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Text S1

Two-locus recursion relation

Suppose we sample n haplotypes, observing their alleles at each of two loci and obtaining configuration
n = (a, b, c). Here c = (cij) is a matrix of the counts of haplotypes for which both alleles were observed; cij
is the number of haplotypes with allele i at the first locus and allele j at the second locus. We also allow
for the possibility that a haplotype had data missing at one locus: a = (ai)i=1...,K is the vector of counts of
haplotypes with allele i observed at the first locus and missing data at the second locus, and b = (bj)j=1,...,L

is the vector of counts of haplotypes with allele j observed at the second locus and missing data at the first
locus. Further, let:

a =
K
∑

i=1

ai, ci· =
L
∑

j=1

cij , c =
K
∑

i=1

L
∑

j=1

cij ,

b =

L
∑

j=1

bj, c·j =

K
∑

i=1

cij , n = a+ b+ c.

The probability that, when we sample n haplotypes in some fixed order, we obtain a set consistent with
configuration n, is denoted by q(n; θA, θB, ρ). This probability is a function of θA, θB , and ρ: the mutation
rates at the two loci, and the recombination rate between them. The respective mutation transition matrices
at the two loci, which we denote P

A and P
B, are fixed. A system of equations for q(n; θA, θB, ρ) is given

in [1]. We denote by q(n, s1, s2; θA, θB, ρ) the joint probability of obtaining n with the events that there
were precisely s1 mutations in the history of the sample at the first locus and s2 mutations in the history of
the sample at the second locus. The corresponding system of equations for q(n, s1, s2; θA, θB, ρ) is:

[n(n− 1) + θA(a+ c) + θB(b + c) + ρc]q((a, b, c), s1, s2; θA, θB, ρ) =

K
∑

i=1

ai(ai − 1 + 2ci·)q((a − ei, b, c), s1, s2; θA, θB, ρ) +

L
∑

j=1

bj(bj − 1 + 2c·j)q((a, b− ej , c), s1, s2; θA, θB, ρ)

+

K
∑

i=1

L
∑

j=1

[cij(cij − 1)q((a, b, c− eij), s1, s2; θA, θB, ρ) + 2aibjq((a− ei, b− ej , c+ eij), s1, s2; θA, θB, ρ)]

+ θA

K
∑

i=1





L
∑

j=1

cij

K
∑

t=1

PA

tiq((a, b, c− eij + etj), s1 − 1, s2; θA, θB, ρ)
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+ ai

K
∑

t=1

PA

tiq((a − ei + et, b, c), s1 − 1, s2; θA, θB, ρ)

]

+ θB

L
∑

j=1

[

K
∑

i=1

cij

L
∑

t=1

PB

tjq((a, b, c− eij + eit), s1, s2 − 1; θA, θB, ρ)

+ bj

L
∑

t=1

PB

tjq((a, b− ej + et, c), s1, s2 − 1; θA, θB, ρ)





+ ρ

K
∑

i=1

L
∑

j=1

cijq((a + ei, b+ ej , c− eij), s1, s2; θA, θB, ρ), (1)

where eij is a unit matrix whose (i, j)th entry is one and the rest are zero. As before, we suppose that we
know the identity of the ancestral alllele at each locus, say λA and λB at locus A and B, respectively. Then
we replace the relevant instances of (1) with the following:

q((0, b, eij), s1, s2; θA, θB, ρ) =

{

q((0, b+ ej ,0), 0, s2; θA, θB, ρ) if i = λA and s1 = 0,

0 otherwise,

q((a,0, eij), s1, s2; θA, θB, ρ) =

{

q((a+ ei,0,0), s1, 0; θA, θB, ρ) if j = λB and s2 = 0,

0 otherwise,

q((ei,0,0), s1, s2; θA, θB, ρ) =

{

1 if i = λA and s1 = s2 = 0,

0 otherwise,

q((0, ej ,0), s1, s2; θA, θB, ρ) =

{

1 if j = λB and s1 = s2 = 0,

0 otherwise.
(2)

Padé summation

Modifications to the approach described in [2] are made, following from the boundary conditions given above.
These can be converted into modifications of entries of the dynamic programming tables given in [2]. For
example, using (2) we have that

q((a,0, eiλB
), 1, 0; θA, θB, ρ) = q((a + ei,0,0), 1, 0; θA, θB, ρ)

= q(a+ ei, 1; θA) +
0

ρ
+

0

ρ2
+ . . . ,

where q(a + ei, 1; θA) is the one-locus solution given by equation (3) in the main text. Notice that this
expansion is in fact independent of ρ, from which it follows (by comparison with eq. (3.7) of [2]) that a
number of entries in the dynamic programming tables are modified. For example, the second row in the
dynamic programming table for the configuration (a,0, eiλB

) is set to zero. Other boundary conditions may
be interpreted in a similar fashion.

Ancestral allele estimation

Suppose we have one genomic sequence of D. simulans and n sequences of D. melanogaster. Let S represent
the sequence of D. simulans and M (k) represent the sequence of the kth D. melanogaster, where Sl denotes
the lth base of the sequence, and Sl̂ represents the sequence with the exclusion of the lth base. Given

(S,M (k)), let T
(k)
l be the time to the most recent common ancestor (tmrca) at locus l; f

(k)
l (t | Ml̂, Sl̂) be

the density of the tmrca conditioned on both their sequences but excluding the lth locus; and A
(k)
l be the

ancestral allele at the lth locus, i.e., the allele of the most recent common ancestor (mrca).
To compute the distribution on the ancestral allele at the lth locus conditioned on M (k) and S, we use
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Bayes’ theorem to obtain

P(A
(k)
l = i | M (k), S)

=

∫

∞

0
p(A

(k)
l = i,M (k), S, T

(k)
l = t)dt

P(M (k), S)

=

∫

∞

0
P(M

(k)
l , S

(k)
l | A

(k)
l = i, T

(k)
l )p(A

(k)
l = i, T

(k)
l = t)dt

P(M (k), S)

=

∫

∞

0
P(M

(k)
l | A

(k)
l = i, T

(k)
l = t)P(Sl | A

(k)
l = i, T

(k)
l = t)P(A

(k)
l = i)f

(k)
l (t | M

(k)

l̂
, Sl̂)dt

∑

j

∫

∞

0
P(M

(k)
l | A

(k)
l = j, T

(k)
l = t)P(Sl | A

(k)
l = j, T

(k)
l = t)P(A

(k)
l = j)f

(k)
l (t | M

(k)

l̂
, Sl̂)dt

. (3)

In equation (3), the prior on the ancestral allele at locus l, P(A
(k)
l = i), is given by the stationary

distribution of the allele frequencies from the mutation matrix P . (In the above, p denotes a joint probability

of discrete events together with the density for T
(k)
l .) The density on the tmrca, f

(k)
l (t | M

(k)

l̂
, Sl̂), is

estimated using Li & Durbin’s psmc [3]. In practice, we use psmc to compute f
(k)
l (t | M (k), S) and assume

f
(k)
l (t | M (k), S) ≈ f

(k)
l (t | M

(k)

l̂
, Sl̂).

The remaining two probabilities, P(M
(k)
l | A

(k)
l = i, T

(k)
l = t) and P(Sl | A

(k)
l = i, T

(k)
l = t), are computed

as follows. For the computation of P(M
(k)
l | A

(k)
l = i, T

(k)
l = t), let P = (Pij) denote the mutation matrix,

and let r
(k)
l specify the number of mutations that have occurred at the lth locus of the kth D. melanogaster

sequence during time T
(k)
l . Then we have

P(M
(k)
l = j | A

(k)
l = i, T

(k)
l = t) =

∞
∑

s=0

P(r
(k)
l = s | T

(k)
l = t)(P s)ij

=

∞
∑

s=0

(

θt

2

)s
e−θt/2

s!
(P s)ij

=

∞
∑

s=0

[(

θt

2
P

)s]

ij

e−θt/2

s!

=
[

e
θt

2
(P−I)

]

ij
,

where I is the identity matrix with the same dimensions as P . The computation for P (Sl | A
(k)
l = j, T

(k)
l = t)

is analogous.

After computing P(A
(k)
l = i | M (k), S) for every k and given l, we heuristically aggregate these pairwise

probabilities to estimate P(A
(k)
l = i | M (1), . . . ,M (n), S) as follows. Let t̄

(k)
l be the posterior mean of

f
(k)
l (t | M (k), S), i.e.:

t̄
(k)
l =

∫

∞

0

tf
(k)
l (t | M (k), S)dt,

and define τl = maxk t̄
(k)
l . We approximate P(A

(k)
l = i | M (1), . . . ,M (n), S) as

P(A
(k)
l = i | M (1), . . . ,M (n), S) ≈

∑n
k=1 P(A

(k)
l = i | M (k), S)f

(k)
l (τl | M

(k)

l̂
, Sl̂)

∑

j

∑n
k=1 P(A

(k)
l = j | M (k), S)f

(k)
l (τl | M

(k)

l̂
, Sl̂)

,

which is a weighted average of P(A
(k)
l = i | M (k), S) over k, weighted by the density of the tmrca evaluated

at τl for each k. This averaging ought to mitigate effects such as genotyping errors and incomplete lineage
sorting in individual D. melanogaster genomes.
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Supporting Figures
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Figure S1: Comparison of the cumulative recombination maps of LDhelmet and LDhat for 25
datasets simulated under neutrality In each plot, different colors represent the cumulative recombination
maps for different datasets. The datasets in these plots correspond to the same datasets used in Figure 1. The
thick dashed line indicates the true cumulative recombination map for the given recombination landscape.
The left and right columns show the estimated recombination maps of LDhelmet and LDhat, respectively,
using the same block penalty of 50. (First Row) Each dataset was simulated with a constant recombination
rate of 0.01 per bp. (Second Row) Each dataset was simulated with a hotspot of width 2 kb starting at
location 11 kb. The background recombination rate was 0.01 per bp, while the hotspot intensity was 10×
the background rate, i.e., 0.1 per bp. The cumulative maps are shown in their entirety, including potential
edge effects.
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Figure S2: Comparison of the cumulative recombination maps of LDhelmet and LDhat for 25
datasets simulated under strong positive selection. In each plot, different colors represent the results
for different datasets. The datasets in these plots correspond to the same datasets used in Figure 3. The
thick dashed line indicates the true cumulative recombination map for the given recombination landscape.
The left and right columns show the estimated recombination maps of LDhelmet and LDhat, respectively,
using the same block penalty of 50. In each simulation, the selected site was placed at position 5 kb and
the population-scaled selection coefficient was set to 1000. The fixation time of the selected site was 0.01
coalescent units in the past. The same scenarios of recombination patterns as in Figure 1 were considered:
(First Row) with a constant recombination rate of 0.01 per bp, and (Second Row) with a hotspot of width
2 kb starting at location 11.5 kb. The background recombination rate was 0.01 per bp, while the hotspot
intensity was 10× the background rate, i.e., 0.1 per bp. The cumulative maps are shown in their entirety,
including potential edge effects.
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Figure S3: Fisher’s information for two-locus samples of size n = 37 using lookup tables for θ = 0.006 and
under the infinite-sites assumption. The ancestral haplotype is assumed to be known.
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Figure S4: Distribution of recombination rates relative to transcription start sites. Plots for RAL
(solid) and RG (dashed) of the average estimated recombination rate as a function of distance from the
midpoint of the nearest transcription start site (TSS) to the left (negative x-axis) and to the right (positive
x-axis) of every base. A 5-kb averaging window was used to smooth the estimates.
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Figure S5: Local wavelet power spectrum of recombination rate variation in chromosome arm
2R. A power spectrum is shown for RAL and RG. Black contours denote regions of significant power at the
5% level, and the white contour denotes the cone of influence. Color scale is relative to a white-noise process
with the same variance. The lower panels shows estimates of the corresponding genetic maps.
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Figure S6: Local wavelet power spectrum of recombination rate variation in chromosome arm
3L. A power spectrum is shown for RAL and RG. Black contours denote regions of significant power at the
5% level, and the white contour denotes the cone of influence. Color scale is relative to a white-noise process
with the same variance. The lower panels shows estimates of the corresponding genetic maps.
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Figure S7: Local wavelet power spectrum of recombination rate variation in chromosome arm
3R. A power spectrum is shown for RAL and RG. Black contours denote regions of significant power at the
5% level, and the white contour denotes the cone of influence. Color scale is relative to a white-noise process
with the same variance. The lower panels shows estimates of the corresponding genetic maps.
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Figure S8: Local wavelet power spectrum of recombination rate variation in chromosome X. A
power spectrum is shown for RAL and RG. Black contours denote regions of significant power at the 5%
level, and the white contour denotes the cone of influence. Color scale is relative to a white-noise process
with the same variance. The lower panels shows estimates of the corresponding genetic maps.
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Figure S9: Pairwise correlation of detail wavelet coefficients of RAL and RG recombination maps
for chromosome arms 2R, 3L, 3R, and X. Black circles denote Kendall’s rank correlation between pairs
of detail coefficients at each scale. Crosses denote the correlation that would be required for significance at
the 1% level in a two-tailed test; red crosses are those scales at which the correlation is in fact significant.
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Figure S10: Wavelet coherence analysis comparing RAL against RG for chromosome arms 2R,
3L, 3R, X. The cone of influence is shown in white.

Figure S11: Positive control for wavelet coherence analysis. (Left): Coherence plot for two indepen-
dent estimates of the recombination map across chromosome arm 2L using the same (RG) dataset. (Right):
The fraction of chromosome arm 2L with significantly high coherence at the 5% level, at each scale.
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Figure S12: Global wavelet power spectrum and pairwise correlations of detail wavelet coeffi-
cients of RAL and RG data for chromosome arms 2R, 3L, 3R, and X. Diagonal plots show the
global wavelet power spectrum of each feature of the RAL (blue) and RG (red) data. Off-diagonal plots
show Kendall’s rank correlation between pairs of detail coefficients at each scale, with respect to the wavelet
decomposition of the two indicated features. Crosses denote the correlation that would be required for sig-
nificance at the 1% level in a two-tailed test; red crosses are those scales at which the correlation is in fact
significant. The lower left triangle and upper right triangle of plots correspond to RAL and RG, respectively.
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Figure S13: Linear model for wavelet transform of recombination map of chromosome arm
2R. (A) In a linear model for the detail coefficients of the wavelet transform of the recombination map of
chromosome arm 2R, covariates are the detail coefficients of wavelet transforms of data quality, gene content,
GC content, divergence, and diversity. Shown is the –log10 p-value of the regression coefficient at the given
scale, as determined by a t-test. Colored boxes indicate significant relationships, with red positive and blue
negative. Also shown in the adjusted r2. (B) As above, but with the recombination map of the other
population as an additional covariate.
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Figure S14: Linear model for wavelet transform of recombination map of chromosome arm
3L. (A) In a linear model for the detail coefficients of the wavelet transform of the recombination map of
chromosome arm 3L, covariates are the detail coefficients of wavelet transforms of data quality, gene content,
GC content, divergence, and diversity. Shown is the –log10 p-value of the regression coefficient at the given
scale, as determined by a t-test. Colored boxes indicate significant relationships, with red positive and blue
negative. Also shown in the adjusted r2. (B) As above, but with the recombination map of the other
population as an additional covariate.
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Figure S15: Linear model for wavelet transform of recombination map of chromosome arm
3R. (A) In a linear model for the detail coefficients of the wavelet transform of the recombination map of
chromosome arm 3R, covariates are the detail coefficients of wavelet transforms of data quality, gene content,
GC content, divergence, and diversity. Shown is the –log10 p-value of the regression coefficient at the given
scale, as determined by a t-test. Colored boxes indicate significant relationships, with red positive and blue
negative. Also shown in the adjusted r2. (B) As above, but with the recombination map of the other
population as an additional covariate.
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Figure S16: Linear model for wavelet transform of recombination map of chromosome X. (A) In
a linear model for the detail coefficients of the wavelet transform of the recombination map of chromosome
arm X, covariates are the detail coefficients of wavelet transforms of data quality, gene content, GC content,
divergence, and diversity. Shown is the –log10 p-value of the regression coefficient at the given scale, as
determined by a t-test. Colored boxes indicate significant relationships, with red positive and blue negative.
Also shown in the adjusted r2. (B) As above, but with the recombination map of the other population as
an additional covariate.
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Figure S17: Plot of the average ℓ1-distance between the true and estimated recombination maps.
Each plot shows the results averaged over 100 simulated datasets per block penalty for a given recombination
landscape. In each simulation, we considered a 25 kb region with the background recombination rate of
ρ = 10/kb. “no hotspot”: The true recombination map is constant. “hotspot 10×”: In the middle of the
25 kb region, the true recombination map has a hotspot of width 2 kb and intensity 10× the background
rate. “hotspot 50×”: In the middle of the 25 kb region, the true recombination map has a hotspot of width
2 kb and intensity 50× the background rate.
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Supporting Tables

Table S1: Summary of comparison between LDhelmet and LDhat in the neutral case. Based on 100
simulated datasets for a 25 kb region. “No Hotspot” corresponds to the case of a constant recombination
map, whereas “Hotspot 10×” corresponds to the case with a 2 kb wide hotspot situated at the center of the
region. The first row shows the regional average of ρ obtained by LDhelmet and LDhat, averaged over the
100 datasets. The second row shows the total rate in the hotspot region, averaged over the datasets. The
third row shows the percentage of datasets for which the estimate had at least one false peak with height
≥ 5 times the background rate. The fourth row shows the percentage of datasets for which the estimate
had at least one false peak with height ≥ 10 times the background rate. The fifth row shows the percentage
absolute error of the estimated ρ average outside the hotspot region from the true ρ average outside the
hotspot region. The true ρ average outside the hotspot region is ρ = 0.01/bp. To account for edge effects,
2.5 kb from each end of the map were removed prior to computing the statistics.

No Hotspot Hotspot 10×
Measure of Accuracy True Value LDhelmet LDhat True Value LDhelmet LDhat

ρ average (per bp) 0.01 0.0097 0.0109 0.0172 0.0184 0.0203
Total hotspot area 20.0 19.0 20.3 200.0 195.2 210.0
% with false peak ≥ 5× 5% 30% 4% 30%
% with false peak ≥ 10× 2% 21% 4% 21%
% abs. error outside hotspot region 14% 23% 15% 20%

Table S2: SNP densities (per kb) of neutral and single-sweep simulations. The mean, minimum,
maximum and standard deviation of the SNP density for the datasets used in Tables S1 and S3. The
simulations assumed a finite-sites, quadra-allelic mutation model, with mutation matrix PRAL and θ = 0.008,
which is the effective population-scaled mutation rate adjusted for PRAL (see Estimation of mutation transition

matrices).

Neutral Single-Sweep Model
No Hotspot Hotspot 10× No Hotspot Hotspot 10×

Mean 21.82 21.68 18.15 18.38
Min 18.32 17.40 14.84 14.68
Max 26.12 25.72 24.08 22.76
Std dev 1.71 1.38 1.64 0.61
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Table S3: Summary of comparison between LDhelmet and LDhat in the case of single selective
sweep. Based on 100 simulated datasets for a 25 kb region. For each dataset, a selected site was placed at
position 5 kb and the population-scaled selection coefficient was set to 1000. The fixation time of the selected
site was 0.01 coalescent units in the past. The column and the row labels are the same as in Table S1. As
for Table S1, 2.5 kb from each end of the map were removed prior to computing the statistics to account for
edge effects.

No Hotspot Hotspot 10×
Measure of Accuracy True Value LDhelmet LDhat True Value LDhelmet LDhat

ρ average (per bp) 0.01 0.0079 0.0108 0.0172 0.0162 0.0220
Total hotspot area 20.0 14.7 15.4 200.0 169.8 224.6
% with false peak ≥ 5× 10% 42% 8% 34%
% with false peak ≥ 10× 6% 39% 5% 24%
% abs. error outside hotspot region 39% 58% 30% 56%

Table S4: SNP densities (per kb) of recurrent-sweep and demography simulations. The statistics
for each selection or demography scenario are merged over the three recombination landscapes (i.e., no
hotspot, hotspot 10× and hotspot 50×). The simulations use θRAL and PRAL as parameters. The third
column shows the SNP density per kb across the hundred datasets, and the fourth column shows the standard
deviation. For the definitions of the scenario names, refer to Simulation study on the impact of natural selection

and Simulation study on the impact of demographic history of the main text. “Control” refers to a control
dataset with constant population size and no selection.

Simulation Type Model Mean Std dev
Recurrent Sweeps RS1 18.22 1.66

RS2 4.10 1.05
RS3 2.71 1.24

Demography G1 12.86 1.07
G2 15.85 1.24
B1 13.84 2.78
B2 5.53 2.14

Neutral Control 22.51 1.49

Table S5: SNP densities (per kb) of the real Drosophila data.

Chromosome Arm RAL RG
2L 24.54 25.49
2R 22.56 24.21
3L 22.29 25.20
3R 19.77 20.79
X 14.92 28.15
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Table S6: Subsampling of real data. To assess the effect of subsampling individuals, we subsampled a 2
Mb excerpt from chromosome arm 2L for both the RAL and RG datasets. We performed subsampling four
times, and each row is the average of the four subsampled datasets. The column labeled n is the number of
individuals in each subsample. The percentiles are given in the three rightmost columns. The results show
that sample size has a slight positive bias, but does not impact estimates greatly.

Percentile (ρ per kb)
n 2.5% 50% 97.5%

RAL

17 6.1 6.2 6.5
27 7.2 7.3 7.4
37 7.8 7.8 7.9

RG

12 8.1 8.4 9.2
17 9.0 9.0 9.2
22 9.2 9.3 9.4

Table S7: Thinned SNPs on RG dataset. To assess the effect of SNP density on the recombination rate
inference, we thinned the SNPs on chromosome arm 2L and chromosome X of RG to the SNP density of
RAL. The 2.5%, 50% and 97.5% percentiles are shown for estimates. The number of SNPs in the original
dataset and in the thinned dataset are shown in the fourth column. For chromosome arm 2L, the change in
SNP density is negligible. For chromosome X, the difference in SNP density is significant. The results show
that SNP density impacts the estimate, but not to the extent of the difference observed between RAL and
RG on chromosome X.

Percentile (ρ per kb)
Dataset Arm Type # SNPs 2.5% 50% 97.5%

RG

2L Original 586476 33.0 35.9 39.4
Thinned 564673 32.5 35.5 38.9

X Original 631205 110.0 121.4 134.1
Thinned 334647 97.5 106.8 117.4

Table S8: Exclusion of individuals with inversions. To assess the effect of inversions on the recombina-
tion rate estimate, we excluded individuals known to carry the given inversion, and performed inference on
the remaining sample. 0.5 Mb was added to both ends of the region to eliminate possible edge effects.The ρ
average is over the inversion region only. The column labeled Original gives the estimate using the entire
sample. The column labeled Excluded gives the estimate excluding the individuals with the given inversion.
The inversion region length and the number of individuals with the inversion are provided in the rightmost
two columns.

Original Excluded Inversion # with
Dataset Arm Inversion ρ per kb ρ per kb length (Mb) inversion

RAL

2L 2Lt 16.97 16.45 10.9 3
2R 2RNS 17.34 16.66 4.9 2
3R 3RK 11.80 11.39 14.4 1
3R 3RMO 12.51 14.56 14.6 7
3R 3RP 12.49 11.35 8.3 1

RG

2L 2Lt 54.44 50.80 10.9 2
2R 2RNS 53.93 50.81 4.9 1
3R 3RP 22.44 17.24 8.3 4
X 1Be 106.26 103.21 1.8 3
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Table S9: Running times (in seconds) for solving recursions and computing Padé coefficients.
The second column is the time to solve the two-locus recursion described in Text S1 to compute the likelihood
of a single value of ρ for all sample configurations of size n. The third column is the time to compute 11 Padé
coefficients for all sample configurations of size n. Recall that the recursion must be solved afresh for every
value of ρ in the lookup table. On the other hand, the Padé coefficients are used to construct a rational
function of ρ that approximates the likelihood; once the Padé coefficients are determined, evaluating the
likelihood is instantaneous. A single 2.5 Ghz core was used in this benchmarking to provide representative
estimates of the running time. However, note that both the recursion and Padé coefficient computations are
highly parallelizable, which we exploit in the implementation of LDhelmet. Also note that the presence of
missing data does not increase the running time for either computation.

Sample size n Two-locus recursion (seconds) Padé coefficients (seconds)
10 0.1 5
20 11 429
30 189 5271
40 1523 26405
50 7755 75704
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