mutation rate θ and transition matrix P ),
we consider the Taylor expansion of the sampling probability q(n | θ,P ) about θ = 0. As
discussed later, if P is irreducible when restricted to the observed alleles in the sample then
the leading-order term in the expansion is proportional to θ |On|−1, where |On| is the number of
distinct observed alleles in the sample configuration n. Hence,

q(n | θ,P ) = θ |On|−1Q(n | P )+O(θ |On|), (1)

whereQ(n | P ) is the leading-order coefficient that depends on the mutation transition matrix
P but not on the mutation rate θ . In this paper we consider the problem of obtaining exact
closed-form formulae forQ(n | P ). As many organisms typically have small per-base mutation
rates, our results are of biological interest.

By restricting the set of events in the coalescent genealogy for a given sample, Jenkins and
Song [12] provided closed-form formulae for Q(n | P ) for an arbitrary transition matrix P

when |On| ≤ 3. In this paper we provide new proofs of those results, and extend them by
supplying a closed-form formula for Q(n | P ) when |On| = 4 and the transition matrix P is
reversible restricted to the observed alleles. We prove our results using martingale arguments
and use an urn construction related to the coalescent to develop a recursion for the approximate
sampling probability, which can then be solved in closed form using combinatorial techniques.
As a corollary of our results, it can be seen that the simple general formula in [12, Theorem 6.3]
for Q(n | P ) when P is parent-independent restricted to the observed alleles also holds when
P is reversible restricted to the observed alleles, provided that |On| ≤ 3. That formula fails to
hold when |On| = 4 and P is not parent-independent restricted to the observed alleles.

As there are four distinct DNA bases, our extension to the |On| = 4 case seems natural.
A more interesting reason is as follows. In multi-locus models with finite recombination
rates, no closed-form sampling formula is known, even for the simplest case of two loci
with either infinite-alleles or finite-alleles PIM models. However, recently, a new framework
based on asymptotic series has been developed [2], [10], [11], [13] to derive useful closed-
form results when the recombination rate is moderate to large. The main idea behind that
research is to perform an asymptotic expansion of the sampling probability in inverse powers
of the recombination rate. We note that our one-locus sampling formula for the |On| = 4
case provides an accurate approximation of the sampling probability for a completely linked
(i.e. with zero recombination rate) pair of loci with two observed alleles at each locus (as is
typical in single-nucleotide polymorphism data). Hence, our work serves as a starting point
for finding approximate two-locus sampling formulae when the recombination rate is small,
complementary to the earlier work [2], [10], [11], [13] for large recombination rates. We leave
this problem for future research.

We remark that, for a given sample configuration n and fixed parameters θ and P , the exact
sampling probability q(n | θ,P ) can be found numerically by solving a system of coupled
linear equations in O(|n|K) variables, where |n| denotes the total sample size and K denotes
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the number of allele types in the assumed model. One of the main motivations of our work is
to remedy this high computational complexity. Evaluating our closed-form approximations is
much more efficient, in both time and space complexity.

The rest of this paper is structured as follows. In Section 2 we lay out the model and notation
used throughout the paper. In Section 3 we summarize our main closed-form sampling formulae,
which we prove in Section 4 using martingale arguments and an urn construction. Numerical
experiments demonstrating the usefulness of our approximate sampling formulae are provided
in Section 5.

2. Model and notation

We consider Kingman’s coalescent with a K-allelic recurrent mutation model specified by
the population-scaled mutation rate θ/2 and ergodic transition matrix P , where Pji denotes the
probability of allele j mutating to allele i forward in time given that a mutation occurs. The
stationary distribution of P is denoted by π = (π1, . . . , πK).

The following definitions will be used throughout.

Definition 1. (n, sample configuration.) A sample of individuals is denoted by n = (ni)i∈[K],
where ni ∈ Z≥0 denotes the number of individuals in the sample with allele i. The size |n|
of the sample n is denoted by the same letter in nonbold face, n. For notational convenience,
we use ei to denote the sample configuration with a single individual of type i and write
n = n1e1 + · · · + nKeK . For a subset S ⊆ [K], we define nS = ∑

i∈S niei and nS = |nS |.
Definition 2. (On, observed allele types.) Given a sample n, let On ⊆ [K] denote the set of
observed allele types, i.e. On = {i ∈ [K] | ni > 0}. The number of observed allele types is
denoted by |On|.

When the indices h, i, j , k, and l are used in indefinite summations or products, they are
assumed to range over On, unless stated otherwise.

By exchangeability, the probability of any ordered sample with configuration n is invariant
under all permutations of the sampling order. We use q(n | θ,P ) to denote the stationary
sampling probability of any particular ordered sample with configuration n. From the standard
coalescent arguments [7], [8], it can be deduced that q(n | θ,P ) is the unique solution to the
recursion

n(n−1+θ)q(n | θ,P ) =
∑
i

ni(ni −1)q(n−ei | θ,P )+θ
∑
i,j

Pjiniq(n−ei +ej | θ,P ),
(2)

with boundary conditions

q(ei | θ,P ) = πi for all i ∈ [K].

If P is irreducible when restricted to the observed alleles On then, by unwinding recursion
(2), it can be seen that |On| − 1 is the smallest power of θ with a nonvanishing coefficient
in the Taylor series expansion of q(n | θ,P ) about θ = 0. Intuitively, for a sample with m
distinct observed alleles, the coefficient of θm−1 in the Taylor expansion corresponds to the
total probability of coalescent genealogies with the most parsimonious number (i.e. m − 1)
of mutations. That P is irreducible when restricted to On is a sufficient (but not necessary)
condition for the existence of such a parsimonious genealogy for sample n.
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LettingQ(n | P ) denote the coefficient of θ |On|−1 in the Taylor expansion, q(n | θ,P ) can
be written as in (1). For simplicity, in what follows we simply write q(n) and Q(n) instead of
q(n | θ,P ) and Q(n | P ), respectively.

We now introduce some notation used throughout the paper. For a sample configuration n,
we define the combinatorial quantity �(n) as

�(n) =
∏
i∈On

(ni − 1)!
(n− 1)! . (3)

For k ∈ Z≥0, the kth falling factorial of x (denoted (x)k↓) and the kth rising factorial of x
(denoted (x)k↑) are defined as

(x)k↓ = x(x − 1) · · · (x − k + 1), (x)k↑ = x(x + 1) · · · (x + k − 1),

with (x)0↓ = (x)0↑ = 1. The kth harmonic number Hk is defined as

Hk = 1 + 1

2
+ · · · + 1

k
,

with H0 = 0. Given a sample configuration n = (n1, . . . , nK), a K-tuple m = (m1, . . . , mK)

satisfying 0 � m ≺ n means that 0 ≤ mi < ni for all i ∈ On and mi = 0 for all i /∈ On,
while 0 ≺ m � n means that 0 < mi ≤ ni for all i ∈ On and mi = 0 for all i /∈ On. Also,
0 � m � n denotes 0 ≤ mi ≤ ni for all i ∈ [K].

3. A summary of closed-form results for Q(n)

In the case of |On| = 1, it is easy to see that Q(n) = πi for n = nei . In this paper we
derive closed-form expressions for the leading-order coefficient Q(n) when |On| ≤ 3, and P

is an arbitrary mutation transition matrix that is irreducible when restricted to the observed
alleles On; and also when |On| = 4, and P is irreducible and reversible when restricted to On

(i.e. πiPij = πjPji for all i, j ∈ On). These closed-form results are summarized below.

Theorem 1. For |On| = 2 and P an arbitrary mutation transition matrix that is irreducible
when restricted to On, Q(n) is given by

Q(n) = �(n)
∑

{i,j∈On : i 
=j}

nj

n
πjPji .

Theorem 2. For |On| = 3 and P an arbitrary mutation transition matrix that is irreducible
when restricted to On, Q(n) is given by

Q(n) = �(n)
∑

distinct i,j,k∈On

{
πjPjiPjk

[
(nj )2↓

n(nj + nk − 1)
− ninj

n(ni + nk)
− 2

ninjnk

n(nj + nk)2↓

+ 2
ninjnk

(nj + nk + 1)3↓
(Hn −Hni−1)

]

+ πkPkjPji

[
njnk

n(nj + nk − 1)
+ 2

ninjnk

n(nj + nk)2↓

− 2
ninjnk

(nj + nk + 1)3↓
(Hn −Hni−1)

]}
.
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Corollary 1. Suppose that |On| = 3 with sample configuration n = naea + nbeb + ncec,
where a, b, and c are distinct alleles in [K]. If the mutation transition matrix P is reversible
and irreducible when restricted to the observed alleles On, Q(n) is given by

Q(n) = �(n)

(
na

n
πaPabPac + nb

n
πbPbaPbc + nc

n
πcPcaPcb

)
.

Theorem 3. For |On| = 4, if the mutation transition matrix P is reversible and irreducible
when restricted to the observed alleles On, then Q(n) is given by

Q(n) = �(n)
∑

distinct i,j,k,l∈On

[πiPijPikPilγ (n, i, j, k, l)+ πiPijPikPjlδ(n, i, j, k, l)],

where

γ (n, i, j, k, l) = ni

n

{[
ni − 1

2(ni + nj + nk − 1)
− 2njnl
(ni + nj + nk)2↓

]
+ nl

2(nj + nk + nl)

−
[

nl(ni − 1)

(nk + nl)(ni + nj − 1)
− 2njnl
(ni + nj )2↓

]}

+ 2ninjnl
(ni + nj + nk + 1)3↓

(Hn −Hnl−1)

− 2ninjnl
(ni + nj + 1)3↓

(Hn −Hnk+nl−1)

and

δ(n, i, j, k, l) = ni

n

{[
nj

ni + nj + nk − 1
+ 2njnl
(ni + nj + nk)2↓

]

−
[

njnl

(nk + nl)(ni + nj − 1)
+ 2njnl
(ni + nj )2↓

]}

− 2ninjnl
(ni + nj + nk + 1)3↓

(Hn −Hnl−1)

+ 2ninjnl
(ni + nj + 1)3↓

(Hn −Hnk+nl−1).

4. Proofs of the main results

In this section we construct an urn process to derive the closed-form formulae for Q(n)
mentioned in the previous section. We use the urn process to decompose Q(n) into a sum
product of two vectors, one which depends only on the sample configuration n and the other
which depends only on the mutation transition matrix P . Using this decomposition, we show
that Q(n) corresponds to the probability of a certain event in the urn process.

Throughout, we use R(n) to denote the following rescaled version of Q(n), i.e.

R(n) = Q(n)

�(n)
, (4)

where �(n) is the combinatorial coefficient defined in (3).
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4.1. Description of the urn process

Let n be the sample configuration of interest. We have an urn with n balls, ni of which have
color i. We remove balls one at a time uniformly at random until there are no more balls in
the urn. However, whenever we ‘kill’ a color (i.e. remove the last ball of that color), we add
back a ball of a different color. We do this by picking another ball from the urn, copying it, and
returning both copies to the urn. Note that when we kill the last color, we do not add any balls
back, since there are no more colors to choose from.

Suppose that when we kill color i, we add back a ball of color j . We then call j the parent
of i, and call the last surviving color the root. This generates a rooted tree whose vertices
consist of the |On| observed colors (alleles).

Let T be any rooted tree on On. We denote the probability of generating T under the above
process as Pn(T ). Let E(T ) be the edge set of T , and let ρ(T ) denote the root vertex of T . By
convention, we draw edges as pointing away from the root, so the edge (j → i) indicates that
j is the parent of i.

The main idea of this section is that to compute Q(n), it is enough to compute Pn(T ) for
each T . In particular, we prove the following theorem in Section 4.2.

Theorem 4. Recall that, for a transition matrix P that is irreducible when restricted to On,
Q(n) denotes the first nonzero coefficient in the Taylor expansion (1) of q(n) about θ = 0.
Given a rooted tree T described above, define fP (T ) as

fP (T ) = πρ(T )
∏

(j→i)∈E(T )
Pji .

Then, the quantity R(n) = Q(n)/�(n) is given by

R(n) =
∑
T

Pn(T )fP (T ) = En[fP (T )], (5)

where the sum is taken over all rooted trees T with |On| vertices bijectively labeled by On. That
is, R(n) is the expectation of fP (T ) under the above process.

Note that we can view fP (T ) as a probability as well. In particular, suppose that we relabel
the vertices of T as follows: we assign a new label from [K] to ρ(T ) according to the stationary
distribution π , and, for each edge in T , we assign a new label to the child according to the new
label of its parent and the transition matrix P . Then fP (T ) is the probability that we assign
the original labels to all the vertices, given that we drew T . That is, if COn is the event that we
assign the original labels to all vertices then

fP (T ) = P(COn | T ) = πρ(T )
∏

(j→i)∈E(T )
Pji .

This immediately leads to the following interpretation:

R(n) =
∑
T

P(COn | T )Pn(T ) = Pn(COn). (6)

That is, R(n) is the unconditional probability that we correctly label all the alleles, if we use
the urn process to generate a tree on the alleles and then use the tree to assign labels.
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4.2. An inductive proof of Theorem 4

In this subsection we provide an inductive proof of Theorem 4. In Section 4.3 we provide
an alternative proof based on a modified coalescent process which provides a more intuitive
explanation for why the urn process works.

Proof of Theorem 4. Recall the recursion in (2):

n(n− 1 + θ)q(n) =
∑
i

ni(ni − 1)q(n − ei )+ θ
∑
i,j

Pjiniq(n − ei + ej ).

Recall also that if P is irreducible when restricted to On, q(n) has leading-order power θ |On|−1

in its Taylor series. Hence, we obtain the following recursion for Q(n):

n(n− 1)Q(n) =
∑

{i : ni>1}
ni(ni − 1)Q(n − ei )+

∑
{i : ni=1}

∑
{j : j 
=i}

PjiniQ(n − ei + ej ).

Plugging in Q(n) = �(n)R(n) and simplifying gives the following recursion for R(n):

n(n− 1)R(n) =
∑

{i : ni>1}
ni(n− 1)R(n − ei )+

∑
{i : ni=1}

∑
{j : j 
=i}

PjinjR(n − ei + ej ). (7)

A simple induction over |On| and n shows that this recursion has a unique solution given
the boundary conditions R(ei ). So if we can show (5) when |On| = n = 1, and then show
that

∑
T P(COn | T )Pn(T ) satisfies recursion (7), then we will be done. The base case is

trivial: when On = {a}, there is only one possible tree, T = {a}, with Pn(T ) = 1 and
P(COn | T ) = πa = limθ→0 q(n) = Q(n) = �(n)R(n) = R(n).

To show that
∑
T P(COn | T )Pn(T ) satisfies (7), we start by giving recursions for Pn(T )

and P(COn | T ). Let z(i) be the parent of i in T , and let L(T ) be the set of leaves of T (where
the root is not considered a leaf). Conditioning on the first event in the urn process gives

Pn(T ) =
∑

{i : ni>1}

ni

n
Pn−ei (T )+

∑
{i∈L(T ) : ni=1}

nz(i)

n(n− 1)
Pn−ei+ez(i) (T \ {i}). (8)

Furthermore, if i ∈ L(T ), we have

P(COn | T ) = Pz(i),i P(COn\{i} | T \ {i}). (9)

Using (8) and (9), and collecting terms, we arrive at

n(n− 1)
∑
T

P(COn | T )Pn(T )

=
∑
T

P(COn | T )
[ ∑

{i : ni>1}
ni(n− 1)Pn−ei (T )+

∑
{i∈L(T ) : ni=1}

nz(i) Pn−ei+ez(i) (T \ {i})
]

=
∑

{i : ni>1}
ni(n− 1)

∑
T

Pn−ei (T )P(COn | T )

+
∑

{i : ni=1}

∑
{j : j 
=i}

Pjinj
∑
T ′

Pn−ei+ej (T
′)P(COn\{i} | T ′),

where the sum over T ′ is taken over all rooted trees with vertex set On \ {i}. Therefore,∑
T P(COn | T )Pn(T ) satisfies (7).
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4.3. Connection to the coalescent

In this subsection we motivate our urn process by drawing a connection to the coalescent.
We then use this connection with the coalescent to provide an alternate proof of Theorem 4.

Let H be a history of mutation and coalescence events on n labeled individuals, and let
q(H) be the probability of H . Then we have

q(n) =
∑

H consistent with n

q(H). (10)

It turns out that only histories with exactly |On| − 1 mutations contribute to the leading-order
term of q(n); this is the observation also utilized in [12]. Furthermore, each history of choices
in our urn process corresponds with a genealogical history of |On|−1 mutations. This provides
the basic intuition for why the urn sampling scheme works.

We start by providing a modified coalescent that generates a history H that is consistent with
n and has exactly |On|− 1 mutations. We then show that this modified coalescent is equivalent
to our urn sampling process. Finally, we prove Theorem 4 by relating the modified coalescent
with Kingman’s coalescent.

Consider the following modified coalescent process on our sample.

1. Select allele i with probability mi/m, where m is our current configuration of alleles.

2. If mi > 1, choose a random pair in allele i to coalesce (so m is replaced with m − ei).

3. Ifmi = 1, have the last individual of allele imutate to allele j with probabilitymj/(m−1)
(so m is replaced with m − ei + ej ).

4. Repeat steps 1 to 3 until all individuals have coalesced.

It should be clear that the modified coalescent only generates histories with exactly |On|−1
mutations, since each mutation kills an allele permanently.

If we take an unordered view of our sample then the modified coalescent is equivalent to the
urn process, for they have the same initial configuration and transition probabilities between
configurations. In particular, whenmi > 1, we move from m to m− ei with probabilitymi/m,
and when mi = 1, we move from m to m − ei + ej with probability mj/(m)2↓. We generate
trees on On by drawing an edge (j → i)whenever we make a transition from m to m−ei +ej ,
i.e. whenever there is a mutation from i to j .

We now give a proof of Theorem 4, using the modified coalescent in place of the urn process.

Alternative proof of Theorem 4. Let H be a coalescent history with exactly M mutations.
Running time backwards from the present, we suppose that the ith mutation was from allele ui
to allele vi , and that the most recent common ancestor has allele ρ. We further suppose that Ji
is the total number of lineages at the time of the ith mutation. Then we have

q(H) = πρ

( M∏
i=1

Pviui

)
θM∏M

i=1 Ji(θ + Ji − 1)

2n−1

n! (θ + n− 1)(n−1)↓
,

since the ith coalescence contributes probability

n− i

n− i + θ

(
n− i + 1

2

)−1

= 2

(n− i + 1)(n− i + θ)
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and the ith mutation contributes probability

θPviui

Ji(Ji − 1 + θ)
.

Now, observe that

Q(H) ≡ lim
θ→0

q(H)

θM
= πρ

( M∏
i=1

Pviui

)
2n−1

n! (n− 1)! ∏M
i=1 Ji(Ji − 1)

. (11)

Therefore, the Taylor series for q(H) has leading power θM , with coefficient Q(H). Hence,
by (10), the Taylor series for q(n) has leading power θ |On|−1, and its leading coefficient is given
by the sum of all Q(H) such that H is consistent with n and has |On| − 1 mutations.

For such an H , let Pn(H) be the probability of generating H under our modified coalescent.
Then we have

Pn(H) = 2n−1

n! ∏|On|
k=1(nk − 1)! ∏|On|−1

i=1 Ji(Ji − 1)
. (12)

To see this, note that if our current sample is m, the probability that the next event is a coalescence
on allele i with mi > 1 is

mi

m

2

mi(mi − 1)
= 2

m(mi − 1)
,

and if mi = 1, the probability that the next event is a mutation from allele i to allele j (where
j 
= i) is

mj

m(m− 1)
.

Multiplying the probabilities of the mutation and coalescence events in H , and noting that the
numerator of each mutation term cancels with the denominator of a future coalescence term,
yields (12).

Combining (11) with (12) yields

Q(H) = �(n)πρ

(|On|−1∏
i=1

Pviui

)
Pn(H).

Now let T (H) be the resulting tree on On if we draw an edge (j → i)when allele i mutates
to allele j . Then we have

Q(n) =
∑

H consistent with n
H has |On| − 1 mutations

Q(H)

= �(n)
∑
T

πρ(T )

( ∏
(j→i)∈T

Pji

)( ∑
{H : T (H)=T }

Pn(H)

)

= �(n)
∑
T

πρ(T )

( ∏
(j→i)∈T

Pji

)
Pn(T )

= �(n)
∑
T

fP (T )Pn(T ),

and, hence, R(n) = ∑
T fP (T )Pn(T ), as needed.
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4.4. A martingale property

Here, we prove Theorem 1 and Corollary 1 by using martingales to compute Pn(T ) for
On = {a, b}, and for On = {a, b, c} when P is reversible when restricted to On. We run time
as follows. Whenever we remove a ball in the urn process, count this as one time step. If in
doing so we kill a color, count the adding of another ball as a separate time step.

Let Ft be the σ -algebra generated by all sequences of choices up to time t . Let Xt be the
proportion of balls that have color a at time t ; so X0 = na/n. It is easy to check that {Xt } is a
martingale with respect to {Ft }. Suppose that m is the remaining sample after time t − 1, and
that we delete a ball at time t . Then,

E[Xt | Ft−1] = ma

m

ma − 1

m− 1
+

∑
i 
=a

mi

m

ma

m− 1
= ma

m
= Xt−1.

On the other hand, if we add a ball at time t then

E[Xt | Ft−1] = ma

m

ma + 1

m+ 1
+

∑
i 
=a

mi

m

ma

m+ 1
= ma

m
= Xt−1.

So, {(Xt ,Ft ), t ≥ 0} is a martingale.

Proof of Theorem 1. Suppose that On = {a, b}. Let T be the tree whose vertex set is On,
with a being the root. Let τ be the first time we kill a color. Noting that τ is a stopping time,
we obtain

Pn(T ) = E[Pn(T | Fτ )]
= E[1(color a is the last remaining at time τ)]
= E[Xτ ]
= E[X0]
= na

n
.

Therefore, by Theorem 4,

Q(n) = �(n)

(
na

n
πaPab + nb

n
πbPba

)
.

Proof of Corollary 1. Suppose that On = {a, b, c} and P is reversible when restricted to On.
Note that P(COn | T ) does not depend on how T is rooted, for by reversibility we can move
the root around by

πρPρk = πkPkρ for all k ∈ On, k 
= ρ.

Therefore, we redefine Pn(T ) to be the probability of drawing the undirected tree T . We still
have R(n) = ∑

T P(COn | T )Pn(T ), but now the sum is taken over undirected T . Now let
T be the tree on {a, b, c} whose interior vertex is a. We draw T if and only if a is chosen as
the parent of the first color that we kill. So, letting τ be the first killing time and noting that
Xτ = Pn(T | Fτ ), we have

Pn(T ) = E[Pn(T | Fτ )] = E[Xτ ] = E[X0] = na

n
.

Therefore, by Theorem 4,

Q(n) = �(n)

(
na

n
πaPabPac + nb

n
πbPbaPbc + nc

n
πcPcaPcb

)
.
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4.5. A recursion for R(n)

In this section we derive a recursion for R(n) which will be useful for deriving closed-form
formulae for Q(n) when |On| = 3, 4. Given a sample configuration n and a subsample m,
define the expression

(
n
m

)
as (

n

m

)
=

∏
i∈On

(
ni

mi

)
.

The following proposition provides a recursion relating R(n) to R(m)where |Om| = |On|−1.

Proposition 1. Suppose that P is irreducible when restricted to On, and let θ |On|−1Q(n) =
θ |On|−1�(n)R(n) denote the leading-order term in the Taylor expansion (1) of q(n) about
θ = 0. Then, R(n) for |On| > 1 satisfies the recursion

R(n) =
∑

{i,j∈On : i 
=j}
Pji

∑
{0≺m�n : mi=1}

(
n
m

)(
n
m

) mjR(m − ei + ej )

m(m− 1)
,

with boundary conditions

R(n) = πa,

for all sample configurations n = naea , where a ∈ [K].
Proof. We can derive this recursion from the urn process as follows. Let Dij (m) be the

event where the first killing replaces a ball of color i with a ball of color j , and where m is the
(unordered) configuration immediately before this killing. Then, for any event A,

Pn(A) =
∑
i,j 
=i

∑
{0≺m�n : mi=1}

Pn(Dij (m))Pn(A | Dij (m)), (13)

where we have used the fact that Pn(Dij (m)) = 0 if mi 
= 1 or mj = 0 for any j ∈ On.
We compute Pn(Dij (m)) when m � 0 andmi = 1. The probability that m is the remaining

configuration after n−m draws is

(n−m)!∏
k(nk −mk)!

∏
k(nk)nk−mk↓
(n)n−m↓

=
(
n
m

)(
n
m

) .
To see this, note that the first term is the number of ways we can make n−m draws that result
in the configuration m, and the second term is the probability of each such sequence of draws.

When our current configuration is m with mi = 1, the probability that on the next draw we
replace the last ball of color i with a ball of color j is mj/(m)2↓. Hence, we obtain

Pn(Dij (m)) =
(
n
m

)(
n
m

) mj

m(m− 1)

when m � 0 and mi = 1. Plugging this into (13) yields

Pn(A) =
∑
i,j 
=i

∑
{0≺m�n : mi=1}

(
n
m

)(
n
m

) mj

m(m− 1)
Pn(A | Dij (m)). (14)
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Now recall from (6) that R(n) = Pn(COn). That is, R(n) is the probability that we assign
the original labels to all alleles, if we use the urn process to generate a tree on On and then use
the tree to assign new labels to the alleles. Note that

P(COn | Dij (m)) = Pji Pm−ei+ej (COn\{i}) = PjiR(m − ei + ej ),

since we need to use the urn process with sample m − ei + ej to correctly relabel On \ {i}, and
then assign the correct label to {i} with probability Pji . Plugging this into (14) with A = COn

yields the desired recursion:

R(n) =
∑
i,j 
=i

Pji
∑

{0≺m�n : mi=1}

(
n
m

)(
n
m

) mjR(m − ei + ej )

m(m− 1)
.

In the next two subsections we use the recursion in Proposition 1 to provide proofs of
Theorem 2 and Theorem 3.

4.6. Proof of Theorem 2 (|On| = 3)

For |On| = 3, the following expression for R(n) can be derived using Proposition 1:

R(n) =
∑
i,j 
=i

Pji
∑

{0≺m�n : mi=1}

(
n
m

)(
n
m

) mjR(m − ei + ej )

m(m− 1)

=
∑
i,j 
=i

Pji
∑

{0≺m�n : mi=1}

(
n
m

)(
n
m

) mj

m(m− 1)

∑
{k,l : l 
=k and k,l 
=i}

mk + δj,k

m
πkPkl

=
∑
i,j 
=i

Pji
∑

{0≺m�n : mi=1}

{(
n
m

)(
n
m

) 1

m2(m− 1)

[ ∑
{l : l 
=i,j}

mj(mj + 1)πjPjl

+
∑

{k : k 
=i,j}
mjmkπkPkj

]}

=
∑
i,j 
=i

Pji

n∑
m=3

∑
{0≺m�n : mi=1,|m|=m}

{(
n
m

)(
n
m

) 1

m2(m− 1)

[ ∑
{k : k 
=i,j}

mj(mj + 1)πjPjk

+
∑

{k : k 
=i,j}
mjmkπkPkj

]}

=
∑

i,j,k distinct

n∑
m=3

∑
{0≺m�n : mi=1, |m|=m}

(
n
m

)(
n
m

) πjPjiPjkmj (mj + 1)+ πkPkjPjimjmk

m2(m− 1)
.

(15)

In the second equality, we used the formula from Theorem 1, noting that |Om−ei+ej | = 2. If
we define the quantities α(n, i, j, k) and β(n, i, j, k) as

α(n, i, j, k) =
n∑

m=3

1

m2(m− 1)

∑
{0≺m�n : mi=1, |m|=m}

(
n
m

)(
n
m

)mj(mj + 1) (16)

and

β(n, i, j, k) =
n∑

m=3

1

m2(m− 1)

∑
{0≺m�n : mi=1, |m|=m}

(
n
m

)(
n
m

)mjmk,
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then (15) can be rewritten as

R(n) =
∑

i,j,k distinct

πjPjiPjkα(n, i, j, k)+
∑

i,j,k distinct

πkPkjPjiβ(n, i, j, k). (17)

Now consider α(n, i, j, k) defined by (16). We can remove the restriction in the inner sum that
mi = 1 by defining m′ = m − ei , and so |m′| = m− 1. Also, since j 
= i in (17), m′

j = mj .
Making this change of variable from m to m′ in the inner sum of (16), we obtain

∑
{0≺m�n : mi=1, |m|=m}

(
n
m

)(
n
m

)mj(mj + 1)

=
(
n−ni
m−1

)
(
n
m

) ni
∑

{0≺m′�n−niei : |m′|=m−1}

(
n−niei

m′
)

(
n−ni
m−1

) m′
j (m

′
j + 1). (18)

Using identity (31) in Fact 5 of Appendix A, the summation over m′ in (18) can be written as

∑
{0≺m′�n−niei : |m′|=m−1}

(
n−niei

m′
)

(
n−ni
m−1

) m′
j (m

′
j + 1)

=
∑

{T⊆[L] : i,j /∈T }
(−1)|T |

[
(nj )2↓(m− 1)2↓
(n− ni − nT )2↓

+ 2nj (m− 1)

n− ni − nT

](
n−ni−nT
m−1

)
(
n−ni
m−1

) . (19)

The only sets T satisfying the conditions in the summation in (19) are T = ∅ and T = {k}.
Hence, substituting (18) and (19) into (16), we have

α(n, i, j, k) =
n∑

m=3

1

m2(m− 1)

∑
{0≺m�n : mi=1, |m|=m}

(
n
m

)(
n
m

)mj(mj + 1)

=
n∑

m=3

1

m2(m− 1)

(
n−ni
m−1

)
(
n
m

) ni
∑

{0≺m′�n−niei : |m′|=m−1}

(
n−niei

m′
)

(
n−ni
m−1

) m′
j (m

′
j + 1)

=
n∑

m=3

ni
(
n−ni
m−1

)
m2(m− 1)

(
n
m

){(nj+nk
m−1

)
(
n−ni
m−1

) [
(nj )2↓

(nj + nk)2↓
(m− 1)2↓ + 2

nj (m− 1)

nj + nk

]

−
( nj
m−1

)
(
n−ni
m−1

)[
(nj )2↓
(nj )2↓

(m− 1)2↓ + 2
nj

nj
(m− 1)

]}

=
n∑

m=3

ni

m2(m− 1)

{(nj+nk
m−1

)
(
n
m

) [
(nj )2↓

(nj + nk)2↓
(m− 1)2↓ + 2

nj (m− 1)

nj + nk

]

−
( nj
m−1

)
(
n
m

) m(m− 1)

}

=
n∑

m=1

ni

n

{(
nj+nk
m

)
(
n−1
m

) [
(nj )2↓

(nj + nk)2↓
m− 1

m+ 1
+ 2

nj

nj + nk

1

m+ 1

]
−

(
nj
m

)
(
n−1
m

)}
. (20)
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Applying Facts 1 and 3 in Appendix A to (20) yields

α(n, i, j, k) =
n∑

m=1

ni

n

[
(nj )2↓

(nj + nk)2↓

(
nj+nk
m

)
(
n−1
m

) −
(
nj
m

)
(
n−1
m

) + 2njnk
(nj + nk)2↓

(
nj+nk
m

)
(
n−1
m

) 1

m+ 1

]

= ni

n

{
(nj )2↓

(nj + nk)2↓
nj + nk

ni
− nj

ni + nk

+ 2
njnk

(nj + nk)2↓

[
n

nj + nk + 1
(Hn −Hni−1)− 1

]}

= (nj )2↓
n(nj + nk − 1)

− ninj

n(ni + nk)
− 2

ninjnk

n(nj + nk)2↓
+ 2

ninjnk

(nj + nk + 1)3↓
(Hn −Hni−1). (21)

Following a similar line of computation as above, we can find a closed-form expression for
β(n, i, j, k) as follows:

β(n, i, j, k) =
n∑

m=3

1

m2(m− 1)

∑
{0≺m�n : mi=1, |m|=m}

(
n
m

)(
n
m

)mjmk
=

n∑
m=3

1

m2(m− 1)

(
n−ni
m−1

)
(
n
m

) ni
∑

{0≺m′�n−niei : |m′|=m−1}

(
n−niei

m′
)

(
n−ni
m−1

) m′
jm

′
k

=
n∑

m=3

1

m2(m− 1)

(nj+nk
m−1

)
(
n
m

) ni
njnk

(nj + nk)2↓
(m− 1)2↓

=
n∑

m=1

ni

n

njnk

(nj + nk)2↓

(
nj+nk
m

)(
n
m

) (
1 − 2

m+ 1

)

= ni

n

njnk

(nj + nk)2↓

{
nj + nk

ni
− 2

[
n

nj + nk + 1
(Hn −Hni−1)− 1

]}

= njnk

n(nj + nk − 1)
+ 2

ninjnk

n(nj + nk)2↓
− 2

ninjnk

(nj + nk + 1)3↓
(Hn −Hni−1). (22)

In the second equality above we used the same change of variable from m to m′ = m − ei as
in the α(n, i, j, k) term. The third equality follows from identity (32) in Fact 5, and the second
to last equality follows from Facts 1 and 3. Substituting (21) and (22) into (17), and using (4)
gives

Q(n) = �(n)
∑

i,j,k distinct

[πjPjiPjkα(n, i, j, k)+ πkPkjPjiβ(n, i, j, k)]

= �(n)
∑

i,j,k distinct

{
πjPjiPjk

[
(nj )2↓

n(nj + nk − 1)
− ninj

n(ni + nk)
− 2

ninjnk

n(nj + nk)2↓

+ 2
ninjnk

(nj + nk + 1)3↓
(Hn −Hni−1)

]
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+ πkPkjPji

[
njnk

n(nj + nk − 1)
+ 2

ninjnk

n(nj + nk)2↓

− 2
ninjnk

(nj + nk + 1)3↓
(Hn −Hni−1)

]}
. (23)

Note that if P is reversible when restricted to the observed alleles On then (23) simplifies to
the expression given in Corollary 1.

4.7. Proof of Theorem 3 (|On| = 4)

Using Corollary 1, we first note the following alternate expression for R(n) when |On| = 3
and P is reversible restricted to the observed alleles:

R(n) =
∑

i,j,k distinct

ni

n
πi
PijPik

2
. (24)

Suppose that |On| = 4, and assume that P is reversible restricted to the observed alleles On.
Then, using Proposition 1, we obtain

R(n) =
∑
l,h
=l

Phl
∑

{0≺m�n : ml=1}

(
n
m

)(
n
m

) mhR(m − el + eh)

m(m− 1)

=
∑
l,h
=l

Phl
∑

{0≺m�n : ml=1}

(
n
m

)(
n
m

) mh

m(m− 1)

∑
i,j,k distinct
i,j,k 
=l

mi + δi,h

m
πi
PijPik

2

=
∑

i,j,k,l distinct

1

2
πiPijPikPil

∑
{0≺m�n : ml=1}

(
n
m

)(
n
m

) mi(mi + 1)

m2(m− 1)

+
∑

i,j,k,l distinct

πiPijPikPjl
∑

{0≺m�n : ml=1}

(
n
m

)(
n
m

) mimj

m2(m− 1)
, (25)

where the second equality follows from using (24) since P is reversible when restricted to
the alleles {i, j, k} ⊂ On. Similar to the proof in Section 4.6, if we define the quantities
ζ(n, i, j, k, l) and δ(n, i, j, k, l) as

ζ(n, i, j, k, l) =
n∑

m=4

1

m2(m− 1)

∑
{0≺m�n : ml=1, |m|=m}

(
n
m

)(
n
m

)mi(mi + 1)

and

δ(n, i, j, k, l) =
n∑

m=4

1

m2(m− 1)

∑
{0≺m�n : ml=1, |m|=m}

(
n
m

)(
n
m

)mimj ,
then, using (4) and (25), we obtain the following expression for Q(n) = �(n)R(n):

Q(n) = �(n)
∑

i,j,k,l distinct

[
πiPijPikPil

ζ(n, i, j, k, l)

2
+ πiPijPikPjlδ(n, i, j, k, l)

]
. (26)
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By a very similar calculation to that in Section 4.6, using Facts 1 and 3, and identities (31) and
(32) in Fact 5 ofAppendixA, we obtain the following closed-form expressions for ζ(n, i, j, k, l)
and δ(n, i, j, k, l):

ζ(n, i, j, k, l)

= nl

n

{
ni + nj + nk

nl

(ni)2↓
(ni + nj + nk)2↓

+ ni

nj + nk + nl

+ 2ni(nj + nk)

(ni + nj + nk)2↓

(
n

ni + nj + nk + 1
(Hn −Hnl−1)− 1

)

−
[
ni + nj

nk + nl

(ni)2↓
(ni + nj )2↓

+ 2ninj
(ni + nj )2↓

(
n

ni + nj + 1
(Hn −Hnk+nl−1)− 1

)]

−
[
ni + nk

nj + nl

(ni)2↓
(ni + nk)2↓

+ 2nink
(ni + nk)2↓

(
n

ni + nk + 1
(Hn −Hnj+nl−1)− 1

)]}
and

δ(n, i, j, k, l)

= nl

n

{
ni + nj + nk

nl

ninj

(ni + nj + nk)2↓

− 2ninj
(ni + nj + nk)2↓

(
n

ni + nj + nk + 1
(Hn −Hnl−1)− 1

)

−
[
ni + nj

nk + nl

ninj

(ni + nj )2↓
− 2ninj
(ni + nj )2↓

(
n

ni + nj + 1
(Hn −Hnk+nl−1)− 1

)]}
.

Simplifying the expression for δ(n, i, j, k, l), we obtain the expression stated in Theorem 3.
Observing that ζ(n, i, j, k, l) is symmetric in j and k, we see that, for all i, j, k, and l distinct
in On,

ζ(n, i, j, k, l)+ ζ(n, i, k, j, l)

2
= γ (n, i, j, k, l)+ γ (n, i, k, j, l),

where γ (n, i, j, k, l) is given by

γ (n, i, j, k, l) = ni

n

{[
ni − 1

2(ni + nj + nk − 1)
− 2njnl
(ni + nj + nk)2↓

]
+ nl

2(nj + nk + nl)

−
[

nl(ni − 1)

(nk + nl)(ni + nj − 1)
− 2njnl
(ni + nj )2↓

]}

+ 2ninjnl
(ni + nj + nk + 1)3↓

(Hn −Hnl−1)− 2ninjnl
(ni + nj + 1)3↓

(Hn −Hnk+nl−1).

Using the fact that πiPijPikPil is also symmetric in j and k, we can then rewrite (26) as

Q(n) = �(n)
∑

i,j,k,l distinct

[πiPijPikPilγ (n, i, j, k, l)+ πiPijPikPjlδ(n, i, j, k, l)].

5. Empirical study of accuracy

Here, we investigate the accuracy of approximating the sampling probability q(n) by using
only the leading-order term θ |On|−1Q(n). In this study, we solve recursion (2) numerically to
obtain the true sampling probability q(n) for moderate sample sizes.
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For a given sample n, define the approximate sampling probability, qapprox(n), by

qapprox(n) = θ |On|−1Q(n).

We can then define the relative error, Err(n), of the approximation qapprox(n) from the true
sampling probability q(n) as

Err(n) = |q(n)− qapprox(n)|
q(n)

.

For a given sample size n, another natural measure of the approximation quality is the expected
relative error under the distribution arising from the coalescent on samples of size n. Since
q(n) is the probability of a particular ordered sample consistent with n, the probability p(n) of
the unordered sample n, when the sampling order is ignored, is given by

p(n) =
(

n

n1, . . . , nK

)
q(n).

We can then define the expected relative error for a sample size n by AvgErr(n), given by

AvgErr(n) =
∑

{n : |n|=n}
p(n)Err(n) =

∑
{n : |n|=n}

(
n

n1, . . . , nK

)
|q(n)− qapprox(n)|.

We also define the worst-case relative error, WorstErr(n), for a given sample size n as the worse
relative error among all samples of size n. Specifically,

WorstErr(n) = max{n : |n|=n} Err(n) = max{n : |n|=n}
|q(n)− qapprox(n)|

q(n)
.

To study the accuracy of approximating q(n) by qapprox(n), we examine the behaviors
of AvgErr(n) and WorstErr(n) for a transition matrix estimated from real biological data.
Specifically, we use the reversible phylogenetic mutation rate matrix estimated in [21, Table 1,
Matrix (1)] for the ψη-globin pseudogenes of six primate species. Since their estimated
matrix is a matrix of nucleotide substitution rates used for phylogenetic analysis, we rescale
it by the minimum amount that can make it a valid Markov transition matrix. This rescaled
matrix, denoted by P̂ , is given below to three digits of precision, and is used in our numerical
experiments with different values of the mutation parameter θ :

P̂ =

⎛
⎜⎜⎝

0.433 0.398 0.074 0.095
0.665 0.000 0.164 0.171
0.074 0.098 0.394 0.434
0.147 0.159 0.674 0.020

⎞
⎟⎟⎠ , (27)

in the (T , C,A,G) basis. The stationary distribution corresponding to this transition matrix is
π̂ = (0.308, 0.185, 0.308, 0.199) to three digits of precision.

For many neutral regions of the human genome, typical mutation rates per base are in the
range 10−3 ≤ θ ≤ 10−2 [16], and we consider θ ∈ {10−3, 5×10−3, 10−2} in our study. For the
transition matrix in (27), the expected relative error AvgErr(n) and the worst-case relative error
WorstErr(n) are plotted in Figure 1(a) and (b), respectively, as functions of the sample size n.
As can be seen from the plots, both the expected relative error and the worst-case relative error
grow very slowly with the sample size n. Furthermore, the ratio of WorstErr(n) to AvgErr(n) is
a small number between 1.3 and 2.1 for all n ≤ 360, and is decreasing in n. Hence, it appears
that the approximation quality of qapprox(n) is uniformly good over all samples n for any given
size n.
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Figure 1: Error plots as a function of the sample size n for the transition matrix P̂ in (27) and mutation
rate θ ∈ {10−3, 5 × 10−3, 10−2}. (a) The expected relative error, AvgErr(n). (b) The worst-case relative

error, WorstErr(n).

Appendix A

Here, we provide some general combinatorial identities which are used several times for
proving the main results in this paper.

Fact 1. For any positive integers x, y, a, and b where b ≤ a and x ≤ y,
y∑

m=x

(
b
m

)(
a
m

) =
(
a+1−x
a+1−b

) − (
a−y
a+1−b

)
(
a
b

) . (28)

Proof. Starting from the left-hand side of (28), we have
y∑

m=x

(
b
m

)(
a
m

) = b! (a − b)!
a!

y∑
m=x

(
a −m

a − b

)
=

(
a+1−x
a+1−b

) − (
a−y
a+1−b

)
(
a
b

) ,

where the last equality follows from the standard combinatorial identity that, for all positive
integers a, n, and k,

∑n
i=a

(
n−i
k

) = (
n−a+1
k+1

)
.

Fact 2. For positive integers a and b,
a∑

m=1

1

m

(
a −m

b

)
=

(
a

b

)
(Ha −Hb).

Fact 2 can be verified by induction [4] or by the method of Wilf–Zeilberger pairs [5].

Fact 3. For positive integers a and b where b ≤ a,

b∑
m=1

(
b
m

)(
a
m

) 1

m+ 1
= a + 1

b + 1
(Ha+1 −Ha−b)− 1. (29)

Proof. Starting from the left-hand side of (29), we have
b∑

m=1

(
b
m

)(
a
m

) 1

m+ 1
= b! (a − b)!

a!
b∑

m=1

(
a −m

a − b

)
1

m+ 1

= 1(
a
b

) b+1∑
m=2

(
a + 1 −m

a − b

)
1

m
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= 1(
a
b

)[b+1∑
m=1

(
a + 1 −m

a − b

)
1

m
−

(
a

b

)]

= 1(
a
b

)[(
a + 1

b + 1

)
(Ha+1 −Ha−b)−

(
a

b

)]

= a + 1

b + 1
(Ha+1 −Ha−b)− 1,

where the fourth equality follows from using Fact 2.

We also list some facts about the moments of a hypergeometric distribution which are
appealed to several times in the paper.

Fact 4. If a multivariate hypergeometric distribution is parameterized by n =(n1, n2, . . . , nL),
where n = |n|, and a sample of sizem, m = (m1,m2, . . . , mL), is drawn from it, then, for any
t = (t1, t2, . . . , tL), where ti ≥ 0 for all i, t = |t |, and t ≤ n,

E

[ L∏
i=1

(mi)ti↓
]

=
∑

{0�m�n : |m|=m}

(
n
m

)(
n
m

) L∏
i=1

(mi)ti↓ =
∏L
i=1(ni)ti↓
(n)t↓

(m)t↓. (30)

Proof. Starting from the middle term in (30), we obtain

∑
{0�m�n : |m|=m}

(
n
m

)(
n
m

) L∏
i=1

(mi)ti↓ =
∑

{0�m�n : |m|=m}

∏L
i=1(ni)ti↓
(n)t↓

(m)t↓

(
n−t
m−t

)
(
n−t
m−t

)
=

∏L
i=1(ni)ti↓
(n)t↓

(m)t↓
∑

{0�m�n−t : |m|=m−t}

(
n−t
m

)
(
n−t
m

)
=

∏L
i=1(ni)ti↓
(n)t↓

(m)t↓,

where the last equality follows because the term being summed is the probability mass function
of a multivariate hypergeometric distribution parameterized by n − t , and the summation is
over the entire domain of the distribution, and hence is 1.

In the following fact, we compute some second moments of the hypergeometric distribution
parameterized by n when restricted to those samples m which are nonzero at all types.

Fact 5. If n = (n1, n2, . . . , nL), where n = |n|, and 1 ≤ j 
= k ≤ L, then we have the
following identities:

∑
{0≺m�n : |m|=m}

(
n
m

)(
n
m

)mj(mj + 1) =
∑

{T⊆[L] : j /∈T }
(−1)|T |

[
(nj )2↓(m)2↓
(n− nT )2↓

+ 2njm

n− nT

](
n−nT
m

)(
n
m

) ,

(31)∑
{0≺m�n : |m|=m}

(
n
m

)(
n
m

)mjmk =
∑

{T⊆[L] : j /∈T }
(−1)|T |mjmk(m)2↓

(n− nT )2↓

(
n−nT
m

)(
n
m

) . (32)
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Proof. Applying the inclusion–exclusion principle and using Fact 4, the identity in (31) can
be obtained as

∑
{0≺m�n : |m|=m}

(
n
m

)(
n
m

)mj(mj + 1)

=
∑

{T⊆[L] : j /∈T }
(−1)|T |

[ ∑
{0�m�n−nT : |m|=m}

(
n−nT

m

)
(
n−nT
m

) ((mj )2↓ + 2mj)

](
n−nT
m

)(
n
m

)
=

∑
{T⊆[L] : j /∈T }

(−1)|T |
[
(nj )2↓(m)2↓
(n− nT )2↓

+ 2njm

n− nT

](
n−nT
m

)(
n
m

) .

Similarly, for (32), we have

∑
{0≺m�n : |m|=m}

(
n
m

)(
n
m

)mjmk =
∑

{T⊆[L] : j,k /∈T }
(−1)|T |

[ ∑
{0�m�n−nT : |m|=m}

(
n−nT

m

)
(
n−nT
m

)mjmk]
(
n−nT
m

)(
n
m

)
=

∑
{T⊆[L] : j,k /∈T }

(−1)|T |mjmk(m)2↓
(n− nT )2↓

(
n−nT
m

)(
n
m

) .

Acknowledgements

We thank Paul Jenkins for useful discussions. This research was supported in part by NIH
grant R01-GM094402, an Alfred P. Sloan Research Fellowship, and a Packard Fellowship for
Science and Engineering.

References

[1] Arratia, A., Barbour, A. D. and Tavaré, S. (2003). Logarithmic Combinatorial Structures: A Probabilistic
Approach. European Mathematical Society, Zürich.

[2] Bhaskar, A. and Song, Y. S. (2012). Closed-form asymptotic sampling distributions under the coalescent with
recombination for an arbitrary number of loci. Adv. Appl. Prob. 44, 391–407.

[3] Ewens, W. J. (1972). The sampling theory of selectively neutral alleles. Theoret. Pop. Biol. 3, 87–112.
[4] Fu, Y.-X. (1995). Statistical properties of segregating sites. Theoret. Pop. Biol. 48, 172–197.
[5] Griffiths, R. C. (2003). The frequency spectrum of a mutation, and its age, in a general diffusion model.

Theoret. Pop. Biol. 64, 241–251.
[6] Griffiths, R. C. and Lessard, S. (2005). Ewens’sampling formula and related formulae: combinatorial proofs,

extensions to variable population size and applications to ages of alleles. Theoret. Pop. Biol. 68, 167–77.
[7] Griffiths, R. C. and Tavaré, S. (1994). Ancestral inference in population genetics. Statist. Sci. 9, 307–319.
[8] Griffiths, R. C. and Tavaré, S. (1994). Sampling theory for neutral alleles in a varying environment. Phil.

Trans. R. Soc. London B 344, 403–410.
[9] Hoppe, F. M. (1984). Pólya-like urns and the Ewens’ sampling formula. J. Math. Biol. 20, 91–94.

[10] Jenkins, P. A. and Song, Y. S. (2009). Closed-form two-locus sampling distributions: accuracy and universality.
Genetics 183, 1087–1103.

[11] Jenkins, P. A. and Song, Y. S. (2010). An asymptotic sampling formula for the coalescent with recombination.
Ann. Appl. Prob. 20, 1005–1028.

[12] Jenkins, P. A. and Song, Y. S. (2011). The effect of recurrent mutation on the frequency spectrum of a
segregating site and the age of an allele. Theoret. Pop. Biol. 80, 158–173.

[13] Jenkins, P. A. and Song, Y. S. (2012). Padé approximants and exact two-locus sampling distributions. Ann.
Appl. Prob. 22, 576–607.

[14] Kingman, J. F. C. (1982). The coalescent. Stoch. Process. Appl. 13, 235–248.
[15] Kingman, J. F. C. (1982). On the genealogy of large populations. In Essays in Statistical Science (J. Appl. Prob.

Spec. Vol. 19A), eds J. Gani and E. J. Hannan, Applied Probability Trust, Sheffield, pp. 27–43.



428 A. BHASKAR ET AL.

[16] Nachman, M. W. and Crowell, S. L. (2000). Estimate of the mutation rate per nucleotide in humans. Genetics
156, 297–304.

[17] Pitman, J. (1992). The two-parameter generalization of Ewens’ random partition structure. Tech. Rep. 345,
Department of Statistics, University of California, Berkeley.

[18] Pitman, J. (1995). Exchangeable and partially exchangeable random partitions. Prob. Theory Relat. Fields 102,
145–158.

[19] Stephens, M. (2001). Inference under the coalescent. In Handbook of Statistical Genetics, eds D. Balding,
M. Bishop, and C. Cannings, John Wiley, Chichester, pp. 213–238.

[20] Wright, S. (1949). Adaptation and selection. In Genetics, Paleontology, and Evolution, eds G. L. Jepson, G. G.
Simpson, and E. Mayr, Princeton University Press, pp. 365–389.

[21] Yang, Z. (1994). Estimating the pattern of nucleotide substitution. J. Molec. Evol. 39, 105–111.


	1 Introduction
	2 Model and notation
	3 A summary of closed-form results for Q(n) 
	4 Proofs of the main results
	4.1 Description of the urn process
	4.2 An inductive proof of Theorem 4
	4.3 Connection to the coalescent
	4.4 A martingale property
	4.5 A recursion for R(n)
	4.6 Proof of Theorem 2 (|On|=3)
	4.7 Proof of Theorem 3 (|On|=4)

	5 Empirical study of accuracy
	A 
	Acknowledgements
	References

