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Abstract. Understanding the variation of recombination rates across a
given genome is crucial for disease gene mapping and for detecting signa-
tures of selection, to name just a couple of applications. A widely-used
method of estimating recombination rates is the maximum likelihood
approach, and the problem of accurately computing likelihoods in the
coalescent with recombination has received much attention in the past.
A variety of sampling and approximation methods have been proposed,
but no single method seems to perform consistently better than the rest,
and there still is great value in developing better statistical methods for
accurately computing likelihoods. So far, with the exception of some two-
locus models, it has remained unknown how the true likelihood exactly
behaves as a function of model parameters, or how close estimated like-
lihoods are to the true likelihood. In this paper, we develop a determin-
istic, parsimony-based method of accurately computing the likelihood
for multi-locus input data of moderate size. We first find the set of all
ancestral configurations (ACs) that occur in evolutionary histories with
at most k crossover recombinations. Then, we compute the likelihood
by summing over all evolutionary histories that can be constructed only
using the ACs in that set. We allow for an arbitrary number of crossing
over, coalescent and mutation events in a history, as long as the transi-
tions stay within that restricted set of ACs. For given parameter values,
by gradually increasing the bound k until the likelihood stabilizes, we
can obtain an accurate estimate of the likelihood. At least for moder-
ate crossover rates, the algorithm-based method described here opens
up a new window of opportunities for testing and fine-tuning statistical
methods for computing likelihoods.

1 Introduction

Estimating evolutionary parameters and making ancestral inference are an im-
portant part of molecular evolutionary genetics. Often, at the core of these stud-
ies is the problem of computing the probability of observing sample sequences
for given parameter values. In the context of the coalescent model and its various
extensions, closed-form formulas are generally not known for such likelihoods,
and therefore several computationally intensive statistical methods have been
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proposed for approximating them. Most of these statistical approaches fall into
one of two categories, one based on Markov chain Monte Carlo methods—for
examples, see [3, 25, 26, 44]—and the other on importance sampling methods,
some notable examples being [5, 6, 9, 12–15, 41]. Both approaches involve sam-
pling genealogies to estimate a sum over the genealogies consistent with the
input data.

The problem of estimating recombination rates has received particular atten-
tion in the past and various methods have been proposed so far [9–12,23,26,28,30,
42]. (Henceforward, when we say recombination, we will mean crossover recombi-
nation.) Since computing the full likelihood in the coalescent with recombination
is difficult, several approximation methods have been proposed. Hudson’s [23]
composite likelihood method is a popular approximation method which treats
pairs of loci as being independent and takes a product of two-locus full likeli-
hoods over all pairs of loci. (Different versions of the composite likelihood idea
have also been suggested. E.g, see [10,11].) This method has been generalized to
study the fine-scale crossover rate variation in the human genome [24, 32, 33].

On the algorithms side, much recent attention has focused on the problem of
estimating the minimum number Rmin(D) of recombinations needed to derive a
given set D of sequences, using some specified model of mutations. A commonly
adopted model is the infinite-sites model, which implies that each site can mutate
at most once in the entire evolutionary history of the sequences. Assuming that
mutation model, it has been shown that computing Rmin(D) is NP-hard [4,43],
and previous algorithms that compute it exactly either work only on relatively
small data sets [36, 38], or on problems with special structure [16–18]. Since
there are no efficient algorithms to compute Rmin(D) for an arbitrary D, several
papers have considered efficient computation of lower bounds on Rmin(D) [1,2,
16–20,22, 34, 37, 40], as well as practical upper bounds [40].

In a recent paper [29], we have made progress in making the exact computa-
tion of Rmin(D) more practical, significantly increasing the size of data sets that
can be handled. Here, we extend some of the algorithmic ideas developed in that
paper to address the aforementioned problem of computing likelihoods in the
coalescent with recombination. To our knowledge, this is the first application of
a parsimony-based algorithm to likelihood computations in the coalescent.

The main idea behind our approach goes as follows. Instead of attempting to
sum over all genealogies, we sum only over a restricted subset of genealogies. To
each genealogy, there corresponds a sequences of events, consisting of mutations,
coalescences, and recombinations. When an event happens, going backwards in
time, there is a change in ancestral configuration (AC) [39], defined as the set
of all DNA sequences present at a particular point in time in the genealogy.
Summing over all genealogies for D corresponds to summing of all paths of ACs
consistent with D, i.e., with each path starting from the input data D and end-
ing at an AC in which every site in the input data has found a common ancestor.
In our work, we first find the set of all ACs that occur in evolutionary histories
with at most k recombinations. Then, we compute the likelihood by summing
over all evolutionary histories that can be constructed only using the ancestral
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configurations in that set. We allow for an arbitrary number of recombination,
coalescent and mutation events in the evolutionary history, as long as the transi-
tions stay within that restricted set of ancestral configurations. By starting with
k = Rmin(D) and incrementing the bound k gradually until the change in likeli-
hood satisfies some stopping criteria, we can compute the likelihood accurately.

There exist well-defined recursions relating the probability of a given AC ψ
to the probabilities of those ACs that can be reached from ψ using one event
back in time [7,8,12–15,35]. Solving the system of recursion relations to evaluate
the probability of ψ = D effectively sums over all possible genealogies consistent
with D. In our work, we systematically solve the system of recursion relations
involving the probabilities of the ACs in the restricted set described above. Note
that this effectively sums not only over genealogies with at most k recombina-
tions, but over all genealogies that can be constructed using the ACs in the
restricted set with an arbitrary number of recombination events.

Although our deterministic approach can currently handle only small data
sets—say, with about ten sequences and half as many sites—the work described
here should prove useful for evaluating the performance of Monte-Carlo-based
methods. Further, some pseudo-likelihood methods [23,32,33] are based on accu-
rate likelihood calculations for few (typically 2) sites, and the method presented
here significantly extends this capability.

2 Methods

We use D to denote a set of single nucleotide polymorphisms (SNPs) with two
alleles at each site. We assume that the ancestral allele type is known. (This
assumption is only made for ease of exposition. The approach presented here
has a straightforward generalization to the case in which the ancestral allele
type is unknown, albeit with steeper time and space complexity. Our software
handles both cases.) In what follows, the ancestral allele is denoted by 0, while
the mutant allele type is denoted by 1. For given mutation and recombination
rates, our goal is to compute the probability of observing D under the coalescent
with recombination and the infinite sites model of mutation.

2.1 Possible Events Back in Time

We assume that D contains m segregating sites with positions s1, . . . , sm. We
rescale the region to a unit interval between 0 and 1 so that 0 = s1 < s2 < · · · <
sm = 1. We use θ and ρ to denote, respectively, the population-scaled mutation
and recombination rates for the unit interval. We assume that both recombina-
tion and mutation rates are constant over the interval. For given θ and ρ, the
probability of observing D is obtained by integrating over the probabilities of all
evolutionary histories that derive D. Tracing an evolutionary history backwards
in time gives a path of ancestral configurations, reached from D through the
following types of events back in time:
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Mutation We assume the infinite sites model of mutation. So, for any particular
site, if there is exactly one sequence carrying a 1 at that site, it may change
to the ancestral type 0.

Recombination A sequence x breaks up into two new sequences with a break-
point between sites i and i+1. One new sequence carries the prefix of x up to
site i, followed by a suffix of length m−i carrying non-ancestral material, de-
noted by ∗s. The other new sequence carries the suffix of x starting from site
i + 1, preceded by a prefix of length i carrying non-ancestral material, again
denoted by ∗s. Recombination events where there is no ancestral material (0
or 1) either to the left or to the right of the breakpoint are ignored.

Coalescent Type 1 Two identical sequences find a common ancestor.
Coalescent Type 2 Two distinct sequences find a common ancestor if there

is no site in which one sequence carries a 1 and the other a 0. Suppose that
two sequences x and y are replaced by a single sequence z via coalescence.
Then, z contains a 1 (respectively, 0) at site i if either x or y contains a 1
(respectively, 0) at site i. Otherwise, z has a “∗” at site i.

See [12] for a more detailed description of the coalescent with recombination.

2.2 The Full Recursion

Griffiths and Marjoram [12] constructed a system of recursion relations satisfied
by ancestral configurations, assuming a continuous model of recombination. Ob-
taining a closed-form solution to the recursions is out of reach, so they proposed
using an importance sampling method to obtain numerical solutions. More effi-
cient importance sampling approaches now exist for computing coalescent likeli-
hoods by sampling genealogies [5, 6, 9, 41], but the recursions found by Griffiths
and Marjoram still provide a transparent framework for computation. In what
follows, we devise a deterministic algorithm for numerically solving the recur-
sions accurately. To make the problem tractable, we assume a discrete model of
recombination such that breakpoints occur only at the midpoints between con-
secutive segregating sites. Such a discretized model of recombination has been
adopted by others in the past [9, 27].

To describe the recursions in more detail, we first need to define some nota-
tion. An ancestral configuration is a multiset of strings from X = {0, 1, ∗}m \
{∗m}. With a chosen ordering on X , we use n ∈ Z≥0

3m−1 to uniquely specify an
AC by listing the multiplicity of each element in X . A subscript (respectively,
superscript) on n denotes decreasing (respectively, increasing) the multiplicity
of string i by 1. For example, ni denotes changing the component ni to ni + 1,
while keeping nj for j $= i unchanged. Then, the recursion relation satisfied by
the probability Q(n) of an AC n can be schematically written as

Z(n, θ, ρ) Q(n) =
∑

coalescent type 1
xi with xi

c(n, i) Q(ni) +
∑

coalescent type 2
xi with xj → xk

c(n, i, j, k) Q(nk
ij)

+ θ
∑

mutation
xi → xk

c(n, k) Q(nk
i ) + ρ

∑

recombination
xk → xi and xj

c(n, s1, . . . , sm, , i, j, k) Q(nij
k ),

(1)
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Fig. 1. Graph of all ACs for D = {01, 11}. Each node (box) corresponds to an AC,
with “ ” denoting an ancestral segment, “ ” a non-ancestral segment, and “ ” a site
carrying the mutant allele. The highlighted node at the bottom left corresponds to D.
A directed edge joins an AC x to an AC y if there is an event (coalescence, mutation,
or recombination) that transforms x to y. Each node is labeled with the minimum
value of k for which that AC is in Ck(D), i.e. Ck(D) consists of all the nodes labeled k
or less. ACs connected by horizontal bi-directional arrows form a strongly connected
component of the graph. The probability of D for θ = 2 and ρ = 1 is 0.125 when
only ACs from C0(D) are used, 0.193 when ACs from C1(D) are used, and 0.202 when
the full equation system is used. If cyclic structures of the recursions are eliminated
by requiring that coalescing sequences have at least one site where they both carry
ancestral material, as proposed in [31], the above probabilities reduce to 0.125, 0.172,
and 0.174, respectively. This suggests that our parsimony-based approximation method
of restricting the set of ACs is more accurate than forbidding certain classes of events.

where c(·) denote combinatorial coefficients that depend on the factors specified
in the argument; Z(n, θ, ρ) is a normalization constant; xi, xj , xk ∈ X ; and
summations are performed over the events described in the previous subsection.
Shown in Fig. 1 is an example of “unwrapping” the above recursion for an input
data set D containing two length-2 sequences 01 and 11. In total there are 23
ACs for D, shown as rectangular boxes in Fig. 1, explained further below.

2.3 Restricting the Recursion

The discretized recombination model described above considerably reduces the
number of possible ACs, from infinite to finite. Since (1) describes a system of
linear equations, we could in principle find the probability of D by construct-
ing and solving this equation system. It would correspond to summing over all
genealogies that can derive D. However, although finite, the number of possible
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ACs for a given data set grows extremely fast with the size of the data set [39],
and exact computation remains infeasible for practical purposes. As mentioned
in Sect. 1, the main idea behind our work is to sum over a restricted subset of
genealogies, rather than over all genealogies. We achieve this by solving a re-
stricted system of recursions. First, we find the set of all ACs each occurring in
at least one possible evolutionary history for D with at most k recombinations,
but with arbitrary coalescent and mutation events. Then, solving the system
of recursions restricted to that set of ACs corresponds to computing the likeli-
hood by summing over all evolutionary histories that can be constructed only
using the ACs in that set. Note that this is more general than summing over
the genealogies with at most k recombinations. As long as transitions remain
within the restricted set of ACs, our method allows for an arbitrary number of
recombination events in a genealogy.

The method can be used either with a fixed value of k determined from
Rmin(D), or increasing k until a stopping criteria is met. The simplest stopping
criteria is to continue until the change in likelihood becomes less than some
specified small number ε. From our experiment, we suggest using a stopping
criteria based on diminishing returns, stopping when the change in likelihood
begins to decrease.

Formally, we define the k-neighborhood Nk(n) of an AC n to be the set of
all ACs reachable from n with no more than k recombinations. The inverse
k-neighborhood of n is defined as N−1

k (n) = {n′ | n ∈ Nk(n′)}. Finally, the
k-configurations for D is defined as Ck(D) :=

⋃k
i=0

[
Ni(D) ∩N−1

k−i(A)
]
, where

A denotes the set of ACs in which every site has found a common ancestor and
N−1

i (A) :=
⋃

a∈AN−1
i (a). Note that Ck(D) is the set of ACs that can occur in

histories with at most k recombinations. Fig. 2 illustrates these concepts.
Our proposed method of computing the probability of the input data set D

is to set Q(n) = 0 if n $∈ Ck(D) and apply the recursion in (1) if n ∈ Ck(D).
For a data set with n sequences and m segregating sites, C2n(m−1)(D) will be
equal to the set of all ACs for D, since any AC can be reached from D using
at most n(m− 1) recombinations and an AC in A can then be reached using at
most n(m− 1) additional recombinations. Therefore, for sufficiently large k, our
method becomes equivalent to solving the full equation system.

2.4 Algorithmic and Implementation Details

The k-neighborhoods Nk(D) can be computed incrementally by increasing k one
by one. However, in our work the entire k-neighborhood Nk(D) is not needed;
only the k-configurations Ck(D) =

⋃k
i=0

[
Ni(D) ∩N−1

k−i(A)
]

are needed. First,
note that we can determine whether n ∈ N−1

k−i(A) by checking whether the
minimum number of recombinations needed to derive n is at most k − i. To
compute that minimum number, we can employ the algorithm described in [29].
Second, n ∈ Ni(D) ∩ N−1

k−i(A) only if there exists an AC n′ ∈ Ni−1(D) ∩
N−1

k−i+1(A) such that n ∈ N1(n′). Using these ideas, we can find Ck(D) without
having to explore the entire set Nk(D), which can be significantly larger than
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Fig. 2. Illustration of k-neighborhoods Nk(D) and k-configurations Ck(D). Neighbor-
hoods around the input data D are shown as solid ellipses and inverse neighborhoods
N−1

i (a) around a particular most-recent-common-ancestor AC a ∈ A are shown with
dashed ellipses. The minimum number of recombinations required for the data set is 3,
and the regions corresponding to the set C3(D) of 3-configurations are shaded in gray.

Ck(D). Pictorially, in Fig. 2 we enumerate only the ACs in the shaded areas and
their one-event neighbors, rather than the full k-neighborhoods of D. In this
way, we can achieve a large reduction in both time and space requirement.

A dependency graph corresponding to the systems of recursions in (1) is a
graph with one node for each AC and a directed edge from n to n′ if n′ appears
on the right hand side of the recursion (1) for n. Once Ck(D) has been found, we
determine the strongly connected components of the dependency graph and the
directed acyclic graph connecting them. Then, subsystems of recursions corre-
sponding to the strongly connected components are solved in reverse topological
order. This reduces the time complexity from O(|Ck(D)|3) to O(|Ck(D)|× M2),
where M is the size of the largest strongly connected component.

In our implementation, a coarse grained a priori separation and sorting of
connected components is obtained by sorting the ACs in Ck(D) by their total
number of 0s and 1s. Going backwards in time in any evolutionary history, the
total number of 0s and 1s will be non-increasing. This means that if the total
number of 0s and 1s in n is larger than that in n′, then Q(n′) does not depend
on the value of Q(n), thus allowing the recursions to be solved slice by slice in
the order of increasing total number of 0s and 1s.

We have implemented our algorithm in C, using the UMFPack library. Our
software is called cob, available at http://www.stats.ox.ac.uk/~lyngsoe/
section26/ under the Lesser Gnu Public License.

3 Results

When facing a hard computational problem, one usually needs to choose the
right balance between accuracy and speed. In this section we explore these two
aspects of our method. We will assess the quality of the approximation proposed
in the previous section, by characterizing the behavior of the likelihood itself and
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Fig. 3. Likelihood surfaces for D = {010, 010, 101, 101, 110} computed using the ACs
in C1(D) (light gray), C2(D) (medium gray), C3(D) (dark gray) and C11(D) (black).
Both θ and ρ range from 0.0 to 2.5.

also by studying the accuracy of the maximum likelihood estimates (MLEs) of
the population-scaled mutation and recombination rates θ and ρ, respectively.

3.1 Comprehensive Analysis of Small Data Set

We first study a small data set D = {010, 010, 101, 101, 110} with segregating
sites at positions 0, 0.75 and 1. The minimum number Rmin(D) of recombi-
nations for this data set is 1, and the size of C1(D) is 74. It turns out that all
possible ACs can occur in evolutionary histories with at most 11 recombinations.
The size of C11(D) is 400,820. This is sufficiently small that the full system of
recursions can be solved in a reasonable time, allowing us to track the accuracy
and resource requirement for the approximation based on Ck(D), as k is varied
from 1 to 11.

For a grid of θ and ρ values between 0.0 and 2.5, Fig. 3 shows four likeli-
hood surfaces computed using four different levels of approximation: based on
C1(D), C2(D), C3(D), and the full equation system (i.e., C11(D)). The likelihood
surfaces for the remaining Ck(D) have been left out as they are sandwiched
between the C3(D)-surface and the C11(D)-surface, and these are already very
similar. Numerical values of the likelihood obtained from the C3(D)-based equa-
tion system and that from the C11(D)-based system differ by little, at least for
the range of θ and ρ shown in Fig. 3. Consequently, MLEs θ∗, ρ∗ for the two
cases are very similar, with θ∗ = 1.1426, ρ∗ = 0.9631 for C3(D) and θ∗ = 1.1426,
ρ∗ = 0.9753 for C11(D). Even the C2(D)-surface is not far off from the C11(D)-
surface, with MLEs θ∗ = 1.1523 and ρ∗ = 0.8240, which is beginning to show a
trend of underestimating ρ. This trend becomes even more pronounced with the
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Fig. 4. The likelihood of D = {010, 010, 101, 101, 110}, the number of ACs (or vari-
ables), the size of the largest strongly connected component, and the running time,
each plotted against the value of k in Ck(D), as a fraction of the corresponding val-
ues for the full recursion system. The full recursion system produced a likelihood of
4.05 × 10−4 and had 400, 820 ACs in total. The largest strongly connected component
contained 15, 998 ACs and the computation took 404.2 seconds.

C1(D)-based equation system, with estimates θ∗ = 1.2427 and ρ∗ = 0.4370. This
C1(D)-based method also significantly underestimates the likelihood for most
values of θ and ρ. As our heuristic is based on ignoring ACs that only contribute
to the likelihood through evolutionary histories with many recombinations, for
fixed θ, not surprisingly the difference between the approximated and the true
likelihoods increases with increasing ρ. For fixed ρ and varying θ, the difference
between the approximated and the true likelihoods tend to correlate more with
the magnitude of the likelihood than with the value of θ.

As k in Ck(D) varied from 1 to 11, the change in some key features of the
computation is plotted in Fig. 4 where the likelihood was computed at the MLEs
θ∗ = 1.1426, ρ∗ = 0.9753 from the full equation system. All plots exhibit an S-
curve behavior. A very encouraging feature of these plots is that the turning
point for the likelihood plot occurs much earlier than the turning points for the
time, the largest strongly connected component, and the equation system size
plots. In fact, the likelihood all but coincides with the exact value before any of
the other features shows any increasing tendency. Identifying the turning point
of an assumed S-curve behavior of the likelihood is the basis of our diminishing-
returns stopping criteria described before.

3.2 Average Behavior on Simulated Data Sets

The data set analyzed above is just one example. To study the average behavior,
we used Hudson’s [21] program ms to generate simulated data under the coa-
lescent with recombination. We generated 100 data sets for a given number of
sequences and a given number of sites. We considered two to six sequences with
either two or three sites. Hudson’s program actually uses a finite-sites model of
recombination, requiring the user to specify the number of sites. In our study, all
simulations were carried out with 10, 000 sites in the recombination model. We
set ρ = 5 and used -s option to fix the number of segregating sites. For each data
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Table 1. Average behavior of maximum likelihood estimation based on the near-
minimal history restriction. For a given n and m, 100 data sets with n sequences and
m sites were simulated using Hudson’s [21] program ms. LR denotes the estimated like-
lihood relative to the true likelihood (denoted LH) computed using the full equation
system, while |∆θ∗| and |∆ρ∗| denote average absolute deviation from the true MLEs
(θ∗ and ρ∗) obtained using the full equation system. Running times are given in sec-
onds. The columns under “Diminishing Returns” are for incrementing the number of
recombinations until differences of likelihoods between increments no longer increases.
The column labeled “k” lists the average value of k for which the final solution was
obtained using Cr+k(D)-configurations, where r := Rmin(D).

Cr(D) Cr+1(D) Cr+2(D)
n × m LR |∆θ∗| |∆ρ∗| Time LR |∆θ∗| |∆ρ∗| Time LR |∆θ∗| |∆ρ∗| Time
2× 2 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.0000 0.0000 0.02
3× 2 0.99 0.01 0.06 0.00 1.00 0.01 0.03 0.10 1.00 0.0000 0.0003 0.12
4× 2 1.00 0.01 0.09 0.00 1.00 0.01 0.05 0.16 1.00 0.0000 0.0014 0.19
5× 2 0.98 0.02 0.12 0.02 1.00 0.01 0.06 0.21 1.00 0.0002 0.0018 0.36
6× 2 0.98 0.02 0.17 0.09 0.99 0.01 0.08 0.33 1.00 0.0002 0.0034 0.56
2× 3 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.10 1.00 0.0000 0.0000 0.10
3× 3 0.99 0.02 0.05 0.00 1.00 0.01 0.03 0.24 1.00 0.0007 0.0031 0.31
4× 3 0.98 0.03 0.10 0.05 1.00 0.01 0.05 0.45 1.00 0.0016 0.0057 0.88
5× 3 0.99 0.01 0.07 0.09 1.00 0.01 0.04 0.59 1.00 0.0000 0.0036 0.90

Diminishing Returns Full Equation System
n × m LR |∆θ∗| |∆ρ∗| Time k LH θ∗ ρ∗ Time
2× 2 1.00 0.0000 0.0000 0.002 1.00 0.15 5.08 0.00 0.10
3× 2 1.00 0.0000 0.0000 0.15 1.27 0.06 3.88 0.07 0.19
4× 2 1.00 0.0000 0.0000 0.28 1.29 0.05 4.16 0.09 0.50
5× 2 1.00 0.0002 0.0002 0.70 1.76 0.03 3.41 0.14 1.12
6× 2 1.00 0.0000 0.0014 0.94 1.57 0.02 3.45 0.21 2.34
2× 3 1.00 0.0000 0.0000 0.10 1.00 0.16 5.86 0.00 1.20
3× 3 1.00 0.0000 0.0000 0.62 1.16 0.04 4.55 0.05 18.7
4× 3 1.00 0.0000 0.0004 2.11 1.28 0.02 3.91 0.13 326
5× 3 1.00 0.0000 0.0000 2.28 1.18 0.01 3.10 0.07 11918

set, we determined the MLE of θ and ρ by iterating eight times the likelihood
computation on a five-by-five grid of θ and ρ, refining around the (θ, ρ) pair that
yielded the highest likelihood. For each simulated data set, four different com-
putations were done: using Ck(D)-configurations, for k = r, r + 1, r + 2, where
r := Rmin(D), or using the diminishing returns stopping criteria. Simulated data
sets were sufficiently small that it was possible to solve the full equation system,
thus allowing approximations to be compared with the true value.

Results are summarized in Table 1. Both the likelihood itself and MLE of
θ are quite accurate even for the computation based on Cr(D)-configurations,
while MLE of ρ becomes quite accurate when the equation system is expanded to
Cr+2(D)-configurations. Applying the diminishing returns stopping criteria does
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Fig. 5. Logarithm of running times in seconds as function of number of sequences for
data sets with two segregating sites (top), three segregating sites (bottom left) and four
segregating sites (bottom right). For each data set the likelihood at θ = 2 and ρ = 5
was computed based on Cr(D) (shown in “ ”), on Cr+1(D) (“ ”), on Cr+2(D)
(“ ”), and using the diminishing returns stopping criteria (“ ”). Average running
times of less than 0.1 second were truncated to 0.1 second.

slightly better than using Cr+2(D)-configurations, both in terms of accuracy and
time. All in all, our method is quite accurate, while being substantially faster
than using the full equation system.

Being able to compare results to the true values severely limits the data set
sizes that can be investigated. Even for data sets with just five sequences and
three segregating sites, we experienced an average running time of more than
three hours to solve the full equation system at 200 (θ, ρ) grid points to obtain
the MLEs. (In contrast, our method required only a few seconds on average
to obtain very accurate estimates. See Table 1.) To investigate how large of a
data set our method can handle, we simulated data sets with more number of
sequences, while keeping the number of segregating sites to two, three or four. We
again used Hudson’s [21] program ms with ρ = 5. For each data set, we computed
the likelihood for θ = 2 and ρ = 5. Average computation times averaged over
ten simulated data sets are plotted in Fig. 5.

4 Discussion

In this paper, we have developed a novel parsimony-based, deterministic ap-
proach for accurately computing the likelihood under the coalescent with re-
combination. Given enough computation time and memory, our method can, in
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principle, compute the exact likelihood, by finding all ancestral configurations
for a given data set and then solving the full system of recursions. However, the
size of the input data for which this can actually be done is severely limited.
For a data set with only five sequences and three segregating sites, it currently
takes several hours to obtain accurate MLEs of θ and ρ by computing the exact
likelihood. Perhaps this is not so surprising, given that the total number of ACs
grows very rapidly with the number of sequences and more so with the number
of sites [39].

Our approximation method is based on restricting the probability recursions
to certain ACs, namely those that occur in evolutionary histories with a near-
minimal number of recombinations. The restricted system of recursions can be
solved several orders of magnitude faster than the full recursion system, with
no noticeable loss of accuracy. It dramatically increases the size of data sets
for which one can compute the likelihood by solving the recursion system. For
example, our approximation method takes only a few minutes to compute the
probability of a data set with twenty sequences and three sites, while, in the same
amount of time, one can only compute the probability of a data set with five
sequences and three sites using the full equation system. However, even with the
techniques introduced here, our method is limited to moderate-sized data sets.
Despite the enormous reduction in time requirement of our method compared to
the exact computation, the complexity of the problem grows so astronomically
fast with data size that the speedup is dwarfed in comparison. For further details
on this matter, we again refer to our previous work [39], where the growth of
CRmin(D) as a function of data size was also investigated. We believe that new
insights—e.g., regarding symmetries in the recursion structure, allowing ACs
to be lumped together—are required for making this kind of algorithm-based
approach applicable to large data sets.

Even so, the work presented here should be useful to the researchers in
statistical genetics. For moderate-sized data sets, our method can be used to
develop benchmarks with very well-characterized likelihoods. Such studies can
be valuable for evaluating the performance of existing and new sampling-based
approaches, and for fine-tuning them. Further, as some pseudo-likelihood meth-
ods [23,32,33] use likelihood calculations for few (typically 2) sites, the method
developed here should be useful for improving such methods.
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