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ABSTRACT

We analyzed a three-locus model of genetic hitchhiking with one locus experiencing pos-

itive directional selection and two partially linked neutral loci. Following the original hitch-

hiking approach by Maynard Smith and Haigh, our analysis is purely deterministic. In the

first half of the selected phase after a favored mutation has entered the population, hitchhik-

ing may lead to a strong increase of linkage disequilibrium (LD) between the two neutral sites

if both are less than 0.1s away from the selected site (where s is the selection coefficient). In

the second half of the selected phase, the main effect of hitchhiking is to destroy LD. This

occurs very quickly (before the end of the selected phase) when the selected site is between

both neutral loci. This pattern cannot be attributed to the well-known variation-reducing

effect of hitchhiking but is a consequence of secondary hitchhiking effects on the recombi-

nants created in the selected phase. When the selected site is outside the neutral loci (which

are, say, less than 0.1s apart), however, a fast decay of LD is only observed if the selected site

is in the immediate neighborhood of one of the neutral sites (i.e., if the recombination rate

r between the selected site and one of the neutral sites satisfies r � 0.1s). If the selected

site is far away from the neutral sites (say, r > 0.3s), the decay rate of LD approaches that

of neutrality. Averaging over a uniform distribution of initial gamete frequencies shows that

the expected LD at the end of the hitchhiking phase is driven toward zero, while the variance

is increased when the selected site is well outside the two neutral sites. When the direction

of LD is polarized with respect to the more common allele at each neutral site, hitchhiking

creates more positive than negative linkage disequilibrium. Thus, hitchhiking may have a

distinctively patterned LD-reducing effect, in particular near the target of selection.
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Genetic drift is recognized as a fundamental stochastic force shaping the polymorphism

within populations and divergence between species of both neutral and selected variants

at a locus (Fisher 1930; Wright 1931; Kimura 1983). Remarkably similar patterns as

those caused by genetic drift are predicted by theoretical models incorporating stochastically

varying selection (Gillespie 1994). In 1974 Maynard Smith and Haigh analyzed a simple

and obvious extension of the genetic drift models, incorporating the stochastic coupling

due to linkage with another locus undergoing strong directional selection. Addressing the

apparent uniformity of allozyme polymorphism across species, Maynard Smith and Haigh

(1974) focused on the “hitchhiking effect” on allelic frequencies and heterozygosity.

Since this seminal work the hitchhiking effect associated with positive directional selection

has been extended to address observations in the emerging field of molecular population

genetics (Aguadé et al. 1989; Stephan and Langley 1989; Begun and Aquadro 1992).

These studies revealed low levels of DNA sequence polymorphism in Drosophila in genomic

regions of low crossing-over, and led to theoretical analyses of the hitchhiking effect on

nucleotide diversity (Kaplan et al. 1989) and on the frequency spectrum of polymorphisms

(Braverman et al. 1995). Whether formulated in terms of gamete frequencies or in the

coalescent framework, the genetic models dealt with a pair of loci: a selected and a linked

neutral locus with a defined rate of recombination between them. Independent of whether

single or recurrent hitchhiking events were analyzed (as a stochastic process or a deterministic

approximation), the conclusion has consistently been that hitchhiking should have profound

effects on expected heterozygosity and allele frequencies at the neutral locus, if selection is

strong and linkage is tight.

In 1977 Thomson considered the impact of hitchhiking on linkage disequilibrium (LD).

Most of her analysis focused on the association between the selected alleles and those at

a single neutral locus. Thomson also considered the impact of hitchhiking (of a heterotic

polymorphism) on the LD between alleles at two linked neutral loci. Based on numerical

examples she concluded that hitchhiking creates LD between neutral loci within the same

genomic domain in which it affects levels of heterozygosity. The impact of simple directional

selection of rare variants rapidly going to fixation was not considered by Thomson (1977).

Except for this initial study and a few rather targeted applications (Robinson et al. 1991;

Grote et al. 1998) no attempts have been made to extend this simple two-locus hitchhiking

model of Maynard Smith and Haigh (1974) to multiple loci. This is curious, as the

hitchhiking effect has played a major role in molecular population genetics for more than 15

years.
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Based on the analyses of Thomson and her colleagues, it has been believed that hitch-

hiking not only affects polymorphisms at individual sites (or loci), but also the association

between polymorphisms. Using a three-locus model with one selected and two neutral loci,

she showed that hitchhiking that has a strong effect on heterozygosity can also generate

strong LD between the neutral loci. Without paying close attention to Thomson’s writing,

the important role of hitchhiking in generating LD has been reiterated in textbooks and

publications by many authors. It was not until recently that a few authors reported quite

the opposite results (Gillespie 1997; Kim and Stephan 2002; Kim and Nielsen 2004).

Analyzing “shift” models that are similar to the hitchhiking model described above, Gille-

spie (1997) concluded that “linked selection can reduce variation without building up high

levels of linkage disequilibrium, contrary to our intuition”. These latter studies focused on

average effects observable in simulated data. In small-sample coalescent simulations, Kim

and Nielsen (2004) found increased LD between alleles at two neutral loci on the same

side of the selected locus at the time of fixation, and reduced LD across the site of selec-

tion. Furthermore, they provide heuristic arguments to explain this pattern. These different

and somewhat contradictory views of the relationship between genetic hitchhiking and LD

motivated us to pursue an analytic investigation of the question. We followed the deter-

ministic approach of Maynard Smith and Haigh (1974), extending their model to three

loci as did Thomson (1977). To analyze this model, we used the framework of Barton

and Turelli (1991), which provides a natural setting for the investigation of the direc-

tional hitchhiking, yielding transparent mathematical expressions that illuminate the rather

surprising dynamics of LD under the hitchhiking effect.

THE THREE-LOCUS HITCHHIKING MODEL

We consider a three-locus model with two neutral loci and one selected locus. For each

locus, we assume that there are only two allele types, denoted by 0 and 1. The selected

locus may be between the two neutral ones or on either side of them (see Figure 1). We

denote by L and R the left and right neutral loci, respectively, and by S the selected locus.

The corresponding recombination fractions between loci are rLR, etc. We assume positive

directional selection according to the following fitness scheme:

Genotype at the selected locus 11 10 00

Relative fitness 1 + s 1 + hs 1

where s is the selection coefficient of the selected allele (type 1) and h the dominance coef-

ficient. Note that we follow here the notation of Maynard Smith and Haigh (1974), not
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Figure 1: Three possible configurations. The selected locus is denoted by S, whereas the

left and the right neutral loci are denoted by L and R, respectively. The recombination

rate rLR between L and R is given by adding or subtracting rLS and rRS, depending on the

configuration.

the definition of Kaplan et al. (1989). Effective population size Ne is assumed to be very

large (Nes � 1), such that a deterministic analysis of the model is appropriate.

The system of full recursions: To derive the recursions for the marginal (type 1)

allele frequencies pL, pR, and pS at the three loci and the LDs (central moments) of the

second (CLR, CLS, CRS) and third (CLRS) orders measured with respect to type 1 alleles, we

follow the approach of Barton and Turelli (1991). In that approach, coefficients which

appear in the recursions are recombination rates and generalized selection coefficients, the

latter denoted by ãX,Y and ãX,∅, where X and Y are non-empty subsets of loci. (Generalized

selection coefficients are defined as coefficients which appear in expressing the relative fitness

in terms of certain quantities related to LDs.) In our case, non-zero selection coefficients

which appear in the recursions at time t are

ãS,∅(t) =
s[h + (1− 2h)pS(t)]

1 + s pS(t)[2h + (1− 2h)pS(t)]
,

ãS,S(t) =
(1− 2h)s

1 + s pS(t)[2h + (1− 2h)pS(t)]
.

For h = 1/2, these simplify to

ãS,∅(t) =
s

2[1 + s pS(t)]
and ãS,S(t) ≡ 0.

Following Barton and Turelli (1991), we define rLRS = rLS,R + rRS,L + rLR,S and use

rX,Y to denote the rate of recombination events that partition the loci into two non-empty

sets X and Y . In our work, we ignore double-crossover recombination events, so we define

rX,Y = 0 if the partition X,Y corresponds to a double-crossover event. For example, if the

selected locus S is between the neutral loci, then rLS,R = rRS, rRS,L = rLS, and rLR,S = 0.

Further, we assume that recombination rates are additive. The recombination rate rLR is

therefore given by adding or subtracting rLS and rRS, depending on the configuration (see

Figure 1).
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To simplify notation, we hereafter omit writing the dependence on time t. We define

qS = 1− pS, qL = 1− pL, and qR = 1− pR. Marginal allele frequencies satisfy the following

recursions:

∆pS = ãS,∅ pSqS, (1)

∆pL = ãS,∅ CLS, (2)

∆pR = ãS,∅ CRS. (3)

The LDs satisfy the recursions

∆CLS = ∆̃CLS −∆pL∆pS = ∆̃CLS − ã2
S,∅pSqSCLS, (4)

∆CRS = ∆̃CRS −∆pR∆pS = ∆̃CRS − ã2
S,∅pSqSCRS, (5)

∆CLR = ∆̃CLR −∆pL∆pR = ∆̃CLR − ã2
S,∅CLSCRS, (6)

∆CLRS = ∆̃CLRS −∆pS∆̃CLR −∆pL∆̃CRS −∆pR∆̃CLS + 2∆pL∆pR∆pS

= ∆̃CLRS − ãS,∅

[
pSqS∆̃CLR + CLS∆̃CRS + CRS∆̃CLS

]
+ 2ã3

S,∅pSqSCLSCRS, (7)

where

∆̃CLS = g(rLS)CLS, (8)

∆̃CRS = g(rRS)CRS, (9)

∆̃CLR = −rLRCLR + ãS,∅(1− rLR)CLRS + ãS,SrLR CLSCRS, (10)

∆̃CLRS = [−rLRS + ãS,∅(1− rLRS)(1− 2pS) + ãS,SrLR,SpSqS] CLRS

−ãS,∅(rLS,R + rRS,L)pSqSCLR

− [ãS,∅(2− rLS,R − rRS,L)− ãS,S(1− 2pS)(rLS,R + rRS,L)] CLSCRS, (11)

with

g(r) := −r + ãS,∅(1− r)(1− 2pS) + ãS,S r pSqS.

The above general recursions apply to all three configurations shown in Figure 1. Depending

on the particular configuration being considered, recombination rates rX,Y need to be defined

appropriately.

The system of truncated recursions: We explore the behavior of the recursion equa-

tions (1)–(7) in the region r, s � 1 and h = 1/2 (see Maynard Smith and Haigh 1974).
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Here, r may be any recombination parameter appearing in the equations (1)–(7). Keeping

only the terms linear in s or r leads to the following set of recursions:

∆pS ≈ s

2
pS(1− pS), (12)

∆pL ≈ s

2
CLS, (13)

∆pR ≈ s

2
CRS, (14)

∆CLS ≈ −
[
rLS +

s

2
(2pS − 1)

]
CLS, (15)

∆CRS ≈ −
[
rRS +

s

2
(2pS − 1)

]
CRS, (16)

∆CLR ≈ −rLRCLR +
s

2
CLRS, (17)

∆CLRS ≈ −
[
rLRS +

s

2
(2pS − 1)

]
CLRS − sCLSCRS. (18)

These equations agree to first order in r and s with those of Thomson (1977) [compare her

eqs. (30iii), (30iv), and (31)]. Since the hitchhiking effect can be best observed when r � s

(such that simultaneously Nes � 1 holds), we may approximate the truncated recursions

by the following ordinary differential equations (ODEs; see Maynard Smith and Haigh

1974):

dpS

dt
=

s

2
pS[1− pS], (19)

dpL

dpS

=
CLS

pS(1− pS)
, (20)

dpR

dpS

=
CRS

pS(1− pS)
, (21)

dCLS

dpS

= −
(

2rLS

s
+ 2pS − 1

) [
1

pS(1− pS)

]
CLS, (22)

dCRS

dpS

= −
(

2rRS

s
+ 2pS − 1

) [
1

pS(1− pS)

]
CRS, (23)

dCLR

dpS

= −2rLR

s

[
1

pS(1− pS)

]
CLR +

1

pS(1− pS)
CLRS, (24)

dCLRS

dpS

= −
(

2rLRS

s
+ 2pS − 1

) [
1

pS(1− pS)

]
CLRS −

2

pS(1− pS)
CLSCRS. (25)

Here we have introduced time t (in generations) into the equation for pS and parameterized

the other quantities by pS (which is a monotonically increasing function of t).
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Structure of equations: Several features of the dynamical system become apparent

from these two sets of equations. Most importantly, selection acts on the alleles at the

neutral loci indirectly and in a strictly hierarchical fashion: on the marginal neutral allele

frequencies via the pairwise LDs CLS and CRS, on the LD between the neutral sites by the

third moment, and on the latter by a fourth-order term (i.e. the product of the two pairwise

LDs CLS and CRS).

Analytical solutions when the selected locus is between the neutral loci: The

ODEs for the LDs are first-order linear differential equations. The ODEs for the pairwise

LDs CLS and CRS are homogeneous. The equations for CLR and CLRS contain the higher-order

moments as inhomogeneous terms that act as “driving forces” of the dynamics. However,

except for this impact of the higher-order terms, the equations are decoupled and can be

solved successively. We have the following results:

The frequency of the selected allele at locus S is

pS(t) =
pS(0)

pS(0) + qS(0)e−st/2
, (26)

whereas marginal allele frequencies at the neutral loci are

pL(t) = pL(0) + 2
CLS(0)

HS(0)

(
pS(0)

1− pS(0)

)2rLS/s ∫ pS(t)

pS(0)

(
1− z

z

)2rLS/s

dz, (27)

pR(t) = pR(0) + 2
CRS(0)

HS(0)

(
pS(0)

1− pS(0)

)2rRS/s ∫ pS(t)

pS(0)

(
1− z

z

)2rRS/s

dz, (28)

where

HS(t) := 2pS(t)[1− pS(t)], (29)

which corresponds to the heterozygosity at the selected locus. The LDs CLS(t) and CRS(t)

can be written as

CLS(t) = CLS(0)
HS(t)

HS(0)
e−rLSt, (30)

CRS(t) = CRS(0)
HS(t)

HS(0)
e−rRSt. (31)

Given these solutions for CLS(t) and CRS(t), the coupled ODEs (24) and (25) admit simple

exact solutions when the selected locus is between the two neutral loci. More specifically,

the 3rd order LD is given by

CLRS(t) =

{
−4 CLS(0)CRS(0)

[
pS(t)− pS(0)

HS(0)

]
+ CLRS(0)

}
HS(t)

HS(0)
e−rLRSt, (32)

8



and the LD between the neutral loci can be written as

CLR(t) =

{
−4 CLS(0)CRS(0)

[
pS(t)− pS(0)

HS(0)

]2

+ 2 CLRS(0)

[
pS(t)− pS(0)

HS(0)

]
+ CLR(0)

}
e−rLRt,

(33)

where rLR = rLRS = rLS + rRS.

Analytical solutions when the selected locus is outside the neutral loci: Solu-

tions to the ODEs (19)–(23) do not depend on whether the selected locus is inside or outside

the two neutral loci. For example, the allele frequency pS(t) and the LDs CLS(t) and CRS(t)

are given by (26), (30) and (31), respectively, in all cases. However, the dynamics of the

ODEs (24) and (25) for CLR(t) and CLRS(t), respectively, depend crucially on the position of

the selected locus S with respect to the neutral loci L and R. As we elaborate presently, the

dynamics of CLR(t) when S is between L and R exhibits radically different behavior than

when S is outside.

In what follows, suppose that S is to the right of R, which implies rLS = rLRS = rLR + rRS.

The case where S is to the left of L can be handled in a similar vein, with rRS replaced with

rLS. Now, the ODE (25) for the 3rd order LD CLRS(t) does not admit a closed-form solution;

a general solution can be obtained in terms of the incomplete beta function B(z; x, y), defined

as B(z; x, y) =
∫ z

0
ux−1(1− u)y−1du. However, noting that B(z; 1− 2rRS/s, 1 + 2rRS/s) ≈ z

if rRS � s, we obtain the following simple approximate solution:

CLRS(t) ≈

{
−4 CLS(0)CRS(0)

[(
pS(0)

1− pS(0)

)2rRS/s
pS(t)− pS(0)

HS(0)

]
+ CLRS(0)

}
HS(t)

HS(0)
e−rLRSt.

(34)

Further, using this solution and the approximation B[z; 2 − 2rRS/s, 1 + 2rRS/s] ≈ z2 for

rRS � s, we obtain the following approximate solution to (24):

CLR(t) ≈

−4 CLS(0)CRS(0)

[(
pS(0)

1− pS(0)

)2rRS/s
pS(t)− pS(0)

HS(0)

]2

+2 CLRS(0)

[(
pS(0)

1− pS(0)

)2rRS/s
pS(t)− pS(0)

HS(0)

]
+ CLR(0)

}
e−rLRt. (35)

Note the striking resemblance of (34) and (35) to (32) and (33), respectively. For rRS = 0,

the two sets of equations agree exactly, and hence our solutions for different regions form

one continuous solution for the entire domain. The only difference between the two sets of

equations is that, in (34) and (35), an extra factor [pS(0)/(1− pS(0))]
2rRS/s appears together

with [pS(t)− pS(0)]/HS(0). This simple difference leads to important observable differences

in the dynamics of the LDs.
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TABLE 1: Comparison of the exact CLR(t) (obtained by solving the full recursions nu-

merically) with the analytic approximation (33) when the selected locus is between the

two neutral loci. The values shown are in units of 10−2. We used s = 0.01, pS(0) =

0.00005, pL(0) = 0.38, pR(0) = 0.41 and CLR(0) = 0.0242. In the exact numerical com-

putation, pS(t) = 1− pS(0) at t = 3982.

rLS = rRS = 0.01s rLS = rRS = 0.05s rLS = rRS = 0.1s

t exact eq.(33) exact eq.(33) exact eq.(33)

0 2.42 2.42 2.42 2.42 2.42 2.42

500 2.21 2.21 1.48 1.48 0.90 0.90

1000 2.18 2.18 0.98 0.98 0.36 0.36

1500 3.67 3.70 1.11 1.12 0.25 0.25

2000 6.91 6.89 1.39 1.39 0.19 0.19

2500 1.59 1.53 0.21 0.21 0.02 0.02

3000 0.14 0.13 0.01 0.01 0.00 0.00

3500 0.01 0.01 0.00 0.00 0.00 0.00

3982 0.00 0.00 0.00 0.00 0.00 0.00

Comparison of approximate analytic solutions with numerical solutions to the

full recursions: We have written a computer program to solve the full recursions (1)–(11)

numerically. Comparison of our analytic solutions (33) and (35) with numerical solutions to

the full recursions are shown in Table 1 and Table 2, respectively. As these tables show, our

analytic solutions are a good approximation to the exact dynamics. In obtaining our analytic

solution (35) for the case in which the selected locus is outside the neutral loci, recall that

we assumed rRS � s to approximate the incomplete beta function. As expected, Table 2

shows that (35) becomes less accurate as rRS increases, but it is a good approximation as

long as rRS � s.

THE DYNAMICS OF LD

In this section, we consider the dynamics of the LD between the two neutral loci. We

utilize our analytic solutions from the previous section to study several important aspects of

the dynamics.
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TABLE 2: Comparison of the exact CLR(t) with the analytic approximation (35) when the

selected locus is to the right of locus R. The values shown are in units of 10−2. We used

rLR = 0.02s and the same set of initial conditions as in Table 1. As expected, (35) is quite

accurate for rRS/s � 1.

rRS = 0.01s rRS = 0.05s rRS = 0.1s rRS = 0.2s rRS = 0.3s

t exact eq.(35) exact eq.(35) exact eq.(35) exact eq.(35) exact eq.(35)

0 2.42 2.42 2.42 2.42 2.42 2.42 2.42 2.42 2.42 2.42

500 2.21 2.20 2.20 2.20 2.20 2.19 2.20 2.19 2.20 2.19

1000 2.17 2.15 2.12 2.06 2.07 2.01 2.02 1.99 2.00 1.98

1500 3.47 3.39 2.83 2.55 2.36 2.08 1.96 1.83 1.85 1.80

2000 6.94 6.93 5.48 5.15 3.59 3.15 2.05 1.85 1.72 1.65

2500 4.33 4.35 6.04 5.98 3.96 3.76 1.96 1.83 1.57 1.52

3000 3.26 3.27 5.54 5.51 3.64 3.52 1.78 1.68 1.42 1.38

3500 2.90 2.90 5.01 5.00 3.30 3.20 1.61 1.52 1.29 1.25

3982 2.63 2.63 4.55 4.54 2.99 2.90 1.46 1.38 1.17 1.13

Vanishing LD: In the domain r � s, the term −sCLSCRS dominates the recursion for

the third moment [see (18)] and hence influences also the LD between the neutral sites. If

the selected site is between the two neutral sites and linkage is sufficiently tight (rLR < 0.1s),

|CLR| quickly increases after the favored mutation has entered the population and, after

transiently reaching a peak, rapidly decays to zero before the selected phase ends. To show

this, define tf as the time satisfying pS(tf ) = 1 − pS(0). Henceforward, we loosely refer to

this time as the fixation time. Using (26), one can show that

tf =
4

s
log

(
1− pS(0)

pS(0)

)
. (36)

We wish to show that, if the selected locus is between the two neutral loci, then CLR(tf ) ≈ 0

for all possible initial conditions of interest. Common to all initial conditions is that pS(0) =

1/(2N), with N being the population size. For N = 104 ∼ 106, 1/(2N) � 1, and therefore

pS(tf )− pS(0)

HS(0)
=

1− 2pS(0)

2pS(0)[1− pS(0)]
≈ 1

2pS(0)
, (37)

which implies that (33) at tf can be written approximately as follows:

CLR(tf ) ≈

{
−CLS(0)CRS(0)

[
1

pS(0)

]2

+ CLRS(0)
1

pS(0)
+ CLR(0)

}
e−rLRtf . (38)
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We use {000, 001, 010, 011, 100, 101, 110, 111} to denote gametic types. Their frequencies

are denoted by {f000, f001, f010, f011, f100, f101, f110, f111}, which are related to the marginal

frequencies and the LDs as follows:

pL = f100 + f101 + f110 + f111,

pR = f001 + f011 + f101 + f111,

pS = f010 + f011 + f110 + f111,

CLR = f101 + f111 − pLpR,

CLS = f110 + f111 − pLpS,

CRS = f011 + f111 − pRpS,

CLRS = f111 − (pLpRpS + pLCRS + pRCLS + pSCLR).

Using these relations, we obtain

−CLS(0)CRS(0)

[
1

pS(0)

]2

+ CLRS(0)
1

pS(0)
+ CLR(0) =

f010(0)f111(0)− f011(0)f110(0)

pS(0)2
. (39)

At t = 0, a new favored mutation occurs on only one of the following gametic types:

000, 001, 100 or 101. For instance, if the mutation occurs on a gamete of type 101, f010(0) =

f011(0) = f110(0) = 0 and f111(0) = pS(0) = 1/(2N). More generally, only one of f010(0),

f111(0), f011(0), f110(0) is supposed to be non-zero. This implies that the right hand side of

(39) must be equal to zero. Hence, the coefficient of exp(−rLRtf ) in (38) is exactly zero. If the

approximation (37) were not used, then the coefficient of exp(−rLRtf ) in CLR(tf ) would not

be exactly zero, but would still be very small. Note that exp(−rLRtf ) may not be very small.

For example, exp(−rLRtf ) = 0.452813 for pS(0) = 0.00005, rLR = 0.00002, and s = 0.001.

This shows that, for small recombination rates (rLR � 1), selection rather than recombina-

tion is the dominant force that causes CLR(t) to vanish before the fixation time. For large

recombination rates, the contribution exp(−rLRt) from recombination should dominate over

selection effects.

This behavior may be explained as follows. Under the scenario of tight linkage and strong

selection, a low-frequency gamete on which the favored mutation landed is quickly dragged

into intermediate to high frequency. If the recombination rates are non-zero, this gamete

may undergo recombination, thereby creating the two types of single recombinants that also

carry the selected allele and thus increase in frequency. This reduces the LD between L and

R created by the hitchhiking effect in the first half of the selected phase. This hitchhiking

12



effect on the recombinants is stronger, the greater the linkage between the selected site and

the two neutral sites is, and thus also the product CLSCRS.

Figure 2a shows another important observation: LD may vanish very quickly in the

selected phase, while relative heterozygosity approaches a finite (i.e. non-zero) equilibrium

value. Thus, LD does not vanish because of the variation-reducing effect of hitchhiking per

se, but as a consequence of secondary hitchhiking effects on the recombinants created in the

selected phase (described above).

A selected mutation occurring outside the two neutral sites on a low-frequency gamete

may also lead to a transient peak of CLR, if both neutral polymorphic sites are less than 0.1s

recombination distances away from the selected site (see Figure 2b,c). Although this peak

vanishes faster than under neutral conditions (i.e., with the selected site far away from the

neutral sites, as in Figure 2d), the decay rate is not as high as when the favored mutation

occurs between the neutral sites (Figure 2a). We analyze this behavior in more detail below.

Shown in Figure 3 is a plot of CLR(n) for varying position of the selected locus. As in

Figure 2, the distance between the two neutral loci is fixed at rLR = 0.0002, and the same

set of initial conditions are used. Note that this plot is symmetric about the plane r = 0; we

return to this point later in the paper. We stress that our conclusions described above do not

depend on the particular values of neutral marginal allele frequencies pL(0) and pR(0) used

for illustration. Even for low values of pL(0) and pR(0), for example, the same conclusions

hold.

An alternative illustration of the above discussion is provided in Figure 4, which shows

pairwise LD plots for a region containing 100 neutral loci and a single selected locus. The

two plots shown correspond to two different time points. The selected locus is located in the

middle of the region and LD values below a cutoff value are not plotted.

The maximum LD at tf : Consider the case in which the selected locus S is to the

right of locus R. Viewing CLR(tf ) as a function of rRS, whether there exists a local optimum

in the domain rRS � s depends on initial conditions. The example shown in Figure 3 has a

local maximum at rRS/s ≈ 0.039. Differentiating the analytic solution (35), it is possible to

determine whether there is a critical point rRS = r∗
RS that satisfies

dCLR(tf )

drRS

∣∣∣∣
rRS=r∗RS

= 0. (40)

Suppose that, at t = 0, the new gamete carrying a selected allele (of type 1) at locus S is

of type ij1, with i being the allele at locus L and j the allele at locus R. Then, given that

13
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Figure 2: Example trajectories of CLR(n) are shown on the left hand side, and that of

normalized heterozygosity Het(n)/Het(0) are shown on the right hand side, where solid

(resp. dashed) lines correspond to locus L (resp. R). (a) The selected locus is at the

midpoint between the neutral loci, i.e., rLS = rRS = 0.01s. (b) The selected locus is to

the right of locus R and rRS = 0.01s. (c) The selected locus is to the right of locus R and

rRS = 0.03s. (d) The selected locus is to the right of locus R and rRS = 0.3s. Exact recursions

(1)–(11) were used, with s = 0.01, rLR = 0.02s, pS(0) = 0.00005, pL(0) = 0.38, pR(0) = 0.41

and CLR(0) = 0.0242. At generation n = 3982, pS(n) = 1 − pS(0). Initial conditions were

chosen so that CLR(0) 6= 0, for two reasons; to demonstrate that, when the selected locus is

between the neutral loci (as in case a), CLR(n) quickly vanishes in the selected phase even if

the initial value CLR(0) is not zero, and to contrast the effect of recombination (see case d)

with that of selection.
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Figure 3: The LD CLR between the neutral loci as a function of the position of the selected

locus, for rLR = 0.0002 and s = 0.01. Here, r is the position of the selected locus S, and

the value r = 0 corresponds to the midpoint between the neutral loci. Locus L is fixed at

r = −0.0001, whereas locus R is fixed at r = 0.0001. The same set of initial conditions as

in Figure 2 was used for all r. Exact recursions (1)–(11) were used to generate this plot.

0
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Figure 4: Truncated pairwise LD plots for a region consisting of 100 neutral loci and 1

selected locus located in the middle. The recombination rate between any two adjacent

loci is 0.4s/100, and hence the recombination rate between the leftmost and the rightmost

neutral loci is 0.4s. We used s = 0.01, pS(0) = 0.00005, pR(0) = pL(0) = 0.5 and CLR(0) = 0.

The plots were truncated so that LD values less than 1% of the largest value 0.0577 were

not included. (a) Pairwise LD plot at t = tf/2, where the time of fixation tf satisfies

pS(tf ) = 1− pS(0). (b) Pairwise LD plot at t = tf .
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[δi1 − pL(0)][δj1 − pR(0)] > CLR(0), where δab is 1 if a = b or 0 if a 6= b, we obtain

r∗
RS ≈

s

2
log

[
1

2

(
1− CLR(0)

[δi1 − pL(0)][δj1 − pR(0)]

)]
1

log[1/(2N)]
(41)

and

CLR(tf )|rRS=r∗RS
≈ {CLR(0) + [δi1 − pL(0)][δj1 − pR(0)]}2

4[δi1 − pL(0)][δj1 − pR(0)]
e−rLRtf .

The value of r∗
RS in (41) may be very large for some initial conditions. In such a case, as

our analytic solution (35) is valid only in the domain rRS � s, all we can say for sure is

that CLR(tf ) has no critical point in the domain rRS � s (i.e., CLR(tf ) is either a monoton-

ically increasing or a monotonically decreasing function of rRS in that domain). Further, if

[δi1 − pL(0)][δj1 − pR(0)] ≤ CLR(0), there is no real-valued r∗
RS such that our approximate

analytic solution (35) satisfies (40). Hence, noting that CLR(tf ) approaches CLR(0)e−rLRtf as

rRS/s increases, we conclude that, in the domain rRS � s,

max |CLR(tf )| ≈

{
max(|X|, |CLR(0)|)× e−rLRtf , if [δi1 − pL(0)][δj1 − pR(0)] > CLR(0),

|CLR(0)| × e−rLRtf , otherwise,

where

X =
{CLR(0) + [δi1 − pL(0)][δj1 − pR(0)]}2

4[δi1 − pL(0)][δj1 − pR(0)]
(42)

and e−rLRtf ≈
(

1
2N

)4rLR/s
. Note that the maximum possible value of X is 1/4. The critical

point rLS = r∗
LS for the case in which the selected locus is to the left of locus L, is also given

by (41).

Invariance of CLR and CLRS when the selected locus is between the two neutral

loci: When the favored mutation occurs between the two neutral sites, the dynamics of the

system of truncated recursions for CLR and CLRS does not depend on the position of the

selected locus. This can immediately be seen from equations (17) and (18), which depend

only on the sum rLS + rRS and not on any individual recombination parameter. We show in

Appendix that this invariance also (nearly) holds for the system of full recursions.

INITIAL CONDITIONS AND THE PARAMETER SPACE OF THE MODEL

In this section, we assume that the selected locus is to the right of locus R. For such a

case, recall that the LD (measured with respect to type 1 alleles) between the neutral loci

is given by (35). We use ijk to denote gametic types, with i being for locus L, j for locus

R, and k for locus S. By the gamete of origin, we mean the new gamete at t = 0 carrying a
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selected allele (of type 1) at locus S. We include ij in superscript (i.e., we write Cij
LR(t)) if

the gamete of origin is of type ij1. Using (35), we obtain

Cij
LR(t) = [1− α(t, rRS/s)] {CLR(0) + α(t, rRS/s)[δi1 − pL(0)][δj1 − pR(0)]} e−rLRt, (43)

where, as before, δab is 1 if a = b or 0 if a 6= b, and α(t, y) is defined as

α(t, y) :=

[
pS(0)

1− pS(0)

]2y
pS(t)− pS(0)

1− pS(0)
. (44)

Recall that marginal (type 1) allele frequencies pL(t) and pR(t) at the neutral loci are given

by (27) and (28), respectively. For pS(0) � 1 and r/s � 1, we can use the approximation∫ 1−pS(0)

pS(0)

(
1− z

z

)2r/s

dz ≈ 1− 2pS(0),

from which it follows that

pL(tf ) = pL(0) +
CLS(0)

pS(0)
α(tf , rLS/s),

pR(tf ) = pR(0) +
CRS(0)

pS(0)
α(tf , rRS/s),

where α(tf , rRS/s) is defined as in (44). Similar to Cij
LR(t), we use pij

L (t) and pij
R (t) to denote

pL(t) and pR(t), respectively, if the gamete of origin is of type ij1. It is straightforward to

show that

pij
L (tf ) = pL(0) + [δi1 − pL(0)]α(tf , rLS/s), (45)

pij
R (tf ) = pR(0) + [δj1 − pR(0)]α(tf , rRS/s). (46)

Frequency averaged LD and the range of the hitchhiking effect: In what follows,

we use xijk to denote the frequency of the gametic type ijk at time t = 0 and define

xij· = xij0 + xij1. The type of the gamete of origin could be any of 001, 011, 101 and 111.

Suppose that the probability of the gamete of origin being of type ij1 is equal to the frequency

of the gametic type ij0 just before time t = 0 (note that this frequency is equal to xij·).

Then, the average value of CLR(t) with respect to this probability is given by
∑

i,j xij·C
ij
LR(t),

which we call a frequency averaged LD. We show below that, contrary to people’s common

intuition, the effect of selection on such an averaged LD does not depend on haplotype

diversity xij· at t = 0.

Using (43), we can show that
∑

i,j xij·C
ij
LR(t) is given by∑

i,j

xij·C
ij
LR(t) = CLR(0)

{
1− [α(t, rRS/s)]

2} e−rLRt.
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Figure 5: A plot of A(tf , rRS/s) for pS(0) = 0.00005. The function A(tf , rRS/s), defined

in (47), captures the effect of selection on both relative frequency averaged LD and relative

frequency averaged heterozygosity (see (47) and (48)).

If CLR(0) = 0, then
∑

i,j xij·C
ij
LR(t) = 0 for all t. For CLR(0) 6= 0, we define

A(t, rRS/s) :=

∑
i,j xij·C

ij
LR(t)

CLR(0)e−rLRt
= 1− [α(t, rRS/s)]

2 .

Note that rLR need not be much smaller than s for our analytic solution (35) to be valid

(recall that only rRS � s is required). Assuming rLR � 1
N

, we can ignore genetic drift and

regard CLR(0)e−rLRt as the behavior of LD under neutrality. Thus, A(t, rRS/s) can be viewed

as the ratio of the frequency averaged LD in the presence of selection to that in the absence

of selection. At the time tf of fixation, pS(tf ) = 1− pS(0) and therefore

A(tf , rRS/s) =

∑
i,j xij·C

ij
LR(tf )

CLR(0)e−rLRtf
= 1−

[
pS(0)

1− pS(0)

]4rRS/s [
1− 2pS(0)

1− pS(0)

]2

. (47)

For given rRS/s, A(tf , rRS/s) only depends on pS(0) = 1/(2N); it has no dependence on

other initial conditions. A plot of A(tf , rRS/s) is shown in Figure 5 for pS(0) = 0.00005.

We now compare A(tf , rRS/s) with relative frequency averaged heterozygosity. Let us

focus on the right neutral locus R and define H ij
R (t) = 2pij

R (t)[1 − pij
R (t)]. For HR(0) =

2pR(0)[1− pR(0)] 6= 0, one can use (46) to show that∑
i,j xij·H

ij
R (tf )

HR(0)
= 1− [α(tf , rRS/s)]

2 = 1−
[

pS(0)

1− pS(0)

]4rRS/s [
1− 2pS(0)

1− pS(0)

]2

. (48)

For pS(0) = 1/(2N), this is approximately equal to 1− 1/(2N)4rRS/s, which is equivalent to

eq. (14d) of Stephan et al. (1992) (the factor 2 in the exponent of that formula needs to be

replaced by 4 because of the different definition of the selection coefficient). In the absence
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Figure 6: Illustration of initial conditions leading to the same C00
LR(tf ). (a) The illustrated

tetrahedron ∆ corresponds to the set of all possible initial conditions, given that the gamete

of origin is of type 001. ∆ is defined by (49), and a point in ∆ corresponds to a particular

initial condition. (b) The intersection of ∆ and surface Ξ, defined by (50), corresponds to

the set of all initial conditions leading to a fixed value c of C00
LR(tf ). For visual clarity, only

one face F of ∆ is shown. The intersection of ∆ and Ξ is the part of Ξ below F .

of genetic drift, H ij
R (tf ) = HR(0) for s = 0. Therefore, (48) can be regarded as the ratio

of the frequency averaged heterozygosity in the presence of selection to that in the absence

of selection. Surprisingly, this ratio is exactly equal to the analogous ratio for LD shown in

(47). The function A(tf , rRS/s) plays a special role in the sense that it encodes the effect of

selection on two different frequency averaged quantities.

For site heterozygosity, the hitchhiking effect is generally only profound when, provided

that Nes � 1, the recombination distance r between the selected and neutral sites satisfies

r < 0.1s (Maynard Smith and Haigh 1974). The term determining this effect is (2N)−4r/s,

assuming that the initial frequency pS(0) of the selected allele is 1/(2N). Our above analysis

shows that the range of a substantial reduction of LD due to hitchhiking (determined by

(2N)−4rRS/s) is exactly equal to that for variation (determined by (2N)−4r/s). (see Figure 5.)

Characterization of equivalent initial conditions:

We now find the set of all initial conditions that lead to the same value of CLR at the time

of fixation, i.e., CLR(tf ) = c, where c is some fixed constant.

To be concrete, suppose that the gamete of origin is of type 001, in which case x101 =

x011 = x111 = 0 and x001 = pS(0) = 1/(2N). First, note that x000+x010+x100+x110+pS(0) = 1
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implies

0 ≤ x010 + x100 + x110 ≤ 1− pS(0), (49)

which defines a tetrahedron ∆ as depicted in Figure 6a. Second, using (43), one can show

that C00
LR(tf ) = c implies

c = [1−α(tf , rRS/s)]×{x110 − [1− α(tf , rRS/s)](x100 + x110)(x010 + x110)}×
[

pS(0)

1− pS(0)

]4rLR/s

,

(50)

which defines a surface Ξ in a 3-dimensional Euclidean space with (x110, x010, x100) as coordi-

nates. The intersection of surface Ξ with tetrahedron ∆, illustrated in Figure 6b, corresponds

to the set of initial conditions such that C00
LR(tf ) = c. A case in which the gamete of origin

is of type other than 001 can be handled in a similar vein.

Probability distributions of CLR(tf ): Recall that CLR(t) for t > 0 depends on initial

conditions. In what follows, we regard initial gametic frequencies as being random and

consider the probability distribution of CLR(tf ). The squared correlation coefficient R2(tf ) is

addressed later in DISCUSSION. We assume that all initial gametic frequency configurations

x000, x010, x100, x110 are equally likely and satisfy x000 + x010 + x100 + x110 + pS(0) = 1. Under

this assumption of uniform distribution, it is possible to compute the probability distribution

P[CLR(tf ) < c] for fixed rLR/s and rRS/s. The key idea is to utilize the characterization of

equivalent initial conditions described above. More precisely, as c changes, the surface defined

by CLR(tf ) = c changes in a smooth fashion, sweeping out a region in three dimensions. The

probability P[CLR(tf ) < c] is equal to the volume of the region corresponding to CLR(tf ) < c

inside ∆, normalized by the total volume of ∆.

Our main result, illustrated in Figure 7, is

P[C00
LR(tf ) < c] = P[C11

LR(tf ) < c] = P[C < c],

P[C01
LR(tf ) < c] = P[C10

LR(tf ) < c] = 1− P[C < −c],

where P[C < c] is defined below. Let

a =

(
1

2N

)2rRS/s

and b =

(
1

2N

)4rLR/s

.

Cases with c > 0 and c < 0 are treated separately below.
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Figure 7: Probability distributions of Cij
LR for uniformly distributed initial gametic

frequency configurations. These plots were generated using our analytic formulae for

P[Cij
LR < c], with rLR/s = 0.02 and 1/(2N) = 0.00005. As rRS/s increases, P[Cij

LR < c]

for all ij become identical. (a) P[C00
LR(tf ) < c] and P[C11

LR(tf ) < c]. (b) P[C01
LR(tf ) < c] and

P[C10
LR(tf ) < c].

• For c > 0:

If c ≤ b/4,
√

b2 − 4bc > b(2a− 1) and c ≤ ab(1− a), then

P[C < c] = 1− 1

4(1− a)3b2

{
12ab(ab− 2c) log

[
a2b

ab− c

]
+b

(
b + 6a2b− 8a3b +

√
b2 − 4cb

)
− 2c

(
6b− 6ab + 5

√
b2 − 4cb

)
+ 12c2 log

[
2c2

(ab− c)(b− 2c−
√

b2 − 4cb)

]}
.

If c ≤ b/4,
√

b2 − 4bc > b(2a− 1) and c > ab(1− a), then

P[C < c] = 1− 1

2(1− a)3b2

{
(b− 10c)

√
b2 − 4bc− 6c2 log

[
2c− b +

√
b2 − 4bc)

2c− b−
√

b2 − 4bc)

]}
.

If either c > b/4 or
√

b2 − 4bc ≤ b(2a− 1), then P[C < c] = 1.
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• For c = −|c| < 0:

If |c| ≤ (1− a)2b/4, then

P[C < −|c|] =
1

2(1− a)3b2

{[
b(1− 5a− 2a2)− 10|c|

]√
(1− a)2b2 − 4b|c|

+6(2a2b2 + 4ab|c|+ |c|2) log

[
(1 + a)b +

√
(1− a)2b2 − 4b|c|

2
√

b(ab + |c|)

]

−6|c|2 log

[
b[(1− a)2b + (a− 3)|c|] + [|c| − (1− a)b]

√
(1− a)2b2 − 4b|c|

2|c|
√

b(ab + |c|)

]}
.

If |c| > (1− a)2b/4, then P[C < −|c|] = 0.

Polarization: Polarized LDs are measured with respect to major alleles. To determine

the polarized LD Cω(tf ) between the neutral loci, we compute

σ = [pij
L (tf )− qij

L (tf )]× [pij
R (tf )− qij

R (tf )], (51)

the main point being that Cω(tf ) = CLR(tf ) if σ > 0 and Cω(tf ) = −CLR(tf ) if σ < 0.

(Recall that CLR(t) is measured with respect to type 1 alleles.)

First, for rLR = rRS = 0, note that

σ ≈ (2δi1 − 1)(2δj1 − 1) =

{
+1, if (i, j) = (0, 0) or (i, j) = (1, 1),

−1, if (i, j) = (0, 1) or (i, j) = (1, 0).
(52)

Second, for fixed initial marginal frequencies, we need to determine for what values of rLR

and rRS, σ changes sign. Using (45) and (46), we can obtain the following results:

For i = 0, σ ≈ 0 if pL(0) > 1/2 and

rRS =
s

2 log(1/2N)
log

[
pL(0)− 1

2

pL(0)

]
− rLR. (53)

For i = 1, σ ≈ 0 if qL(0) > 1/2 and

rRS =
s

2 log(1/2N)
log

[
qL(0)− 1

2

qL(0)

]
− rLR. (54)

For j = 0, σ ≈ 0 if pR(0) > 1/2 and

rRS =
s

2 log(1/2N)
log

[
pR(0)− 1

2

pR(0)

]
. (55)

For j = 1, σ ≈ 0 if qR(0) > 1/2 and

rRS =
s

2 log(1/2N)
log

[
qR(0)− 1

2

qR(0)

]
. (56)
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Figure 8: The sign of σ = [pij
L (tf ) − qij

L (tf )] × [pij
R (tf ) − qij

R (tf )] for (i, j) = (0, 0). The

polarized LD Cω(tf ) between the neutral loci is equal to CLR(tf ) if σ > 0 or −CLR(tf ) if

σ < 0. The rLR,rRS domain is partitioned into two, three, or four blocks, depending on pL(0)

and pR(0). Note that σ tends to be positive in the neighborhood of (rLR, rRS) = (0, 0). The

size and shape of this neighborhood depends on u and v, given by u = s
2 log(1/2N)

log
[

pL(0)− 1
2

pL(0)

]
and v = s

2 log(1/2N)
log

[
pR(0)− 1

2

pR(0)

]
. (a) pL(0) > 1/2 and pR(0) < 1/2. (b) pL(0) < 1/2 and

pR(0) > 1/2. (c) pL(0) = pR(0) > 1/2. (d) pL(0) > pR(0) > 1/2. (e) pR(0) > pL(0) > 1/2.

Combined with (52), these equations completely determine whether Cω(tf ) = CLR(tf ) or

Cω(tf ) = −CLR(tf ) for given parameter values. For example, suppose that (i, j) = (0, 0). If

pL(0) < 1/2 and pR(0) < 1/2, then there is no real-valued solution to the condition σ = 0,

and therefore Cω(tf ) = CLR(tf ) for all values of rLR and rRS. If pL(0) > 1/2 and pR(0) < 1/2,

or if pL(0) < 1/2 and pR(0) > 1/2, then σ changes sign as illustrated in Figure 8a,b, where

u =
s

2 log(1/2N)
log

[
pL(0)− 1

2

pL(0)

]
and v =

s

2 log(1/2N)
log

[
pR(0)− 1

2

pR(0)

]
.

Note that u takes its minimum value at pL(0) = 1 and that u →∞ as pL(0) → 1/2. Similarly,

v takes its minimum value at pR(0) = 1 and v → ∞ as pR(0) → 1/2. If both pL(0) > 1/2

and pR(0) > 1/2, then there are three possibilities, depicted in Figure 8c,d,e.

Regions of positive Cω(tf ): To determine the regions of positive Cω(tf ), we need to

know how the sign of Cij
LR(tf ) depends on rRS; (43) implies that the sign of Cij

LR(tf ) does not

depend on rLR. For concreteness, suppose that (i, j) = (0, 0), in which case we can obtain

the following results from using (43):

1. If CLR(0) ≥ 0, then C00
LR(tf ) ≥ 0 for all rRS, and therefore the sign of Cω(tf ) is com-
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Figure 9: The sign of C00
LR(tf ) for CLR(0) < 0. If CLR(0) ≥ 0, then C00

LR(tf ) is non-negative

for all rRS and rLR. If CLR(0) < 0, however, the sign of C00
LR(tf ) can change at rRS = w, where

w = s
2 log(1/2N)

log
[

|CLR(0)|
pL(0)pR(0)

]
. In general, C00

LR(tf ) tends to be positive near (rLR, rRS) = (0, 0).
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Figure 10: Examples of the sign of the polarized LD Cω(tf ) when the gamete of origin

is of type 001 and CLR(0) < 0. Note that Cω(tf ) is positive if and only if C00
LR(tf ) and

σ are either both positive or both negative. In general, Cω(tf ) tends to be positive near

(rLR, rRS) = (0, 0). (a) pL(0) > pR(0) > 1/2 and w < u. (b) pL(0) > 1/2, pR(0) < 1/2 and

w > u.

pletely determined by that of σ.

2. If CLR(0) < 0, then C00
LR(tf ) changes sign as illustrated in Figure 9, where

w =
s

2 log(1/2N)
log

[
|CLR(0)|

pL(0)pR(0)

]
.

Note that w takes its minimum value of zero at |CLR(0)| = pL(0)pR(0) and that it

increases monotonically as |CLR(0)|/[pL(0)pR(0)] decreases. The polarized LD Cω(tf )

is positive if and only if C00
LR(tf ) and σ are either both positive or both negative.

Examples are shown in Figure 10.

As shown in Figure 8, σ tends to be positive in the neighborhood of (rLR, rRS) = (0, 0).

The size and shape of this neighborhood depends on u and v. Likewise, as shown in Figure 9,

C00
LR(tf ) tends to be positive in the neighborhood of (rLR, rRS) = (0, 0), with the size of the

neighborhood depending on w. As a consequence, the polarized LD Cω(tf ) also tends to be

positive near (rLR, rRS) = (0, 0).
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More generally, if the gamete of origin is of type ij1, the sign of Cij
LR(tf ) (respectively,

σ) can be analyzed using (43) (respectively, (52)-(56)). For all ij, the polarized LD Cω(tf )

tends to be positive near (rLR, rRS) = (0, 0).

An exact symmetry when the selected locus is outside the two neutral loci:

Suppose that the selected locus is outside the two neutral loci, and that geometric configu-

ration and recombination fractions are fixed. Let {pS(0), pL(0), pR(0), CLS(0), CRS(0), CLR(0),

CLRS(0)} and {p′
S(0), p′

L(0), p′
R(0), C ′

LS(0), C
′
RS(0), C

′
LR(0), C ′

LRS(0)} denote two different sets

of initial conditions. At generation n > 1, we use “prime” to refer to the marginal allele

frequencies and LDs obtained using the second set of initial conditions. In Appendix, we

show that if CLS(0) = C ′
RS(0) and CRS(0) = C ′

LS(0), while pS(0) = p′
S(0), CLR(0) = C ′

LR(0)

and CLRS(0) = C ′
LRS(0), then the system of full recursions (1)–(11) implies

CLR(n) = C ′
LR(n) and CLRS(n) = C ′

LRS(n)

for all n ≥ 1. This is an exact symmetry result that holds for an arbitrary dominance

coefficient h.

An application of this general result is the explanation of the symmetry of Figure 3 with

respect to reflection about the r = 0 plane, for those regions corresponding to the selected

locus being outside the neutral loci. Note that what is depicted in Figure 3 is different from

the obviously symmetric case in which initial conditions CLS(0) and CRS(0) get exchanged

when locus S is reflected about r = 0. In that figure, initial conditions remain fixed, while

the geometric configuration of the loci and recombination fractions change upon reflection.

That situation is related to changing initial conditions as described above, while keeping the

geometric configuration and recombination fractions fixed.

DISCUSSION

To understand the forces that shape genomic variation in natural populations and the

divergence between species, observed patterns must be compared to predictions of the mod-

els that faithfully represent the mechanisms through which such forces may work. While

much of the natural selection of organismic phenotypes may be effectively approximated by

deterministic single locus equations, interactive and stochastic forces are thought to play

a significant role. Until recently genetic drift has been considered the primary stochastic

process determining the temporal, geographic and genomic distribution of the vast major-

ity of DNA sequence polymorphism and divergence. Gillespie has repeatedly demonstrated

and emphasized fundamental differences between constant fitness models and stochastically
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varying selection, despite their superficial similarities (Gillespie 1994). Recently emerging

results of surveys of genomic regions of low crossing over per physical length indicate that

linked selection rather than genetic drift can dominate the levels of polymorphism within

populations (Aguadé et al. 1989; Stephan and Langley 1989; Begun and Aquadro

1992). The hitchhiking effect not only reduces the average level of heterozygosity in the

surrounding genomic regions, but it also leaves a skewed frequency spectrum (Braverman

et al. 1995). The early study by Thomson (1977) indicated that linked selection can create

linkage disequilibrium. Several subsequent papers have addressed specific cases (Robinson

et al. 1991; Grote et al. 1998) or noted some temporal and spatial patterns (Kim and

Nielsen 2004). Here we have demonstrated that the hitchhiking effect involves a number of

strong and surprisingly distinct dynamics and patterns of linkage disequilibrium. We believe

that the approach we have taken to address the impact of selection can be extended further

to address more complex selection schemes and genetic interactions.

The technological capacity of molecular population genomics is increasing rapidly. For ex-

ample, the HapMap Project (The International HapMap Consortium 2005) provides

extensive genotypic survey results on more than one million SNPs in almost 300 individ-

ual humans. At this scale of observation one can anticipate much more powerful inferences

about the role of direct selection, linked selection, crossing over, gene conversion, mutation,

and geographic demography. Indeed, based on such new data, genomic variation in the rate

of crossing over has been proposed as the primary determinant of the patterns of linkage

disequilibrium in human populations (McVean et al. 2004).

Several representations/notations have been developed to analyze the dynamics of mul-

tilocus systems (Bürger 2000). Through a series of papers Barton and Turelli have elab-

orated and applied their method based on the explicit representations of the moments of

allele frequencies (Barton and Turelli 1987, 1991; Turelli and Barton 1990, 1994).

Their representation proved surprisingly tractable and transparent in the analysis of the

hitchhiking effect on linkage disequilibrium.

Our analysis begins with the full representation of the three locus dynamics using the

notation of Barton and Turelli. These equations suggest the familiar approximation, “trun-

cated equations,” in which r, s � 1 and small higher order terms can be dropped. The trun-

cated equations immediately expose much of the fundamental structure and their differential

analogs, ordinary differential equations, allow approximate analytic solutions. Comparisons

of these ODE dynamics with those of the Barton and Turelli representation indicate that

the approximations remain quite accurate as long as r/s � 1 (see Table 1 and Table 2).
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Particularly fortuitous and important are the role of the three locus LD CLRS in driving the

dynamics of the LD CLR between the two linked neutral loci and the dependence of CLRS on

the product of the two locus LDs CLS and CRS.

This systematic investigation of the dynamics of LD under hitchhiking reveals four im-

portant features. First, and quite generally, hitchhiking indeed generates LD during the

initial half of the hitchhiking time course. As Figure 3 shows LD (positive in this instance)

reaches a maximum shortly before the originally rare selected allele reaches 0.5. This result

is consistent with Thomson’s analysis of hitchhiking caused by the dynamics of an initially

rare allele under balancing selection in that its frequency reaches an equilibrium closer to

0.5 than to 1.0. But what is truly surprising is that from several important perspectives the

hitchhiking effect on LD is one of reduction. In Figure 3 it is obvious that in the second

half of the hitchhiking period the large peak of LD (positive in this case) decreases rapidly.

Figure 2 shows several configurations of initial conditions and demonstrates that the decline

in the magnitude of LD is not attributable to decline in the heterozygosity at the two neutral

loci. A second and striking result is that preexisting LD is completely destroyed when the

selected locus is situated between the neutral sites. This geometric relationship produces a

striking pattern when all pairwise associations are plotted together as in Figure 4. This is

probably the mechanism behind the pattern noted by Kim and Nielsen (2004). This LD

reducing effect of hitchhiking is also evident when the selected site is outside the neutral pair

since much of the LD generated during the initial phase is destroyed in the latter phase. A

third unexpected property of the hitchhiking on LD is that the averaging over the frequencies

of the gametes with which the rare selected variant can be associated indicates that the net

effect of hitchhiking would be to reduce preexisting average LD. This is despite the fact that

hitchhiking does tend to increase the variance in LD (see below). Notice in Figure 3 that

there is considerably increased LD in both regions flanking the two neutral sites (i.e., when

the selected site is outside and is close to the two neutral sites). When the rare favored allele

appears on two of the other three haplotypes (10 or 01) the final LD is strongly negative.

Thus the average (weighted by the frequencies of the four gametes) will remain at zero if

there is no LD and tend toward zero if initially different from zero. The rate of approach to

zero is greater than or equal to that expected in the absence of hitchhiking.

The fourth notable LD hitchhiking effect is on the expected LD when this association is

polarized by the marginal allele frequencies. Langley and Crow (1974) noted that with

molecular polymorphism data the sign of LD is typically arbitrary. They proposed to orient

LD such that it reflected the deviation for the expected most frequent gametic type and
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Figure 11: Probability distributions of the polarized LD Cω(tf ) and the squared correlation

coefficient R2(tf ), obtained from numerical simulations using rLR/s = 0.02 and 1/(2N) =

0.00005. The polarized LD Cω(tf ) tends to be positive for small rRS/s. (a) P[Cω(tf ) < c].

(b) P[R2(tf ) < c].

demonstrated that under quadratic stabilizing selection this measure of LD, denoted Cω, is

negative. Under hitchhiking the average Cω tends to be positive. This can be understood

as the consequence of the fact that the neutral alleles at each site on the initially selected

haplotype tend to rise to frequencies greater than 0.5 and the LD between those alleles

is positive. A bias in the distribution of Cω either regionally or across the genome could

be interpreted as evidence that hitchhiking is shaping LD. Thus the frequency averaged

hitchhiking effect on LD is to drive it to zero. But as shown in Figure 11a there is a bias

with respect to marginal frequencies at the two neutral sites; Cω(tf ) tends to be positive

for small r/s. And, of course, there is a broad range of r in which the variance of LD is

increased when the selected site is outside the two neutral sites. Figure 11b shows that the

projection of the probability distribution of the squared correlation coefficient R2(tf ) also

has a peak for small r/s, near 0.02.

The genomic scale over which hitchhiking has a significant effect on heterozygosity and

the frequency spectrum has been considered previously. Beyond the obvious r � s inherent

in the approximation, Stephan et al. (1992) showed that the reduction in heterozygosity

was approximately proportional to 1− (2N)−4r/s. Simulations of Braverman et al. (1995)

indicated a similar scale and shape to the skewness in the frequency spectrum as measured

28



by Tajima’s D (also see Durrett and Schweinsberg 2005). In studying the expectation

of the linkage disequilibrium caused by hitchhiking we notice a striking common function

A(t, r/s) that relates the averages of both heterozygosity and LD to what they would be in a

large population in the absence of hitchhiking. We are tempted to speculate that this simple

function may be fundamental to average dynamics of other moments of allele frequencies

under the hitchhiking scenario.

While the effect of hitchhiking on the average CLR is to drive it toward zero, this is clearly

not expected for C2
LR, R2 or the absolute value of CLR. We have not obtained an analytic

expression for such expectations but simulated results such as those shown in Figures 3, 4

and 11 indicate that the hitchhiking effect on magnitude of CLR between neutral sites on the

same side of the selected site can be substantial.

Our results were derived using a deterministic three-locus model of hitchhiking. Similar

results hold for the pseudohitchhiking model (Gillespie 2000 and unpublished results). We

have compared both models. The recursion equations of the pseudohitchhiking model are a

good approximation of the dynamics of the three-locus model if the selected locus is outside

the two neutral loci and the distance between the selected locus to either one of the neutral

loci is much larger than the distance between the two neutral loci. In this parameter region,

LD predicted by both models decays more quickly than under neutrality. How might these

conclusions about the theoretical hitchhiking dynamics of LD influence the interpretation of

population genomic polymorphism and divergence? Certainly it seems to inform any effort

to identify regions in the genomes of natural populations in which there has been very recent

selected substitution of newly arising mutations or otherwise rare variants. Hitchhiking may

not increase LD in the neighborhood of a selected site as it has been widely thought, rather it

can decrease it especially when the neutral sites are on opposite sides of the selected locus (see

Figure 4). More generally LD that is built up by hitchhiking shortly after the occurrence of

a favored mutation is quickly destroyed (even before fixation is reached). As a consequence,

genomic regions around targets of recent positive directional selection are expected to exhibit

a lack of LD, which is not simply due to the variation-reducing force of hitchhiking. This

local dip in the magnitude of LD may be of use in the localization of targets of positive

selection in the genome. Given the current debate of how various variation-reducing forces

can be distinguished (in particular, bottlenecks from selective sweeps; Glinka et al. 2003;

Haddrill et al. 2005), there is merit in attempting to include the specific pattern of LD

predicted by these analyses into the methods for identifying targets of selection by selective

sweeps (e.g. Kim and Stephan 2002; Kim and Nielsen 2004). Because populations that
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have undergone population size bottlenecks should show elevated genome-wide levels of LD,

regions lacking LD around targets of selection may be more easily distinguishable from the

rest of the loci than when statistics that are solely based on the reduction of variation are

used.

We have not attempted to extend our results to situations in which recurring and ge-

nomically randomly distributed hitchhiking events occur. The significant impediment to the

analysis of the effect of such recurrent hitchhiking on heterozygosity may be the impact of

simultaneous events within the same genomic region. But if selection is strong and events

sufficiently rare such occurrences may be negligible (Kaplan et al. 1989; Durrett and

Schweinsberg 2005). While this issue of the dynamic interaction of simultaneous linked

hitchhiking events may well remain for the analysis of the impact of hitchhiking on LD, there

is clearly a second considerable issue. While in large populations the heterozygosity does

not change in between hitchhiking events, that is not true of LD which, of course, decays

in magnitude at rate r. If the rate of recurrent and randomly distributed hitchhiking event

were sufficiently rare and there were no other force causing LD, the results given above are

applicable, since LD would decay to zero throughout the genomic region before the next

event. Given that LD is, in fact, commonly present on some scale in the various studied

species, further analysis and/or simulations are warranted to make a general prediction of

the genomic pattern.
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APPENDIX

Quasi-invariance (embedded selected locus case): In this section, we examine in more

detail the case where the selected locus is between the neutral loci. More exactly, we wish

to keep the sum rLS + rRS fixed to some value, say ρ, and consider varying rLS and rRS

while satisfying that condition. To avoid being long-winded, we call this kind of translation

of the selected locus a constrained S-translation. We wish to show that the dynamics of

certain linkage disequilibria is quasi-invariant, as we clarify presently, under the constrained

S-translation.

First, note that the dynamics of pS does not depend at all on the position of the selected

locus. Then, as rLR = rLS + rRS for the case under consideration, recursions (6) and (10) do

not change under the constrained S-translation. Since rLS,R = rRS and rRS,L = rLS, we have

rLS,R +rRS,L = rRS +rLS and rLRS = rLR,S +rRS +rLS. If no double-crossovers are allowed, then

rLR,S is identically zero. Note that CLS∆̃CRS +CRS∆̃CLS = [g(rLS)+g(rRS)]CLSCRS, and that

the sum g(rLS) + g(rRS) does not change under the constrained S-translation. Therefore,

recursions (7) and (11) do not change under the constrained S-translation, as long as rLR,S

does not depend on where in-between the neutral loci the selected locus is located.

We now turn to the product CLSCRS. For ease of notation, we define

f(r; k) := [1− pS(k)ãS,∅(k)][1 + qS(k)ãS,∅(k)]− r {1 + ãS,∅(k)[qS(k)− pS(k)]− ãS,S(k)pS(k)qS(k)}
(A1)

Then, (4), (5), (8) and (9) imply

CLS(k + 1) = f(rLS; k)CLS(k) and CRS(k + 1) = f(rRS; k)CRS(k).

The product CLSCRS satisfies the recursion

CLS(k + 1)CRS(k + 1) = f(rLS; k)f(rRS; k)CLS(k)CRS(k).

The quantity f(rLS; k)f(rRS; k) can be written as

α(k) + (rLS + rRS)β(k) + rLSrRSγ(k),

where

α(k) := [1− pS(k)ãS,∅(k)]2[1 + qS(k)ãS,∅(k)]2,

β(k) := [1− pS(k)ãS,∅(k)][1 + qS(k)ãS,∅(k)] {1 + ãS,∅(k)[qS(k)− pS(k)]− ãS,S(k)pS(k)qS(k)} ,

γ(k) := {1 + ãS,∅(k)[qS(k)− pS(k)]− ãS,S(k)pS(k)qS(k)}2 .
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Under the restriction that rLS + rRS = ρ, the maximum value of rLSrRS is ρ2/4, whereas the

minimum is 0. Since γ(k) is positive definite, the maximum variation of CLS(n)CRS(n), as the

selected locus moves between the neutral loci, can be obtained by comparing CLS(n)CRS(n)

at rLSrRS = 0 with that at rLSrRS = ρ2/4. Define maximal relative variation ε(n) as

ε(n) :=
CLS(n)CRS(n) |rLS= ρ

2
,rRS= ρ

2
− CLS(n)CRS(n) |rLS=0,rRS=ρ

CLS(n)CRS(n) |rLS=0,rRS=ρ

.

It is straightforward to show that

ε(n) =
ρ2

4

n−1∑
k=1

γ(k)

α(k) + ρ β(k)
+ · · · ,

where “· · · ” represents terms proportional to ρm, m ≥ 4. In the case of directional selection,

γ(k)/(α(k)+ρ β(k)) is of order 1 for all values of s, h, pS(k) and ρ. Therefore, ε(n) = O(ρ2n),

and we conclude that relative variation increases as time passes.

The dynamics of CLR and CLRS is almost (or quasi) invariant under the constrained S-

translation in the following sense: the range of ρ in which selection has observable influence

on the dynamics of CLR and CLRS is where ρ � 1. In that case, it is possible to maintain

ε(n) = O(ρ2n) � 1 throughout the entire period from the initial generation to the fixation

generation. We would then observe almost no variation in CLR or CLRS as the location of the

selected locus is varied between the neutral loci. For large ρ, selection has little influence on

CLR and CLRS, so their dynamics should be approximately invariant under translation of the

selected locus.

An exact symmetry: Suppose that the selected locus is outside the two neutral loci,

and that recombination fractions rLS, rRS, rLR, rLRS, rLR,S, rRS,L, and rLS,R appearing in the

system of full recursions (1)–(11) are fixed. In what follows, the dominance coefficient

h is assumed to be arbitrary. Let {pS(0), pL(0), pR(0), CLS(0), CRS(0), CLR(0), CLRS(0)} and

{p′
S(0), p

′
L(0), p′

R(0), C ′
LS(0), C ′

RS(0), C ′
LR(0), C ′

LRS(0)} denote two different sets of initial con-

ditions. At generation n > 1, we use “prime” to refer to the allele frequencies and LDs

obtained using the second set of initial conditions.

We first consider the 2nd order LDs involving the selected locus.

Lemma 1 Suppose that CLS(0) = C ′
RS(0) and CRS(0) = C ′

LS(0). Then, for all n ≥ 1,

CLS(n)CRS(n) = C ′
LS(n)C ′

RS(n).
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Proof: This result follows from induction on n. Recall that

CLS(n) = f(rLS; n− 1)CLS(n− 1) and CRS(n) = f(rRS; n− 1)CRS(n− 1),

where the function f(r, k) is defined as in (A1). Similarly,

C ′
LS(n) = f(rLS; n− 1)C ′

LS(n− 1) and C ′
RS(n) = f(rRS; n− 1)C ′

RS(n− 1).

If CLS(0) = C ′
RS(0) and CRS(0) = C ′

LS(0), then

CLS(1)CRS(1) = [f(rLS; 0)CLS(0)]× [f(rRS; 0)CRS(0)]

= [f(rLS; 0)C
′
RS(0)]× [f(rRS; 0)C

′
LS(0)]

= [f(rLS; 0)C
′
LS(0)]× [f(rRS; 0)C

′
RS(0)] = C ′

LS(1)C
′
RS(1).

Suppose that the claim is true for all 1 ≤ n ≤ k. Then, for n = k + 1,

CLS(k + 1)CRS(k + 1) = [f(rLS; k)CLS(k)]× [f(rRS; k)CRS(k)]

= f(rLS; k)f(rRS; k)CLS(k)CRS(k)

= f(rLS; k)f(rRS; k)C ′
LS(k)C ′

RS(k)

= [f(rLS; k)C ′
LS(k)]× [f(rRS; k)C ′

RS(k)]

= C ′
LS(k + 1)C ′

RS(k + 1),

where the third line follows from the induction hypothesis.

Using the above lemma, we can obtain the following result regarding the 3rd order LD

and the LD between the neutral loci:

Proposition 1 Suppose that pS(0) = p′
S(0), CLS(0) = C ′

RS(0), CRS(0) = C ′
LS(0), CLR(0) =

C ′
LR(0), and CLRS(0) = C ′

LRS(0). Then,

CLR(n) = C ′
LR(n) and CLRS(n) = C ′

LRS(n)

for all n ≥ 1.

Proof: First, note that pS(0) = p′
S(0) implies pS(n) = p′

S(n), ãS,∅(n) = ã′
S,∅(n) and ãS,S(n) =

ã′
S,S(n) for all n ≥ 1. Therefore, since C ′

LSC
′
RS = CLSCRS by Lemma 1, we obtain

∆̃C ′
LR = −rLRC ′

LR + ãS,∅(1− rLR)C ′
LRS + ãS,SrLR CLSCRS,
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which is equivalent to (10), and

∆C ′
LR = ∆̃C ′

LR − ã2
S,∅C ′

LSC
′
RS = ∆̃C ′

LR − ã2
S,∅CLSCRS,

which is equivalent to (6). Similarly,

∆̃C ′
LRS = [−rLRS + ãS,∅(1− rLRS)(1− 2pS) + ãS,SrLR,SpSqS] C

′
LRS

−ãS,∅(rLS,R + rRS,L)pSqSC
′
LR

− [ãS,∅(2− rLS,R − rRS,L)− ãS,S(1− 2pS)(rLS,R + rRS,L)] CLSCRS

and

∆C ′
LRS = ∆̃C ′

LRS − ãS,∅

[
pSqS∆̃C ′

LR + C ′
LS∆̃C ′

RS + C ′
RS∆̃C ′

LS

]
+ 2ã3

S,∅pSqSC
′
LSC

′
RS

= ∆̃C ′
LRS − ãS,∅

{
pSqS∆̃C ′

LR + [g(rLS) + g(rRS)]C
′
LSC

′
RS

}
+ 2ã3

S,∅pSqSC
′
LSC

′
RS

= ∆̃C ′
LRS − ãS,∅

{
pSqS∆̃C ′

LR + [g(rLS) + g(rRS)]CLSCRS

}
+ 2ã3

S,∅pSqSCLSCRS

are equivalent to (11) and (7), respectively. Hence, C ′
LR and C ′

LRS satisfy exactly the same

set of recursions as do CLR and CLRS. Since C ′
LR(0) = CLR(0) and C ′

LRS(0) = CLRS(0), it thus

follows that C ′
LR(n) = CLR(n) and C ′

LRS(n) = CLRS(n) for all n ≥ 1.
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