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Abstract

The sample frequency spectrum of a segregating site is the probability dis-
tribution of a sample of alleles from a genetic locus, conditional on observing
the sample to be polymorphic. This distribution is widely used in popu-
lation genetic inferences, including statistical tests of neutrality in which a
skew in the observed frequency spectrum across independent sites is taken
as a signature of departure from neutral evolution. Theoretical aspects of
the frequency spectrum have been well studied and several interesting re-
sults are available, but they are usually under the assumption that a site has
undergone at most one mutation event in the history of the sample. Here,
we extend previous theoretical results by allowing for at most two mutation
events per site, under a general finite alleles model such that the mutation
rate is independent of current allelic state but the transition matrix is other-
wise completely arbitrary. Our results apply both to nested and nonnested
mutations. Only the former has been addressed previously, whereas here we
show it is the latter that is more likely to be observed except for very small
sample sizes. Further, for any mutation transition matrix, we obtain the
joint sample frequency spectrum of the two mutant alleles at a triallelic site,
and derive a closed-form formula for the expected age of the younger of the
two mutations given their frequencies in the population. Several large-scale
resequencing projects for various species are presently under way and the
resulting data will include some triallelic polymorphisms. The theoretical
results described in this paper should prove useful in population genomic
analyses of such data.
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1. Introduction

The frequency spectrum for a sample of genetic data taken from a pop-
ulation is a useful statistic, containing more information than single-value
summaries like the number of segregating sites, yet remaining more tractable
than working with the full data configuration. The sample frequency spec-
trum for a polymorphic site is defined as the probability distribution of the
number of copies of the derived, or mutant, allele in a sample of size n. For a
sample with many polymorphic sites, a histogram of the number of sites with
i copies of the mutant allele present in the sample, for each i = 1, . . . , n− 1,
can be compared to the sample frequency spectrum. In this manner, one
can test the applicability of a given reproductive model by comparing depar-
tures of the observed frequency spectrum from its expectation. Most of the
widely-used tests of neutrality are either directly or indirectly based on this
observation (Achaz, 2009). Under a standard, neutral, coalescent model, and
assuming the infinite sites model of mutation, the sample frequency spectrum
is known in closed-form:

φ(i) =
i−1

n−1
∑

j=1

j−1

, (1)

where φ(i) is the probability that a mutant allele is present in exactly i copies
of the sample [Watterson (1975); see Fu (1995), Griffiths and Tavaré (1998)
for a coalescent approach]. This appealing result has been generalized to a
number of further settings, including variable population size (Griffiths and
Tavaré, 1998; Polanski and Kimmel, 2003), and genic selection (Griffiths,
2003). Bustamante et al. (2001) obtain a number of results related to the
frequency spectrum for mutant sites under selection in the Poisson random
field model of Sawyer and Hartl (1992).

All of this work assumes the infinite sites model of mutation. In particu-
lar, the mutation giving rise to the new allele is assumed to have occurred at
most once in the genealogy relating the sample. Since the per-site mutation
parameter θ is small (typically 0.001 ≤ θ ≤ 0.01 for humans, where θ = 4Nu,
N is the diploid effective population size, and u is the probability of a muta-
tion event per individual per generation), the assumption that a polymorphic
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site has mutated at most once is usually reasonable. Occasionally, however,
one might observe a site that must have undergone more than one mutation:
it may be triallelic, or may be incompatible with the gene genealogy inferred
from completely linked sites. Moreover, recurrent mutations can affect sites
that still appear to conform to the infinite sites assumption. Thus far there
have been no clear theoretical grounds for how to deal with nonconforming
sites when working with the frequency spectrum. For example, one simple
solution is simply to bin both the mutant alleles of a triallelic site and then
to treat it as if it were diallelic (e.g. Johnson and Slatkin, 2006), but this is
clearly not ideal.

In this work we obtain a more general distribution for the number of
copies of mutant alleles at a site, by allowing at most two mutation events
in the genealogy relating the sample. We employ a general finite sites model
in which a fixed but arbitrary number of alleles, K, may be observed at
the site of interest, and mutations between alleles occur according to some
transition matrix P . The sample frequency spectrum is then more generally
defined to be the joint probability distribution of the number of copies of
each of the mutant alleles, conditional on at least one mutant allele. We
assume the standard coalescent (Kingman, 1982), and derive our results by
arguments using topological constraints induced on the genealogy by the
two mutations. This approach is most closely related to the work of Wiuf
and Donnelly (1999) and Hobolth and Wiuf (2009), who studied genealogies
with one mutation and genealogies with two nested mutations, respectively.
Among other results, Wiuf and Donnelly (1999) obtain the density of the
age of a single mutant allele given its population frequency, and Hobolth
and Wiuf (2009) obtain the joint and marginal sample frequency spectra of
two mutant alleles when the mutations are genealogically nested, and the
age of the younger of the two nested mutants. In this paper we extend
these results to nonnested mutations, which, as we show below, is the more
important of the two cases: With increasing sample size the probability
that two mutations are nonnested approaches one, and it is even the most
probable outcome for sample sizes greater than four. With results for both
cases in hand, by averaging over whether or not the mutations are nested we
obtain the sample frequency spectra of two mutant alleles regardless of their
topological placement in the genealogy. Furthermore, Hobolth and Wiuf
(2009) treat the two mutants as having occurred at two completely linked
but distinct sites, so that the younger and older of the two mutants are always
identifiable. In this work we model the two mutations as occurring at the
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same site, allowing for the more general possibility of parallel mutations or
back mutations. Particular choices of P in our model allows one to include
the setting of Hobolth and Wiuf (2009) as a special case.

When introducing a model for mutation there are two cases to consider:

1. The allele of the most recent common ancestor (MRCA) of the sample
is known, usually by comparison with an outgroup that is related by a
suitable evolutionary distance.

2. The type of the MRCA is unknown.

In this work we restrict ourselves to the first case. In principle it has more
power, since mutant alleles observed i times and n− i times are distinguish-
able. When it is not known which of the alleles is the mutant one, one
must resort to the folded frequency spectrum, in which the two categories
are binned together. In any case, when the type of the MRCA is unknown
and the mutation transition matrix takes on a special parent-independent
form—that is, Pij is independent of i, for each i and j—then a closed-form
sampling distribution for each site is available, which applies for any number
of mutations in the history of the sample. This formula is essentially due
to Wright (1949). Use of Wright’s formula for making inferences regarding
the site frequency spectrum is considered by Desai and Plotkin (2008). Note
that because here we always assume that the allele of the MRCA is known,
Wright’s formula does not apply even when mutation is parent-independent.
For larger mutation rates, the assumption that a genealogy has undergone
at most two mutations and that the allele of the MRCA is known each be-
comes less justifiable, and one should revert to using a folded site frequency
spectrum.

In the special case of parent-independent mutation with the type of the
MRCA unknown, one can use Wright’s formula as described above. It also
applies to a diallelic model (K = 2), which can always be transformed into
an equivalent parent-independent one. Aside from these cases, there are no
classical results for the sample frequency spectrum under more general tran-
sition matrices. In this work we allow P to remain a general transition matrix
apart from the restriction that the mutation rate at the locus is independent
of its current allelic state. This is equivalent to ensuring Pii = 0 for each
i = 1, . . . , K, since the effective rate at which an allele mutates to another
distinct allele is θ(1−Pii); in more general mutation models, Pii can vary for
different i to allow different rates of transition out of different allelic states. It
should be possible to modify our results to relax this assumption, albeit with
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a noticeable cost in bookkeeping, and so we do not attempt this throughout
the work. An exception can be made when we study triallelic sample config-
urations later in the paper: genealogies associated with such configurations
must have undergone at least two nontrivial mutation events, and we can
allow Pii > 0 without any additional effect. Essentially, having observed a
triallelic sample together with the assumption that there were at most two
mutation events means we have conditioned on such trivial mutations not
having occurred, even if we allow them back in the model. When studying
triallelic configurations, we also find that our results simplify substantially
with the following additional assumption:

Pab = Pcb, and Pac = Pbc, (2)

where the three observed alleles are a, b, and c, and a is the ancestral allele.
The condition (2) is satisfied by, and is weaker than, parent-independent
mutation. It requires only that parent-independence holds in relevant entries
of P , namely, the rates of transition to each of the observed mutant alleles
from the ancestral allele and from the other observed mutant allele.

Our paper is structured as follows. In Section 2 we introduce the recursion
relation for the distribution of the sample configuration, which is well-known
and is based on coalescent arguments. We utilize this recursion to obtain
results for coalescent trees with one mutation event (Section 3) and two
mutation events (Section 4). These results are made tractable in Section 5
by letting the mutation parameter go to zero, from which we can obtain
useful expressions when we condition on certain observed patterns (e.g. that
the site is triallelic) in Section 6. In Section 7 we also investigate the mean
age in the population of a mutant allele at a triallelic site, and in Section 8
we investigate the accuracy of our expressions when the mutation parameter
is in fact nonzero. We conclude with some brief discussion in Section 9.

2. Sample recursion

Denote an unordered sample configuration at a particular site by n =
(n1, n2, . . . , nK), where K is the fixed and known number of alleles which
could be observed at this site, and denote the sample size by n =

∑K

i=1 ni.
Members of the sample are referred to as gametes, so that ni denotes the
number of gametes in the sample with allele i. We fix the ancestral allele and
denote it as a ∈ {1, . . . , K}. Denote by Es the event that there are exactly s
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mutation events in the history of the sample. We will write the probability
of observing the configuration n as p(n), and the joint probability of this
configuration together with Es as p(n, Es). We can then obtain the sample
frequency spectrum from these probabilities. For example, by assuming two
possible alleles, denoted 1 and 2 where 1 is ancestral, and assuming precisely
one (or at least one) mutation event, the distribution (1) is obtained as

φ(i) = lim
θ→0

p((n − i, i) | E1) = lim
θ→0

p((n − i, i), E1)
∑n−1

j=1 p((n − j, j), E1)
,

i = 1, . . . , n − 1, since p((n − i, i), E1) = θi−1 + O(θ2) as θ → 0 [see (17)
below].

Define a history to be the sequence of configurations n 7→ n′ 7→ . . . 7→ ea

as we trace the ancestry of the sample back in time. Here, ei denotes a sample
comprised of a single gamete whose allele is i, so ea denotes the sample
comprising only the MRCA. A history can be regarded as an equivalence
class in the space of genealogies with mutations that relate the sample. At
each step in the sequence, at which the configuration is modified, we do not
record which lineages are involved in each event, so there are many possible
genealogies associated with any given history.

The probability p(n) satisfies the recursion relation

p(n) =
K
∑

j=1

nj − 1

n − 1 + θ
p(n − ej) (3)

+
θ

n − 1 + θ

K
∑

i=1

K
∑

j=1

Pij

ni + 1 − δij

n
p(n − ej + ei),

with boundary condition p(ei) = δia, where δij is the Kronecker delta. Simi-
larly, the probability p(n, Es) satisfies the recursion relation

p(n, Es) =

K
∑

j=1

nj − 1

n − 1 + θ
p(n − ej, Es) (4)

+
θ

n − 1 + θ

K
∑

i=1

K
∑

j=1

Pij

ni + 1 − δij

n
p(n − ej + ei, Es−1),

with boundary condition p(ei, Es) = δiaδs0. Equations (3) and (4) are ob-
tained from similar ones in Griffiths and Tavaré (1994), with slight modifi-
cations to the boundary conditions to reflect that we consider the allele of
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the MRCA to be known. Each path back through the recursion is associated
with a particular history, and we use this observation to obtain our results
for the sample frequency spectrum. To illustrate the method, in Section 3
we first consider histories with precisely one mutation event. Henceforth we
assume that Pii = 0 for i = 1, . . . , K, so that mutation events always result
in a change of allele, and subsequent configurations in any history are always
distinct. Finally, we also use the following notation: for a nonnegative real
number x and a positive integer k,

(x)k := x(x + 1) . . . (x + k − 1)

denotes the kth ascending factorial of x.

3. One mutation event

Refer to the intervals back in time while there existed n, n − 1, . . . , 2
ancestors to the sample as levels. Wiuf and Donnelly (1999) proceed by
conditioning on the level at which the unique mutation event occurred, and
then considering the distribution of the number of offspring of each lineage
from that level. Here, we take a related approach but instead argue directly
from (4).

Suppose we observe the sample configuration n = naea + nbeb, where
b 6= a is some mutant allele, and we have na > 0, nb > 0, and na + nb = n.
Denote the sample configuration immediately before (more recently than) the
time of the unique mutation event by l. Conditional on the event E1, that
exactly one mutation event occurred in the history of the sample, l must be
of the form l = laea +eb for some la with 1 ≤ la ≤ na (Figure 1). We refer to
a history that passes through the state l as compatible with l. Thus, a history
H1 that gives rise to n, is compatible with l, and is consistent with E1, must
be a sequence of configurations of the form n 7→ . . . 7→ l 7→ (la + 1)ea 7→
. . . 7→ ea. We make use of the following simple but useful lemma.

Lemma 3.1. Conditional on E1, on the observed sample configuration n =
naea+nbeb, and on the configuration l = laea+eb at the time of the mutation
event, the distribution of compatible histories H1 is uniform. It is given by

p(H1 | E1, n, l) =

(

n − la − 1

nb − 1

)−1

.
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Moreover, the (unconditional) probability of such histories is

p(H1) = p(H1, E1, n, l) = θPab

(na − 1)!(nb − 1)!

(1 + θ)n−1
·

la
la + θ

. (5)

A proof of Lemma 3.1, along with our other results, is given in Appendix
A. Summing over the

(

n−la−1
nb−1

)

histories and over l, we obtain

p(n, E1) =

na
∑

la=1

(

n − la − 1

nb − 1

)

p(H1, E1, n, l)

=























θPab

(n − 1)!

(1 + θ)n−1

na
∑

la=1

(

na−1
la−1

)

(

n−1
la

) ·
1

la + θ
,

if n = naea + nbeb, where b 6= a and 1 ≤ na, nb ≤ n,

0, otherwise.

(6)

We now extend this approach to histories with precisely two mutation events.

4. Two mutation events

There are four cases to consider (Figure 2). The two mutation events are
either nested (denoted E2N ), nonnested (E2NN ), on the same edge (E2S), or
basal (E2B). We define each of these in further detail below; for now note
that nested excludes the case that the mutations occurred on the same edge,
and nonnested excludes the case that the mutations reside on the two basal
edges of the tree. We use superscript notation to further specify the alleles
to which the two age-ordered mutation events gave rise, so for example E

(b,c)
2N

(⊆ E2N ) denotes the event that there were precisely two mutation events,
the mutations were nested, that the older mutation gave rise to a b allele, and
that the younger mutation gave rise to a c allele. Note that in this example
we must have a 6= b and b 6= c but it may or may not be the case that a = c.
This case will be dealt with separately. Similar special cases arise for E2NN ,
E2S , and E2B. We now consider each of the four events in further detail.

4.1. Two nested mutations

In this case the clade subtended by one mutation is a proper subclade of
the other [Figure 2(a)]. The genealogy of two nested mutations was also stud-
ied by Hobolth and Wiuf (2009), though using a different model of mutation.
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Consider the event E
(b,c)
2N , and assume for now that a 6= c, so our observation

is of the form n = naea+nbeb+ncec, with na, nb, nc > 0, and na+nb+nc = n.
The sample configuration immediately before the younger mutation event is
of the form ly = lyea +meb +ec, and immediately before the older mutation
event it is of the form lo = loea +eb. For the mutations to be nested we must
have 1 ≤ m ≤ nb, and 1 ≤ lo ≤ ly ≤ na. Denote a history compatible with
these requirements by H2N ; this is a sequence of configurations of the form
n 7→ . . . 7→ ly 7→ (ly − ec + eb) 7→ . . . 7→ lo 7→ (lo − eb + ea) 7→ ea. Using
(

n

na,nb,nc

)

to denote the trinomial coefficient, we have the following lemma:

Lemma 4.1. Conditional on E
(b,c)
2N , on the observed sample configuration

n = naea +nbeb +ncec, and on the sample configurations immediately before
the times of the two nested mutation events, the distribution of compatible
histories H2N is uniform. It is given by

p(H2N | E
(b,c)
2N , n, ly, lo) =

[(

n − ly − m − 1

na − ly, nb − m, nc − 1

)(

m + ly − lo
m

)]−1

.

Moreover, the (unconditional) probability of such histories is

p(H2N ) = p(H2N , E2N , n, ly, lo)

= θ2PabPbc

(na − 1)!(nb − 1)!(nc − 1)!

(1 + θ)n−1

×
mlo

(m + ly + θ)(lo + θ)
·

m + 1

m + ly + 1
. (7)

Proof. See Appendix A.

Summing over compatible histories and over valid combinations of m, ly,
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and lo, we obtain

p(n, E
(b,c)
2N ) =

na
∑

ly=1

ly
∑

lo=1

nb
∑

m=1

(

n − ly − m − 1

na − ly, nb − m, nc − 1

)(

m + ly − lo
m

)

p(H2N )

=



















































θ2PabPbc

(n − 1)!

(1 + θ)n−1

na
∑

ly=1

ly
∑

lo=1

nb
∑

m=1

(

na−1
ly−1

)(

nb−1
m−1

)(

m+ly−lo
m

)

(

n−1
m+ly

)(

m+ly
m+1

)

×
1

m + ly + 1
·

lo
lo + θ

·
1

m + ly + θ
,

if n = naea + nbeb + ncec, where a, b, c are all

distinct, and 1 ≤ na, nb, nc ≤ n;

0, otherwise.

(8)

One can relax the age-ordering on mutations by noting that, for n = naea +
nbeb + ncec,

p(n, E2N ) = p(n, E
(b,c)
2N ) + p(n, E

(c,b)
2N ).

Similar relaxations apply to the remaining cases described below.
Finally, we return to the possibility that a = c. We denote this by

E
(b,a)
2N , and have a sample of the form n = naea + nbeb, with na, nb > 0, and

na+nb = n. Now, na comprises gametes whose alleles are truly ancestral and
gametes whose alleles are atavistic. We can still however apply the previous
result [equation (8)], first by treating a and c as if they were distinct, then
summing over all possible values for the number of observed a alleles and
the number of observed c alleles such that their sum is held fixed, and finally
setting c = a in the resulting expression:

p(n, E
(b,a)
2N ) =

na−1
∑

k=1

p(kea + nbeb + (n − nb − k)ec, E
(b,c)
2N )

∣

∣

c=a

=







































θ2PabPba

(n − 1)!

(1 + θ)n−1

na−1
∑

ly=1

ly
∑

lo=1

nb
∑

m=1

(

na−1
ly

)(

nb−1
m−1

)(

m+ly−lo
m

)

(

n−1
m+ly

)(

m+ly
m+1

)

×
1

m + ly + 1
·

lo
lo + θ

·
1

m + ly + θ
,

if n = naea + nbeb, where b 6= a, and 1 ≤ na, nb ≤ n;

0, otherwise.
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4.2. Two nonnested mutations

In this case the clades subtended by the two mutations are disjoint [Fig-
ure 2(b)]. We also exclude the possibility that the two mutations reside
on the basal (innermost) branches of the coalescent tree, which could re-

sult in a monomorphic sample. Consider the event E
(b,c)
2NN , where b 6= c,

n = naea + nbeb + ncec, with na, nb, nc > 0, and na + nb + nc = n. Suppose
that, immediately before the younger mutation, the sample configuration
is ly = lyea + meb + ec, and immediately before the older mutation it is
lo = loea + eb. Consideration of the genealogy [Figure 2(b)] leads to the
following restrictions: 1 ≤ m ≤ nb, 1 ≤ ly ≤ na, and 1 ≤ lo ≤ ly + 1. One
can argue as in the previous subsection to obtain the following:

Lemma 4.2. Conditional on E
(b,c)
2NN , on the observed sample configuration

n = naea +nbeb +ncec, and on the sample configurations immediately before
the times of the two nonnested mutation events, the distribution of compatible
histories H2NN is uniform. It is given by

p(H2NN | E
(b,c)
2NN , n, ly, lo) =

[(

n − m − ly − 1

na − ly, nb − m, nc − 1

)(

m + ly − lo
m − 1

)]−1

.

Moreover, the (unconditional) probability of such histories is

p(H2NN ) = p(H2NN , E
(b,c)
2NN , n, ly, lo)

= θ2PabPac

(na − 1)!(nb − 1)!(nc − 1)!

(1 + θ)n−1

×
lylo

(ly + m + θ)(lo + θ)
·

ly + 1

ly + m + 1
. (9)

Using this lemma to sum over compatible histories and over m, ly, and lo,

11



after some simplification we obtain

p(n, E
(b,c)
2NN ) =

nb
∑

m=1

na
∑

ly=1

ly+1
∑

lo=1

(

n − m − ly − 1

na − ly, nb − m, nc − 1

)(

m + ly − lo
m − 1

)

p(H2NN )

=



















































θ2PabPac

(n − 1)!

(1 + θ)n−1

nb
∑

m=1

na
∑

ly=1

ly+1
∑

lo=1

(

na−1
ly−1

)(

nb−1
m−1

)(

m+ly−lo
m−1

)

(

n−1
m+ly

)(

m+ly
ly+1

)

×
lo

lo + θ
·

1

m + ly + 1
·

1

m + ly + θ
,

if n = naea + nbeb + ncec, where a, b, c are all

distinct, and 1 ≤ na, nb, nc ≤ n;

0, otherwise.

(10)

Also as before, the result (10) can also be used to handle the special case
b = c:

p(n, E
(b,b)
2NN ) =

nb−1
∑

k=1

p(naea + keb + (n − na − k)ec, E
(b,c)
2NN )

∣

∣

b=c

=







































θ2P 2
ab

(n − 1)!

(1 + θ)n−1

nb−1
∑

m=1

na
∑

ly=1

ly+1
∑

lo=1

(

na−1
ly−1

)(

nb−1
m

)(

m+ly−lo
m−1

)

(

n−1
m+ly

)(

m+ly
ly+1

)

×
lo

lo + θ
·

1

m + ly + 1
·

1

m + ly + θ
,

if n = naea + nbeb, where b 6= a, and 1 ≤ na, nb ≤ n;

0, otherwise.

4.3. Two mutations on the same branch

Here, two mutation events reside on the same edge of the coalescent tree,
as illustrated in Figure 2(c). Consider first the subevent E

(b,c)
2S , with a 6= c,

so that n = naea + ncec, with na, nc > 0, and na + nc = n. Suppose
the configuration immediately prior to the younger mutation event is ly =
lyea + ec, and immediately prior to the older mutation is lo = loea + eb. We
argue as before to yield the following:

Lemma 4.3. Conditional on E
(b,c)
2S , on the observed sample configuration

n = naea + ncec, and on the sample configurations immediately before the

12



times of the two mutation events, the distribution of compatible histories H2S

is uniform. It is given by

p(H2S | E
(b,c)
2S , n, ly, lo) =

(

n − ly − 1

nc − 1

)−1

.

Moreover, the (unconditional) probability of such histories is

p(H2S) = p(H2S , E
(b,c)
2S , n, ly, lo) (11)

= θ2PabPbc

(na − 1)!(nc − 1)!

(1 + θ)n−1

·
lo

lo + θ
·

1

(ly + 1)(ly + θ)
.

Hence, summing over compatible histories and then over lo and ly, we
obtain

p(n, E
(b,c)
2S ) =

na
∑

ly=1

ly
∑

lo=1

(

n − ly − 1

nc − 1

)

p(H2S)

=



































θ2PabPbc

(n − 1)!

(1 + θ)n−1

na
∑

ly=1

ly
∑

lo=1

(

na−1
ly−1

)

(

n−1
ly

) ·
lo

lo + θ
·

1

ly(ly + 1)(ly + θ)
,

if n = naea + ncec, where a, b, c are all distinct,

and 1 ≤ na, nc ≤ n;

0, otherwise.

(12)

One can relax the restriction on the unobserved allele being b by summing
over each possible b. This is achieved simply by replacing PabPbc in (12) with
(P 2)ac.

When a = c, the sample must be n = nea, and repeating earlier argu-
ments we obtain

p(n, E
(b,a)
2S ) =

n−1
∑

k=1

p(kea + (n − k)ec, E
(b,c)
2S )

∣

∣

a=c

=























θ2PabPba

(n − 1)!

(1 + θ)n−1

n−1
∑

ly=1

ly
∑

lo=1

lo
lo + θ

·
1

ly(ly + 1)(ly + θ)
,

if n = nea,

0, otherwise.
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Again, the stipulation on the unobserved allele being b can be relaxed by
replacing PabPba with (P 2)aa.

4.4. Two mutations on the basal branches

Here, the mutations reside on the last two edges in the coalescent tree
to exist going back in time, as illustrated in Figure 2(d). Consider first

the subevent E
(b,c)
2B , with b 6= c, so that n = nbeb + ncec, nb, nc > 0, and

nb + nc = n. Suppose the configuration immediately prior to the younger
mutation event is ly = meb + ec. The configuration at the older mutation
event must be ea+eb. Arguing as in previous subsections yields the following:

Lemma 4.4. Conditional on E
(b,c)
2B , on the sample configuration n = nbeb +

ncec, and on the sample configurations immediately before the times of the
two mutation events, the distribution of compatible histories H2B is uniform.
It is given by

p(H2B | E
(b,c)
2B , ly) =

(

n − m − 1

nc − 1

)−1

.

Moreover, the (unconditional) probability of such histories is

p(H2B) = p(H2B, E
(b,c)
2B , n, ly)

=
θ2

1 + θ
PabPac

(nb − 1)!(nc − 1)!

(1 + θ)n−1

1

(m + 1)(m + θ)
. (13)

Hence, summing over compatible histories and over m, we obtain

p(n, E
(b,c)
2B ) =

nb
∑

m=1

(

n − m − 1

nc − 1

)

p(H2B)

=































θ2

1 + θ
PabPac

(n − 1)!

(1 + θ)n−1

nb
∑

m=1

(

nb−1
m−1

)

(

n−1
m

)

1

m(m + 1)(m + θ)
,

if n = nbeb + ncec, where a, b, c are all distinct,

and 1 ≤ nb, nc ≤ n;

0, otherwise.

(14)

Finally, when b = c the sample must be of the form n = nbeb, and the
probability of observing such a configuration as a result of two mutation
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events on the basal branches is given by

p(n, E
(b,b)
2B ) =

n−1
∑

k=1

p(keb + (n − k)ec, E
(b,c)
2B )

∣

∣

b=c

=











θ2

1 + θ
(Pab)

2 (n − 1)!

(1 + θ)n−1

n−1
∑

m=1

1

m(m + 1)(m + θ)
, if n = neb,

0, otherwise.

5. The limit θ → 0

To make further progress, we derive expressions in the limit as θ → 0.
Results are therefore approximate for nonzero θ, but should still exhibit
good accuracy when applied to human single-nucleotide polymorphism data
for example, for which θ is small, as noted in the Introduction.

Our results will be expressed in terms of harmonic numbers, for which we
use the following notation:

Hn =
n
∑

j=1

1

j
, and H(2)

n =
n
∑

j=1

1

j2
.

Further, let c
(s)
n denote the sth order generalized harmonic number (Roman,

1993), defined for s ≥ 0 and n ≥ 1 by

c(s)
n =















1, if s = 0,
n
∑

j=1

c
(s−1)
j

j
, if s > 0.

In particular,

c
(1)
n = Hn, and c

(2)
n =

n
∑

j=1

Hj

j
=

1

2

[

(Hn)2 + H(2)
n

]

. (15)

This last identity is easily verified by induction on n. To simplify notation,
we also introduce the function

d(na, nb, nc) =
1

(na + nb)(na + nb − 1)

[

1 +
n

nc

−
2n(Hn − Hnc−1)

na + nb + 1

]

, (16)

where n = na + nb + nc.
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Theorem 5.1. As θ → 0, the joint probability of observing a particular
sample configuration n together with the topological characterization of the
genealogy satisfies:

p(n, E1) =
θPab

nb

− θ2Pab

[

Hn−1

nb

+
1

na

(Hn − Hnb−1)

]

+ O(θ3), (17)

if n = naea + nbeb and 0 otherwise,

p(n, E
(b,c)
2N ) = θ2PabPbcd(na, nb, nc) + O(θ3), (18)

if n = naea + nbeb + ncec and 0 otherwise,

p(n, E
(b,a)
2N ) = θ2PabPba

[

1

nb + 1

[

1 −
n

nb

(Hn−1 − Hna−1)

]

+
Hn − 1

n − 1

]

(19)

+ O(θ3), if n = naea + nbeb and 0 otherwise,

p(n, E
(b,c)
2NN ) = θ2PabPac

[

1

nc(nb + nc)
− d(na, nb, nc)

]

+ O(θ3), (20)

if n = naea + nbeb + ncec and 0 otherwise,

p(n, E
(b,b)
2NN ) = θ2P 2

ab

[

Hnb−1

nb

−
1

na + 1

[

1 −
n

na

(Hn−1 − Hnb−1)

]

−
Hn − 1

n − 1

]

+ O(θ3), (21)

if n = naea + nbeb and 0 otherwise,

p(n, E
(b,c)
2S ) =

θ2PabPbc

na

[

n

na + 1
(Hn − Hnc−1) − 1

]

+ O(θ3), (22)

if n = naea + ncec and 0 otherwise,

p(n, E
(b,a)
2S ) = θ2PabPba

[

1 −
1

n

]

+ O(θ3), (23)

if n = nea and 0 otherwise,

p(n, E
(b,c)
2B ) =

θ2PabPac

nb + 1

[

1 −
nc − 1

nb

(Hn−1 − Hnc−1)

]

+ O(θ3), (24)
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if n = nbeb + ncec and 0 otherwise,

p(n, E
(b,b)
2B ) = θ2P 2

ab

[

H
(2)
n−1 − 1 +

1

n

]

+ O(θ3), (25)

if n = neb and 0 otherwise,

where a, b, c are all distinct.

Proof. See Appendix A.

Theorem 5.1 can be used to calculate the sample frequency spectrum of a
site that has undergone two mutations. Figure 3 shows the sample frequency
spectrum conditional on E2, for a diallelic model with alleles 1 and 2, a = 1
being ancestral [so P = ( 0 1

1 0 )]. Suppose we have a large quantity of SNP data,
which we incorrectly assume to satisfy the infinite sites model. The occasional
second mutation will distort the frequency spectrum. Figure 3 shows that if
we had used equation (1) to predict the sample frequency spectrum at a site
that had in fact undergone two mutation events, then the main effect would
be to slightly underestimate the probability that a mutant is seen in moderate
to high frequency, and to grossly overestimate the probability that a mutant
is at very low frequency. This does not mean, however, that we should expect
the sample frequency spectrum of a site undergoing at most two mutation
events to be strongly affected. An upper bound on this effect can be found
by considering the distribution of the number of mutation events (Tavaré,
1984):

p(Es) =
n − 1

θ

n−1
∑

j=1

(−1)j−1

(

n − 2

j − 1

)(

θ

j + θ

)s+1

. (26)

For example, suppose we compare a histogram of allele frequencies from SNP
data with the distribution (1). When θ = 0.01, equation (26) tells us that
polymorphic sites resulting from more than one mutation will make up at
most 1−p(E1)/[1−p(E0)] = 2.3% of the area under the histogram. In other
words, we expect the effect of recurrent mutation on the sample frequency
spectrum of a randomly chosen polymorphic site to be small.

We can sum over all possible outcomes for n, b, and c in the above results
in order to find the probabilities of the four events illustrated in Figure 2.
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Theorem 5.2. The distribution of the number of mutation events, satisfies

p(Es) =
∞
∑

j=0

θs+jc
(s+j)
n−1 (−1)j

(

s + j

j

)

. (27)

The series converges for θ < 1. Further, as θ → 0,

p(E
(b,c)
2N ) = PabPbcp(E2N ) = θ2PabPbc

[

Hn +
1

n
− 2

]

+ O(θ3), (28)

p(E
(b,c)
2NN ) = PabPacp(E2NN ) = θ2PabPac

[

(Hn−1)
2

2
−

H
(2)
n−1

2
− Hn −

1

n
+ 2

]

+ O(θ3), (29)

p(E
(b,c)
2S ) = PabPbcp(E2S) = θ2PabPbc

[

1 −
1

n

]

+ O(θ3), (30)

p(E
(b,c)
2B ) = PabPacp(E2B) = θ2PabPac

[

H
(2)
n−1 − 1 +

1

n

]

+ O(θ3). (31)

Proof. See Appendix A.

As an application of these results, one can ask: Conditional on precisely
two mutation events, what are the probabilities of the four possible outcomes
illustrated in Figure 2? Using equations (27) and (28)–(31) and letting θ → 0
yields:

p(E2N | E2) =
Hn + 1

n
− 2

c
(2)
n−1

, p(E2NN | E2) = 1 −
H

(2)
n−1 + Hn + 1

n
− 2

c
(2)
n−1

,

p(E2S | E2) =
1 − 1

n

c
(2)
n−1

, p(E2B | E2) =
H

(2)
n−1 − 1 + 1

n

c
(2)
n−1

.

Since c
(2)
n−1 grows like (log n)2 with increasing n, we have that p(E2N | E2)

declines to zero like 1/ log n, p(E2S | E2) and p(E2B | E2) decline to zero like
1/(log n)2, while p(E2NN | E2) slowly approaches 1 (see Figure 4). Using
Theorem 5.1, in a similar manner one could find the relative probabilities of
these topologies conditional on the data.
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6. Observed patterns of polymorphism

We can partition the space of coalescent trees in two ways: either by the
topology of the tree, as in Sections 3 and 4, or by the observed pattern of
polymorphism. In practice, it is the latter that is important since only these
are known. Our next goal is therefore to find expressions for the sample
frequency spectrum conditional on observed events. Assuming at most two
mutations, the only possible observed outcomes are:

• O1: No variation, with all alleles ancestral. The sample is of the form
n = nea.

• O1S : No variation, but the observed allele differs from that of the
MRCA. The sample is of the form n = neb, where b 6= a.

• O2: A regular diallelic polymorphism, with both the ancestral allele and
a mutant allele observed. The sample is of the form n = naea + nbeb,
where b 6= a.

• O2S : A diallelic polymorphism in which the ancestral allele is not ob-
served; instead, we see two mutant alleles. The sample is of the form
n = nbeb + ncec, where a, b, c are all distinct.

• O3: A triallelic polymorphism, with one observed allele ancestral. The
sample is of the form n = naea + nbeb + ncec, where a, b, c are all
distinct.

Note that in this paper we assume that the allele of the MRCA is known
without error. However, if one observed O1S or O2S in practice, then another
explanation is that the allele of the MRCA inferred from the outgroup is
incorrect, and that a substitution has occurred on the lineage between the
MRCA of the sample and the outgroup.

Using the superscript T to denote matrix transpose, we have the following
theorem:

Theorem 6.1. As θ → 0, the joint probability of two mutations occurring
and the observed pattern of polymorphism is given by:

p(O1, E2) = θ2(P 2)aa

(

1 −
1

n

)

+ O(θ3), (32)
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p(O1S , E2) = θ2(PP T )aa

(

H
(2)
n−1 − 1 +

1

n

)

+ O(θ3), (33)

p(O2, E2) = θ2

[

(P 2)aa

(

Hn +
1

n
− 2

)

+ (1 − (P 2)aa)

(

1 −
1

n

)

(34)

+ (PP T )aa

(

(Hn−1)
2

2
−

H
(2)
n−1

2
− Hn −

1

n
+ 2

)]

+ O(θ3),

p(O2S , E2) = θ2(1 − (PP T )aa)

(

H
(2)
n−1 − 1 +

1

n

)

+ O(θ3), (35)

p(O3, E2) = θ2

[

(1 − (P 2)aa)

(

Hn +
1

n
− 2

)

(36)

+ (1 − (PP T )aa)

(

(Hn−1)
2

2
−

H
(2)
n−1

2
− Hn −

1

n
+ 2

)]

+ O(θ3).

Proof. See Appendix A.

As above, we may also consider the relative probability of these events
conditional on precisely two mutations having occurred. Again, this entails
normalizing equations (32)–(36) by dividing by p(E2) = θ2c

(2)
n−1 + O(θ3), and

then letting θ → 0. The relative probabilities of these outcomes is illustrated
in Figure 5, for a simple 4 × 4 mutation model with each nondiagonal entry
in P equal to 1/3.

Further variations on the arguments of Theorem 6.1 are possible. For
example, one can proceed in a similar vein by summing over the relevant
probabilities in Theorem 5.1, in order to find closed-form expressions for
the joint probability of the above events together with a particular sample
configuration, n. The resulting expressions are easy to obtain but do not
simplify very much, so we do not give them explicitly. There is however one
important exception which we now consider in further detail. If we observe
a triallelic site then we know that at least two mutations must have taken
place, and we would like to know the joint sample frequency spectrum for
the number of copies of each of the two mutant alleles.
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Theorem 6.2. As θ → 0,

p(n | O3) =
1

C

[

PabPbcd(na, nb, nc) + PacPcbd(na, nc, nb)

+ PabPac

(

1

nbnc

− d(na, nb, nc) − d(na, nc, nb)

)]

, (37)

if n = naea + nbeb + ncec, and 0 otherwise, where d(na, nb, nc) is given by
equation (16), and

C =

[

(1 − (P 2)aa)

(

Hn +
1

n
− 2

)

+ (1 − (PP T )aa)

(

(Hn−1)
2

2
−

H
(2)
n−1

2
− Hn −

1

n
+ 2

)]

.

Proof. See Appendix A.

We remark that there is no need to condition on E2 in Theorem 6.2,
since O3 requires at least two mutations, and more than two mutations oc-
curs with probability O(θ3). Furthermore, as we noted in the Introduction,
Theorem 6.2 is unchanged when we allow Pii > 0 for any i, since such a
“self”-mutation could not lead to O3 without additional mutations. This is
true of all our results for which we condition on O3, and so for the remainder
of this section and for Section 7 we can drop the constraint that the diagonal
of P is zero.

Equation (37) simplifies a great deal when the mutation transition matrix
takes on a particular form, which we state in the following corollary.

Corollary 6.1. Suppose the mutation transition matrix P satisfies (2). Then,
as θ → 0,

p(n | O3) =
PabPac

Cnbnc

, (38)

if n = naea + nbeb + ncec, and 0 otherwise.

For the remainder of this section we continue to assume (2) holds. Em-
ploying similar arguments, we have that, conditional on observing two par-
ticular alleles b and c, the sample frequency spectrum is

lim
θ→0

p(n | O3, {nb, nc > 0}) =
(nbnc)

−1

(Hn−1)2 − H
(2)
n−1

, n = naea + nbeb + ncec,

(39)
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and the marginal spectrum for a particular mutant allele, given that we have
observed it, is

lim
θ→0

p(nb | O3, {nb > 0}) =
Hn−nb−1(nb)

−1

(Hn−1)2 − H
(2)
n−1

, 1 ≤ nb ≤ n − 2. (40)

One can check that the normalizing constant is correct by summing (40) over
nb, and using the identity

n−1
∑

j=1

Hn−j

j
= (Hn)

2 − H(2)
n ,

for n ≥ 2, which is easily verified by induction on n.
Similarly, the marginal spectrum for a particular allele, given that we

have observed it and conditional on the number of copies of the other mutant
allele, is

lim
θ→0

p(nb | O3, {nb > 0}, nc) =
(nb)

−1

Hn−nc−1
, 1 ≤ nb ≤ n − nc − 1, nc ≥ 1. (41)

Interestingly, the distribution for nb is proportional to n−1
b regardless of nc.

More generally, Corollary 6.1 tells us: as θ → 0, and given that we observe
three particular alleles, one of which is the ancestral allele, the sample fre-
quency spectrum for the two mutant alleles is proportional to the inverse
of the product of the number of observed copies of each of the two mutant
alleles (scaled by the relative rate PabPac of appearance of these two alleles).
This result is a straightforward generalization of the classical result (1), with
some mild conditions on P .

7. The age of a mutant allele

In this section we will be interested in the population limits na/n → fa,
nb/n → fb, and nc/n → fc as n → ∞, and it is implicit throughout that
we let θ → 0 and that a, b, c are all distinct. We assume that there have
been no more than two mutation events in the history of the population, so
fa + fb + fc = 1. Let f = (fa, fb, fc), and Ab, Ac denote the ages at which
mutations occurred that gave rise to alleles b and c respectively. Kimura

22



and Ohta (1973) showed that the expected age of a single mutant allele at
frequency f in the population is

−
2f

1 − f
ln f.

Griffiths and Tavaré (2003) found the expected age of the younger of two
nested mutant alleles to be

E[Ac | E
(b,c)
2N , f ] = −2fc

(1 + fc) ln fc + 2(1 − fc)

2fc ln fc + (1 + fc)(1 − fc)
. (42)

Here, we extend this result to find the expected age of the younger of two
nonnested mutant alleles. From this it is straightforward to obtain the ex-
pected age of the younger allele at a triallelic site, regardless of whether the
mutations are nested or nonnested—and indeed regardless of whether we
know which of the two mutant alleles is younger.

Theorem 7.1. When it is known which of two nonnested mutant alleles is
the younger, the expected age of the younger allele is

E[Ac | E
(b,c)
2NN , f ] =

2fc

[

1 + fc −
(1 − fc)

2

fb

]

ln fc + 2(1 − fc) +
(1 − fc)

3 ln(fb + fc)

fb(1 − fb − fc)

(1 − fc)
3

fb + fc

− 2fc ln fc − (1 + fc)(1 − fc)

. (43)

Proof. See Appendix A.

Let A denote the age of the younger of two mutant alleles at a triallelic
site, when we do not know which of the two is younger. Our goal now is to
compute its expectation given the frequencies of the two mutant alleles in the
population. This can be achieved by averaging over the possible topologies
that could have given rise to a triallelic site:

E[A | O3, f ] = E[Ac | E
(b,c)
2N , f ]p(E

(b,c)
2N | O3, f)

+ E[Ac | E
(b,c)
2NN , f ]p(E

(b,c)
2NN | O3, f)

+ E[Ab | E
(c,b)
2N , f ]p(E

(c,b)
2N | O3, f )

+ E[Ab | E
(c,b)
2NN , f ]p(E

(c,b)
2NN | O3, f ). (44)
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The expectation in each term on the right-hand side is given by equations
(42), (43) and their analogues (interchanging the roles of b and c). The
probabilities on the right-hand side are also known, since

p(E
(b,c)
2N | O3, f) =

p(f , E
(b,c)
2N )

p(f , O3)
,

and these terms are found by letting nb/n → fb and nc/n → fc while n → ∞
in equations (18), (36), and (37). A similar argument applies for the other
three terms. We obtain

p(E
(b,c)
2N | O3, f) =

PabPbc

D(1 − fc)2

(

1 +
1

fc

+
2 ln fc

1 − fc

)

,

p(E
(b,c)
2NN | O3, f) =

PabPac

D

[

1

fb(fb + fc)
−

1

(1 − fc)2

(

1 +
1

fc

+
2 ln fc

1 − fc

)]

,

with similar expressions for p(E
(c,b)
2N | O3, f) and p(E

(c,b)
2NN | O3, f ), where

D = p(E
(b,c)
2N | O3, f) + p(E

(c,b)
2N | O3, f ) + p(E

(b,c)
2NN | O3, f) + p(E

(c,b)
2NN | O3, f)

=
Pab(Pbc − Pac)

(1 − fc)2

(

1 +
1

fc

+
2 ln fc

1 − fc

)

+
Pac(Pcb − Pab)

(1 − fb)2

(

1 +
1

fb

+
2 ln fb

1 − fb

)

+
PabPac

fbfc

.

Substituting these expressions, along with (42) and (43), into (44), we obtain
the following:

Theorem 7.2. The expected age of the younger of two mutant alleles at a
triallelic site is

E[A | O3, f ] =
2PabPac

D(1 − fb − fc)

(

1

fb

+
1

fc

)

ln(fb + fc)

+
2Pab

D

[

(Pac − Pbc)
1 + fc

(1 − fc)3
−

Pac

fb(1 − fc)

]

ln fc

+
2Pac

D

[

(Pab − Pcb)
1 + fb

(1 − fb)3
−

Pab

fc(1 − fb)

]

ln fb

+
4Pab(Pac − Pbc)

D(1 − fc)2
+

4Pac(Pab − Pcb)

D(1 − fb)2
.
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When P additionally satisfies (2) for the observed alleles a, b, and c, this
expression simplifies to

E[A | O3, f ] = −
2fb

1 − fb

ln fb −
2fc

1 − fc

ln fc +
2(fb + fc)

1 − (fb + fc)
ln(fb + fc). (45)

This curious result, for mutation models satisfying (2), tells us that the
mean age of the younger of two mutant alleles at a triallelic site is equal to
the sum of the mean ages of two independent mutations at frequencies fb and
fc, minus the mean age of a single mutant at frequency fb + fc. Equation
(45) is plotted in Figure 7, for various values of fb and fc.

Unfortunately, a corresponding expression for the expected age of the
older mutation is not analytically tractable, even if we restrict our attention
to nested mutations. Hobolth and Wiuf (2009) outline a method of numerical
approximation which could also be adapted for nonnested mutations, but we
do not pursue this here.

8. Accuracy

It would be interesting to investigate the accuracy of the expressions given
in the previous section. For simplicity, we focus on equation (39), and we
assume a simple Jukes-Cantor model of mutation in which K = 4, and the
daughter allele of each mutation is equally likely, so that off-diagonal entries
of P are all 1/3. We wrote a program to solve numerically the system of
equations defined by (3), in order to obtain exact results for the sample
frequency spectrum for nonzero θ. By solving this system for all sample
configurations of a given size, we could calculate exact numerical values of
p(n | {nb, nc > 0}) for each n. We measured the accuracy of equation (39)
by its unsigned relative error :

∣

∣

∣

∣

∣

∣

∣

[

lim
θ→0

p(n | O3, {nb, nc > 0})
]

− p(n | {nb, nc > 0})

p(n | {nb, nc > 0})

∣

∣

∣

∣

∣

∣

∣

× 100%,

for each n. Errors in (39) are a consequence of that fact that in reality θ is
nonzero and that there may have been more than two mutation events giving
rise to the triallelic sample.

For a given sample size and mutation rate, we summarize the discrepancy
between the estimated and actual sample frequency spectrum by the largest
relative error across all configurations. Results are summarized in Table 1.

25



Triallelic
θ

n 10−10 0.001 0.01 0.1 0.5 1.0
10 0.00 0.07 0.72 6.89 30.21 57.02
20 0.00 0.13 1.25 12.04 53.74 112.16
30 0.00 0.17 1.61 14.89 64.78 143.49
40 0.00 0.25 2.45 17.97 70.05 162.82
50 0.00 0.35 3.30 22.81 72.20 175.36
60 0.00 0.44 4.16 27.17 72.52 187.79

Quadrallelic
θ

n 10−10 0.001 0.01 0.1 0.5 1.0
10 1.06 0.11 1.10 9.92 35.93 82.38
20 1.48 0.25 2.45 20.05 67.95 181.83
30 1.60 0.39 3.75 28.01 90.50 266.17
40 1.66 0.52 5.01 34.51 108.49 342.24
50 1.68 0.66 6.22 39.90 123.70 412.73
60 1.71 0.79 7.40 44.47 136.98 479.09

Table 1: Maximum unsigned relative error (%) across configurations, of equation (39)
(top) and equation (46) (bottom), for various samples sizes, n, and mutation rates, θ.

As is clear from the table, accuracy diminishes with increasing θ and
also diminishes modestly with increasing n. For application to human SNPs,
in which generally 0.001 ≤ θ ≤ 0.01, equation (39) provides an excellent
approximation to the sample frequency spectrum.

To repeat all of our arguments for histories with three mutation events
would take a great deal of work, but it is tempting nonetheless to conjecture
that an expression similar to equation (39) extends to configurations in which
more than three alleles are observed. Define O4 to be the event that the sam-
ple configuration represents a quadrallelic polymorphism, with one observed
allele ancestral; the sample is of the form n = naea + nbeb + ncec + nded,
where a, b, c, d are all distinct. One may conjecture:

lim
θ→0

p(n | O4, {nb, nc, nd > 0}) ∝
1

nbncnd

. (46)
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To test this conjecture, we compared this distribution with the true sample
frequency spectrum obtained using equation (3). Results are given in Ta-
ble 1. The first column shows the conjecture to be false; unlike the triallelic
case, the relative error is not negligible for θ as small as 10−10. Nonetheless,
columns two and three show that equation (46) provides a reasonable ap-
proximation for θ in the range of interest for SNP data. It should be noted
however that the relative error is dependent on the sample configuration.
Figure 6 shows the relative error incurred by using (46) for a representative
slice of quadrallelic sample configurations, and, as is evident, the size of the
unsigned relative error approaches its maximum across configurations near
the boundary na = 1. When n = 20 and θ = 0.01 the maximum unsigned
relative error of 2.45% is attained at (na, nb, nc, nd) = (1, 6, 6, 7). For samples
containing more than one copy of the ancestral allele, the size of the relative
error can be substantially less than its maximum, as Figure 6 confirms. We
obtained qualitatively similar patterns for other slices, not shown.

Errors in the sample frequency spectrum will also cause errors in its appli-
cation, such as in the estimation of mutation rates and in tests of neutrality.
We explore this issue briefly by examining the use of the frequency spec-
trum to estimate θ. Here we assume a diallelic model (K = 2) in which
each mutation toggles an allele between its ancestral and mutant state, as
we did for Figure 3. Suppose we have L sites, and record the counts of the
number of sites with zero, one, . . ., n mutant alleles. There are several ways
to combine these counts to define an estimator of θ (Achaz, 2009); we focus
on S, the number of sites observed to be segregating, and ξ1, the number of
sites observed to be singleton mutants [having configuration n = (n − 1, 1)].
Assuming at most one mutation event per site, moment estimates using these
statistics follow from

E(S) = LθHn−1, (47)

E(ξ1) = Lθ, (48)

(Watterson, 1975; Fu, 1995), where θ is the population-scaled mutation rate
per site. These moments can be corrected to allow for up to two mutation
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events per site. We have

E(S) = L
n−1
∑

i=1

p((n − i, i)), (49)

= L[1 − p(E0) − p(E2S) − p(E2B)] + O(θ3),

= L

[

θHn−1 −
θ

2
[(Hn−1)

2 + 3H
(2)
n−1]

]

+ O(θ3), (50)

using (27), (30) and (31). If in (50) we drop terms of O(θ3), then we obtain
a quadratic equation which can be solved to yield θ in terms of E(S)/L.
Replacing this expectation with the observed quantity provides a point es-
timate of θ. A comparison of this method of estimation with the classical
estimate from (47) is given in Figure 8. For comparison, we found the true
value of E(S)/L as a function of θ, allowing any number of mutation events,
by using our program again to solve the system (3) numerically over a grid
of θ-values and plugging the results into (49). This numerical estimate of the
relationship between θ and E(S)/L is also plotted on Figure 8. Comparison
of this curve with (47) and (50) shows that when few sites are segregating,
say s/L < 0.1, it is reasonable to assume at most one mutation event per site,
whereas for a higher fraction of segregating sites, say s/L < 0.25, assuming
at most two mutation events per site is still reasonable. When a substantial
fraction of sites are segregating, neither assumption is accurate. It is typical
for human SNP data to have s/L < 0.01, so neither errors from using (47)
nor (50) are serious. A similar calculation was performed for E(ξ1):

E(ξ1) = Lp((n − 1, 1)) = L

[

θ − θ2

(

Hn−1 +
3

2(n − 1)

)]

+ O(θ3), (51)

with qualitatively very similar results (Figure 9).

9. Discussion

We have studied the effect of a second mutation on the sample frequency
spectrum of a segregating site, under a model of mutation in which there
are finitely many alleles but the transitions between alleles are otherwise
arbitrary. The problem is made tractable by conditioning on whether or
not the two mutations are nested in the genealogy, and as a bonus we also
obtain the relative probabilities of these topological events. Other key results
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include the joint sample frequency spectrum of the two mutant alleles at a
triallelic site, and the mean age of the younger of the two alleles in the
population. These results take on a particularly simple form when we impose
mild additional conditions on P , namely (2): Then, the sample frequency
spectrum (1) generalizes to ∝ (nbnc)

−1, and the expected age of the younger
mutant is a linear combination of the result for single mutants [equation
(45)]. It would be interesting to obtain a more intuitive argument for this
formula.

At present, several large-scale projects for various species are under way
to resequence the genomes of many individuals (hundreds to thousands) in a
population. Hence, it may soon become possible to include triallelic polymor-
phisms in population genomic studies. Indeed, triallelic sites are becoming
interesting objects of study in their own right (Hodgkinson and Eyre-Walker,
2010). We believe that the theoretical results presented in this paper should
prove useful in that regard.
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Appendix A. Proofs of main results

Proof of Lemma 3.1. We argue by writing down the probability of a compat-
ible history using (4), and observe that it depends only on n and l. It is clear
that for any polymorphic sample whose history is explained by precisely one
mutation event, only configurations of the form laea + eb are possible at the
time of this event. So as we trace the history back in time, we must observe
nb −1 coalescent events of type b alleles and na − la coalescent events of type
a alleles (in some interspersed order), followed by a mutation event taking
laea +eb 7→ (la +1)ea, followed by la coalescent events of the remaining type
a alleles. Think of the history as unwrapping a particular path back through
the recursion (4). By multiplying together the coefficients accumulated at
each transition, we obtain the probability of this history. Regardless of the
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order of the interspersed events, this product is

(na − 1)(na − 2) . . . (la)(nb − 1)!

(n − 1 + θ)(n − 2 + θ) . . . (la + 1 + θ)
×

θPab

la + θ

la + 1

la + 1

×
la!

(la + θ)(la − 1 + θ) . . . (1 + θ)
.

Simplifying, we get (5), which indeed depends only on na, nb, and la. There
are

(

na−la+nb−1
nb−1

)

ways to arrange the first na − la + nb − 1 events, and thus
(

na−la+nb−1
nb−1

)

=
(

n−la−1
nb−1

)

such histories.

Proof of Lemma 4.1. We argue in a similar fashion to Lemma 3.1. Any com-
patible history must exhibit the following order of events:

• an interspersed collection of na − ly coalescence events of type a alleles,
nb−m coalescence events of type b alleles, and nc−1 coalescence events
of type c alleles,

• a mutation event taking ly 7→ lyea + (m + 1)eb,

• an interspersed collection of ly − lo coalescence events of type a alleles
and m coalescence events of type b alleles,

• a mutation event taking lo 7→ (lo + 1)ea, followed by

• lo coalescence events of type a alleles.

Regardless of the relative ordering of events within each of these collections,
the product of transition probabilities from (4) is

(na − 1)(na − 2) . . . (ly)(nb − 1)(nb − 2) . . . (m)(nc − 1)!

(n − 1 + θ)(n − 2 + θ) . . . (m + ly + 1 + θ)

×
θPbc

m + ly + θ

m + 1

m + ly + 1
×

(ly − 1)(ly − 2) . . . (lo)m!

(m + ly + θ)(m + ly − 1 + θ) . . . (lo + 1 + θ)

×
θPab

lo + θ

lo + 1

lo + 1
×

lo!

(lo + θ)(lo − 1 + θ) . . . (1 + θ)
.

Simplifying, we get (7), which is independent of the history except through
n, ly, and lo. There are

(

n−ly−m−1
na−ly ,nb−m,nc−1

)

ways to arrange the first collection

of coalescence events, and
(

m+ly−lo
m

)

ways to arrange the second collection of

coalescence events, so there are
(

n−ly−m−1
na−ly,nb−m,nc−1

)(

m+ly−lo
m

)

such histories.
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Proof of Lemmas 4.2, 4.3, and 4.4. These are very similar to the proof of
Lemma 4.1 and so are omitted.

Proof of Theorem 5.1. The proof for each of the expressions is the same; we
expand the denominator and collect the dominant terms in θ. We make use
of the following identity:

(1 + θ)n−1 =
(θ)n

θ
=

n
∑

k=1

s(n, k)θk−1,

where s(n, k) are the unsigned Stirling numbers of the first kind. Note also
that

s(n, 1) = (n − 1)!,

s(n, 2) = (n − 1)!Hn−1,

s(n, 3) =
1

2
(n − 1)![(Hn−1)

2 − H
(2)
n−1].

We will also make use of standard identities for summing over binomial co-
efficients, and one nonstandard one:

n
∑

k=1

1

k

(

n − k

i − 1

)

=

(

n

i − 1

)

(Hn − Hi−1), (A.1)

for 1 ≤ i ≤ n. Equation (A.1) is proven by induction by Fu (1995, equation
(33)), and using another method by Griffiths (2003, Appendix B).

Expanding (6):

p(n, E1) = θPab

[

1 − θ
s(n, 2)

s(n, 1)
+ O(θ2)

] na
∑

la=1

(

na−1
la−1

)

(

n−1
la

) ·
1

la

[

1 −
θ

la
+ O(θ2)

]

,

=
θ − θ2Hn−1

na

Pab

na
∑

la=1

(

na

la

)

(

n−1
la

) −
θ2

na

Pab

na
∑

la=1

(

na

la

)

(

n−1
la

) ·
1

la
+ O(θ3),

=
θ − θ2Hn−1

na

Pab

na
∑

la=1

(

n−1−la
nb−1

)

(

n−1
na

) −
θ2

na

Pab

na
∑

la=1

(

n−1−la
nb−1

)

(

n−1
na

) ·
1

la
+ O(θ3),

=
θ − θ2Hn−1

nb

Pab −
θ2

na

Pab

(

n−1
nb−1

)

(

n−1
na

) (Hn − Hnb−1) + O(θ3), by (A.1),
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which simplifies to (17), as required. Next, expanding (8):

p(n, E
(b,c)
2N ) =

θ2PabPbc

na
∑

ly=1

ly
∑

lo=1

nb
∑

m=1

(

na−1
ly−1

)(

nb−1
m−1

)(

m+ly−lo
m

)

(

n−1
m+ly

)(

m+ly
m+1

)

1

(m + ly)(m + ly + 1)
+ O(θ3),

= θ2PabPbc

na
∑

ly=1

nb
∑

m=1

(

na−1
ly−1

)(

nb−1
m−1

)

(

n−1
m+ly

) ·
1

(m + ly)(m + ly + 1)
+ O(θ3),

=
θ2PabPbc

n − 1

na+nb+1
∑

k=3

k−2
∑

ly=1

1

k

(

na−1
ly−1

)(

nb−1
k−ly−2

)

(

n−2
k−2

) + O(θ3), (k = m + ly + 1),

=
θ2PabPbc

n − 1

na+nb+1
∑

k=3

1

k

(

na + nb − 2

k − 3

)(

n − 2

k − 2

)−1

+ O(θ3), (A.2)

=
θ2PabPbc

n − 1

na+nb+1
∑

k=3

k − 2

k

(

n − k

nc − 1

)(

n − 2

nc

)−1
1

nc

+ O(θ3),

=
θ2PabPbc

n − 1

(

n − 2

nc

)−1
1

nc

[

(

n − 2

nc

)

− 2
n
∑

k=1

1

k

(

n − k

nc − 1

)

+ 2

(

n − 1

nc − 1

)

+

(

n − 2

nc − 1

)]

+ O(θ3),

=
θ2PabPbc

n − 1

[

1

nc

− 2

(

n

nc − 1

)(

n − 2

nc

)−1
1

nc

(Hn − Hnc−1)

+
2(n − 1)

(na + nb)(na + nb − 1)
+

1

na + nb − 1

]

+ O(θ3), (A.3)

where the last equality uses (A.1). On rearranging, we recover (18) as re-
quired. Note that equation (A.2) is consistent with a result of Hobolth and
Wiuf (2009, equation (23). Their expression (24) seems to contain an error;
the summation should be over 3, . . . , n rather than 3, . . . , n − nb + 1.) Next,
expanding (10):

p(n, E
(b,c)
2NN ) =

θ2PabPac

nb
∑

m=1

na
∑

ly=1

ly+1
∑

lo=1

(

na−1
ly−1

)(

nb−1
m−1

)(

m+ly−lo
m−1

)

(

n−1
m+ly

)(

m+ly
ly+1

) ·
1

(m + ly)(m + ly + 1)
+ O(θ3),
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= θ2PabPac

nb
∑

m=1

na
∑

ly=1

(

na−1
ly−1

)(

nb−1
m−1

)

(

n−1
m+ly

) ·
ly + 1

m
·

1

(m + ly)(m + ly + 1)
+ O(θ3),

=
θ2PabPac

n − 1

na+nb+1
∑

k=3

k−2
∑

m=1

(

na−1
k−m−2

)(

nb−1
m−1

)

(

n−2
k−2

)

(

1

m
−

1

k

)

+ O(θ3), (A.4)

=
θ2PabPac

n − 1

na+nb+1
∑

k=3

k−2
∑

m=1

(

na−1
k−2−m

)

(

n−2
k−2

)

[(

nb

m

)

1

nb

−

(

nb − 1

m − 1

)

1

k

]

+ O(θ3),

=
θ2PabPac

n − 1

na+nb+1
∑

k=3

[(

na + nb − 1

k − 2

)

1

nb

−

(

na − 1

k − 2

)

1

nb

−

(

na + nb − 2

k − 3

)

1

k

](

n − 2

k − 2

)−1

+ O(θ3), (A.5)

=
θ2PabPac

n − 1

na+nb+1
∑

k=3

[
(

n−k

nc−1

)

(

n−2
na+nb−1

)

1

nb

−

(

n−k

nb+nc−1

)

(

n−2
na−1

)

1

nb

−

(

na + nb − 2

k − 3

)

1

k

]

+ O(θ3),

=
θ2PabPac

n − 1

[

n − 1

nc(nb + nc)
−

na+nb+1
∑

k=3

(

na + nb − 2

k − 3

)(

n − 2

k − 2

)−1
1

k

]

+ O(θ3).

Finally, apply the same equality relating equations (A.2) and (A.3) to recover
(20) as required. Next, expanding (12) and summing over lo:

p(n, E
(b,c)
2S ) = θ2PabPbc

na
∑

ly=1

(

na − 1

ly − 1

)(

n − 1

ly

)−1
1

ly(ly + 1)
+ O(θ3), (A.6)

=
θ2PabPbc

na

(

n − 1

na

)−1 na+1
∑

ly=2

1

ly

(

n − ly
nc − 1

)

+ O(θ3),

=
θ2PabPbc

na

(

n − 1

na

)−1 [(
n

nc − 1

)

(Hn − Hnc−1) − 1

]

+ O(θ3),

where the last equality uses (A.1). This simplifies to (22). Finally, expanding
(14):

p(n, E
(b,c)
2B ) =

θ2PabPac

nb
∑

m=1

(

nb − 1

m − 1

)(

n − 1

m

)−1
1

m2(m + 1)
+ O(θ3), (A.7)
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=
θ2PabPac

nc

(

n − 1

nb − 1

)−1 nb
∑

m=1

(

n − 1 − m

nc − 1

)(

1

m
−

1

m + 1

)

+ O(θ3),

=
θ2PabPac

nc

(

n − 1

nb − 1

)−1
[

nb
∑

m=1

(

n − 1 − m

nc − 1

)

1

m
−

nb+1
∑

m=2

(

n − m

nc − 1

)

1

m

]

+ O(θ3),

=
θ2PabPac

nc

(

n − 1

nb − 1

)−1 [(
n − 1

nc − 1

)

(Hn−1 − Hnc−1)

−

(

n

nc − 1

)

(Hn − Hnc−1) +

(

n − 1

nc − 1

)]

+ O(θ3),

applying (A.1) to each sum in the penultimate expression. This then sim-

plifies to (24). Expressions for p(n, E
(b,a)
2N ), p(n, E

(b,b)
2NN ), p(n, E

(b,a)
2S ), and

p(n, E
(b,b)
2B ) are obtained in a very similar manner and we omit the details.

Proof of Theorem 5.2. By expanding the denominator of (26) for θ < 1 and
applying the following identity (Roman, 1993):

c(s)
n =

n
∑

j=1

(

n

j

)

(−1)j−1

js
,

we obtain (27). For the remaining results, we sum over all possible observa-
tions n consistent with the event of interest:

p(E
(b,c)
2N ) =

n−2
∑

nc=1

n−nc−1
∑

nb=1

p((n − nb − nc)ea + nbeb + ncec, E
(b,c)
2N ),

=
θ2PabPbc

n − 1

n−2
∑

nc=1

n−nc−1
∑

nb=1

n−nc+1
∑

k=3

1

k

(

n − nc − 2

k − 3

)(

n − 2

k − 2

)−1

+ O(θ3),

=
θ2PabPbc

n − 1

n−2
∑

nc=1

(n − nc − 1)
n−nc+1
∑

k=3

1

k

(

n − nc − 2

k − 3

)(

n − 2

k − 2

)−1

+ O(θ3),

=
θ2PabPbc

n − 1

n
∑

k=3

n+1−k
∑

nc=1

k − 2

k

(

n − nc − 1

k − 2

)(

n − 2

k − 2

)−1

+ O(θ3),

= θ2PabPbc

n
∑

k=3

k − 2

k(k − 1)
+ O(θ3),
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which simplifies to (28). The second equality above uses (A.2). Continue in
this way for the remaining events. Using (A.4):

p(E
(b,c)
2NN ) =

n−2
∑

nc=1

n−nc−1
∑

nb=1

p((n − nb − nc)ea + nbeb + ncec, E
(b,c)
2NN ),

=
θ2PabPac

n − 1

n−2
∑

nc=1

n−nc−1
∑

nb=1

n−nc+1
∑

k=3

k−2
∑

m=1

(

n−nb−nc−1
k−m−2

)(

nb−1
m−1

)

(

n−2
k−2

)

(

1

m
−

1

k

)

+ O(θ3),

=
θ2PabPac

n − 1

n−2
∑

nc=1

n−nc+1
∑

k=3

k−2
∑

m=1

(

n−nc−1
k−2

)

(

n−2
k−2

)

(

1

m
−

1

k

)

+ O(θ3),

=
θ2PabPac

n − 1

n
∑

k=3

k−2
∑

m=1

n+1−k
∑

nc=1

(

n−nc−1
k−2

)

(

n−2
k−2

)

(

1

m
−

1

k

)

+ O(θ3),

= θ2PabPac

n
∑

k=3

k−2
∑

m=1

(

1

m
−

1

k

)

1

k − 1
+ O(θ3),

= θ2PabPac

n
∑

k=3

(

Hk−2 −
k − 2

k

)

1

k − 1
+ O(θ3),

= θ2PabPac

n−1
∑

k=2

[

Hk

k
−

1

k2
+

1

k
−

2

k + 1

]

+ O(θ3),

which simplifies to (29) using (15). Using (A.6):

p(E
(b,c)
2S ) =

n−1
∑

na=1

p(naea + (n − na)ec, E
(b,c)
2S ),

= θ2PabPbc

n−1
∑

na=1

na
∑

ly=1

(

na − 1

ly − 1

)(

n − 1

ly

)−1
1

ly(ly + 1)
+ O(θ3),

= θ2PabPbc

n−1
∑

ly=1

n−1
∑

na=ly

(

na − 1

ly − 1

)(

n − 1

ly

)−1
1

ly(ly + 1)
+ O(θ3),

= θ2PabPbc

n−1
∑

ly=1

1

ly(ly + 1)
+ O(θ3),
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which gives (30). Using (A.7):

p(E
(b,c)
2B ) =

n−1
∑

nb=1

p(nbeb + (n − nb)ec, E
(b,c)
2B ),

= θ2PabPac

n−1
∑

nb=1

nb
∑

m=1

(

nb − 1

m − 1

)(

n − 1

m

)−1
1

m2(m + 1)
+ O(θ3),

= θ2PabPac

n−1
∑

m=1

n−1
∑

nb=m

(

nb − 1

m − 1

)(

n − 1

m

)−1
1

m2(m + 1)
+ O(θ3),

= θ2PabPac

n−1
∑

m=1

1

m2(m + 1)
+ O(θ3),

which gives (31). To obtain p(E2N ), p(E2NN ), p(E2S), and p(E2B) from each
of these results we simply sum b and c over 1, . . . , K.

Proof of Theorem 6.1. The given expressions are obtained immediately from
Theorem 5.2 and the following observations:

O1 ∩ E2 =
⋃

b

E
(b,a)
2S ,

O1S ∩ E2 =
⋃

b

E
(b,b)
2B ,

O2 ∩ E2 =

[

⋃

b

E
(b,a)
2N

]

∪

[

⋃

b

E
(b,b)
2NN

]

∪

[

⋃

b

⋃

c 6=a

E
(b,c)
2S

]

,

O2S ∩ E2 =
⋃

b

⋃

c 6=b

E
(b,c)
2B ,

O3 ∩ E2 =

[

⋃

b

⋃

c 6=a

E
(b,c)
2N

]

∪

[

⋃

b

⋃

c 6=b

E
(b,c)
2NN

]

.

Notice that each of these unions is over disjoint sets, so we can simply sum
over the relevant probabilities. For example,

p(O1, E2) =
K
∑

b=1

p(E
(b,a)
2S ) = θ2

K
∑

b=1

PabPba

[

1 −
1

n

]

+ O(θ3),

which equals (32). The others follow similarly.
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Proof of Theorem 6.2. For n = naea + nbeb + ncec, the expression (37) for
p(n | O3) follows from

p(n | O3) =
p(n, O3, E2)

p(O3, E2)
+ O(θ),

where p(O3, E2) is given by (36), and p(n, O3, E2) is obtained from

p(n, O3, E2) = p(n, E
(b,c)
2N ) + p(n, E

(c,b)
2N ) + p(n, E

(b,c)
2NN ) + p(n, E

(c,b)
2NN ),

with the right-hand side given by equations (18) and (20).

Proof of Theorem 7.1. The argument parallels that of Hobolth and Wiuf
(2009), who obtained the corresponding result for two nested mutations.
We first condition on the number k of lineages at the time of the younger
mutation. Inspection of (A.5) yields

p(n, k, E
(b,c)
2NN ) =

θ2PabPac

n − 1

[(

na + nb − 1

k − 2

)

1

nb

−

(

na − 1

k − 2

)

1

nb

−

(

na + nb − 2

k − 3

)

1

k

](

n − 2

k − 2

)−1

+ O(θ3).

Letting θ → 0, nb/n → fb and nc/n → fc while n → ∞, we find

p(k | E
(b,c)
2NN , f) =

1

F

[

(1 − fc)
k−2

fb

−
(1 − fb − fc)

k−2

fb

−
k − 2

k
(1 − fc)

k−3

]

,

(A.8)
with normalizing constant

F =
∞
∑

k=3

[

(1 − fc)
k−2

fb

−
(1 − fb − fc)

k−2

fb

−
k − 2

k
(1 − fc)

k−3

]

,

=
1

fc(fb + fc)
−

2 ln fc

(1 − fc)3
−

1 + fc

fc(1 − fc)2
.

Under the standard, neutral coalescent model, the mean age of the younger
mutation when it occurred during the time that there existed k ancestral
lineages is 2/(k − 1) (Hobolth and Wiuf, 2009). Hence

E[Ac | E
(b,c)
2NN , f ] =

∞
∑

k=3

2

k − 1
p(k | E

(b,c)
2NN , f).

Substituting in (A.8), summing over k and simplifying recovers (43).
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la

b b b b b a a a a a

Figure 1: A coalescent tree with one mutation. The allele of each leaf is annotated. Also
annotated is the variable la (here, la = 3), which determines the number of each type at
the time of the mutation event.
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Figure 2: Coalescent trees with two mutations. (a) Two nested mutations. (b) Two
nonnested mutations. (c) Two mutations on the same branch. (d) Two mutations on
the basal branches. The allele of each leaf is annotated. Also annotated are variables
determining the number of each type at the times of the mutation events; for example, in
(a) we have m = 2, ly = 4, and lo = 3.
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Figure 3: The sample frequency spectrum for a diallelic model with n = 40, conditional
on one or two mutation events having occurred (line and stacked bars, respectively), as
θ → 0. Monomorphic samples that are a result of two mutations have been included (E2S

and E2B); hence, to be directly comparable the plot for one mutation has been scaled
down to sum to p(E2N | E2) + p(E2NN | E2).
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Figure 4: The probability of each of the four possible topologies conditional on two muta-
tion events as θ → 0. Plots are for two nonnested mutations (E2NN ), two nested mutations
(E2N ), two mutations on the same branch (E2S), and two mutations on the basal branches
(E2B).
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Figure 5: The probability of each possible observable outcome given two mutation events,
as θ → 0: a triallelic polymorphism (O3), a regular polymorphism with one allele ancestral
and one mutant (O2), a polymorphism in which both observed alleles are mutant (O2S),
the entire sample is ancestral (O1), and the entire sample has a mutant allele (O1S). Here
we take a mutation model of four alleles, in which any mutation is to one of the other
alleles with probability 1/3.
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Figure 6: The (signed) relative error from assuming the sample frequency spectrum of a
quadrallelic site is proportional to (nbncnd)

−1 [equation (46)]. Here, the sample size is n =
20 and the mutation parameter is θ = 0.01. Shown are relative errors for a representative
slice through the simplex of configurations, defined by fixing nd = 2. Positive relative
errors are shown in dark grey, negative relative errors in light grey.
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Figure 7: The expected age of the younger of two mutant alleles at a triallelic site [equation
(45)]. The mutant alleles are at frequencies fb (annotated) and fc (x-axis). The expected
age of a single mutant at a diallelic site and at frequency fc is shown for comparison
(dashed line).

44



0 0.1 0.2 0.3      
0

0.05

0.1

0.15

E(S)/L

θ

Figure 8: Estimating θ per site by the number s of segregating sites, out of L sites in total.
The sample size is n = 40. Estimation of θ assumes at most one mutation event per site
[dotted line, (47)], or at most two mutation events per site [dashed line, (50)]. The true
relationship between θ and E(S)/L is plotted as a solid line.
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Figure 9: Estimating θ per site by the number ξ1 of singleton segregating sites, out of L
sites in total. The sample size is n = 40. Estimation of θ assumes at most one mutation
event per site [dotted line, (48)], or at most two mutation events per site [dashed line,
(51)]. The true relationship between θ and E(ξ1)/L is plotted as a solid line.
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