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Abstract. Meiotic recombination is a fundamental biological event and
one of the principal evolutionary forces responsible for shaping genetic
variation within species. In addition to its fundamental role, recombi-
nation is central to several critical applied problems. The most impor-
tant example is “association mapping” in populations, which is widely
hoped to help find genes that influence genetic diseases [3, 4]. Hence, a
great deal of recent attention has focused on problems of inferring the
historical derivation of sequences in populations when both mutations
and recombinations have occurred. In the algorithms literature, most of
that recent work has been directed to single-crossover recombination.
However, gene-conversion is an important, and more common, form of
(two-crossover) recombination which has been much less investigated in
the algorithms literature.

In this paper we explicitly incorporate gene-conversion into discrete
methods to study historical recombination. We are concerned with algo-
rithms for identifying and locating the extent of historical crossing-over
and gene-conversion (along with single-nucleotide mutation), and prob-
lems of constructing full putative histories of those events. The novel
technical issues concern the incorporation of gene-conversion into re-
cently developed discrete methods [20, 26] that compute lower and upper-
bound information on the amount of needed recombination without gene-
conversion. We first examine the most natural extension of the lower
bound methods from [20], showing that the extension can be computed
efficiently, but that this extension can only yield weak lower bounds.
We then develop additional ideas that lead to higher lower bounds, and
show how to solve, via integer-linear programming, a more biologically
realistic version of the lower bound problem. We also show how to com-
pute effective upper bounds on the number of needed single-crossovers
and gene-conversions, along with explicit networks showing a putative
history of mutations, single-crossovers and gene-conversions.

We validate the significance of these methods by showing that they can
be effectively used to distinguish simulation-derived sequences generated
without gene-conversion from sequences that were generated with gene-
conversion. We apply the methods to recently studied sequences of Ara-
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bidopsis thaliana, identifying many more regions in the sequences than
were previously identified [22], where gene-conversion may have played a
significant role. Demonstration software is available at www.cs.ucdavis.edu/∼gusfield.

1 Introduction

Sequence variations in populations (in a single species) are caused in part by
mutations at single nucleotide sites, and in part by recombination during meio-
sis, which creates a chimeric genome in an individual from the genomes of the
individual’s two parents. Sites where two alleles (states) occur in a population
with a frequency above some threshold are called Single Nucleotide Polymor-
phism (SNP) sites. Much recent attention has focused on problems of inferring
the historical derivation of SNP sequences in populations when both mutations
and recombinations have occurred. In the algorithms literature, most of that
work has been directed to single-crossover recombination. (Previous methods
for single-crossover recombination appear in [1, 9–14, 20, 24–26].) However, gene-
conversion is a form of two-crossover recombination that has large biological sig-
nificance, and there has been much less algorithmic work devoted to the study of
models that incorporate gene-conversion as well as mutation and single-crossover
recombination. Some exceptions are the papers [6, 9, 19], and statistical methods
have also been developed [5, 23, 27, 30] to address gene-conversion.

Tools to study gene-conversion are important because gene-conversion is a
fundamental biological process [18] that is not fully understood (partly because
fine-scale data is needed which is only now becoming available, and partly be-
cause of the lack of algorithmic tools); because gene-conversion is a cause of
genomic sequence variation in populations [8, 21]; and because gene-conversion
has the potential to cause problems in association-mapping [15, 29]. Association
mapping depends on understanding the structure of linkage disequilibrium (LD)
in population data: “Standard population genetics models of recombination gen-
erally ignore gene conversion, even though crossovers and gene conversions have
different effects on the structure of LD” [29].

In this paper, we extend recently developed tools for the study of historical
(single-crossover) recombination and mutation, to explicitly incorporate gene-
conversion events. We validate the biological significance of these methods by
showing that the methods can be effectively used to distinguish sequences that
were generated without gene-conversion from sequences that were generated with
gene-conversions, and we apply these methods to identify regions in Arabidopsis
thaliana sequences where gene-conversions may have played a significant role, in
comparison to single-crossover recombination, in the derivation of the sequences.

In contrast to our methods, existing statistical methods (for example [23]),
do not provide information on the necessary amount of recombination in the
history of the sequences, or produce an explicit derivation of those sequences
using mutation and recombination. Those methods also do not assess the rela-
tive importance of single-crossover recombination compared to gene-conversion.
Those methods are based on patterns in the sequences rather than on how well
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a full history can be obtained to explain the derivation of the sequences, or on
how much recombination is needed.

2 Recombination: Crossing-Over and Gene-Conversion

There are two major forms of recombination that occur during meiosis: single-
crossover recombination (called “crossing-over” in the genetics literature), and
gene-conversion. We will use “crossing-over” and “single-crossover recombina-
tion” interchangeably, and use “recombination” to refer to either crossing-over
or gene-conversion.

Meiotic Crossing-Over: The best studied form of recombination is crossing-over,
where during meiosis two equal length sequences produce a third sequence of the
same length consisting of some prefix of one of the sequences, followed (at the
“breakpoint”) by a suffix of the other sequence.

Gene-Conversion: The other major form of meiotic recombination, called “gene-
conversion”, involves two crossovers at two breakpoints. In gene-conversion, a
new sequence is formed from a prefix of one sequence, followed by an internal
segment of a second sequence, followed by a suffix of the first sequence. All
three sequences are of the same length. The endpoints of the internal segment
are the “breakpoints” of the gene-conversion. Gene-Conversion is a small-scale
meiotic event; the internal segment (called a “conversion-tract”, or “tract” ) is
short, around 50 to 2000 base pairs. Gene-conversion has been hard to study in
populations because of the lack of analytical tools and the lack of fine-scale data.
For example, little is known about the distribution of tract lengths. However,
genomic data produced over the next several years should allow quantification
of the fundamental parameters of gene conversion, and the contribution of gene
conversion to the overall patterns of sequence variations in a population.

3 Minimizing the total number of recombination events

Given a set M of binary (SNP) sequences, we would like to determine the true
history of mutations, crossing-over events and gene-conversions that derived the
sequences from some ancestral sequence. This is of course impossible and instead
previous research has focused on computing or estimating the minimum number,
denoted Rmin(M), of crossing-over events needed to derive the sequences from
some known or unknown ancestral sequence, when only one mutation is allowed
per site in the entire history of the sequences. Although the true history of the
sequences may have involved more than Rmin(M) recombinations, Rmin(M) and
particular lower-bounds on Rmin(M), have proven to be useful reflections of the
true historical number, for example allowing or contributing to the identification
of recombination hotspots in genomic sequences [2, 7, 28].

In this paper we move from a focus on Rmin(M), to incorporate gene-
conversions. We define Tmin(M) as the minimum total number of recombina-
tion events needed to derive M from an ancestral sequence (either known or
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unknown in different versions of the problem) where a recombination event is
either a crossing-over or a gene-conversion event. Because gene-conversion tract
length is typically small, we will often bound its permitted length, and define
Tmin(M, t) as the minimum number of recombination events needed to derive M ,
where each gene-conversion has tract length at most t (nucleotides). In the next
section we discuss a practical method to compute lower bounds on Tmin(M, t),
and in Section 5 we discuss a practical method to compute an actual sequence of
events that derives M . Since Tmin(M) = Tmin(M, t) when t is sufficiently large
(for example, the physical distance between the first and the last sites in M),
these methods can be used to compute bounds on Tmin(M).

4 Lower Bounds on Crossing-Over and Gene-Conversion

Since the effect of one gene-conversion can be obtained by two crossing-over
events, LBCO(M)/2 is a valid lower-bound on Tmin(M, t), where LBCO(M) is
any lower bound Rmin(M). Several such lower bounds on Rmin(M) have been
developed and extensively studied [1, 12, 17, 20]. We will prove that when t is
unconstrained, the most natural extensions of these methods to include gene-
conversions, yield only weak lower bounds. However, we introduce additional
ideas to increase these lower bounds, and show how to obtain higher lower bounds
when t is bounded.

Our methods to compute lower bounds on Tmin(M, t) are based on an a
general approach developed by Myers and Griffiths [20] to compute lower bounds
on Rmin(M). Their approach has two essential parts: methods to compute local
lower bounds for intervals of sites, and a simple, polynomial-time method to
combine those local bounds into a composite global lower bound. All of the known
methods (HK [17], Haplotype and History [20], and Connected Component [1,
12]) to compute local lower bounds on crossing-over extend immediately to the
case that gene-conversions are allowed, but the issue of how to combine those
local bounds into a composite global bound on Tmin(M, t) is more complex.

The Haplotype local bound: Due to its centrality, we discuss the local Haplotype
bound of Myers and Griffiths [20] in detail. Consider the set of sequences M
arrayed in a matrix, and an interval I of sites. Let M(I) be the sequences M
restricted to the sites of I. Then h(M(I)) is defined as the number of distinct
rows of M , minus the number of distinct columns of M , minus one. h(M(I)) is
a valid lower bound on Rmin(M(I)), and in fact a lower bound on the number
of breakpoints that must be located inside interval I. To see this, assume first
that all the columns of M are distinct, since removal of (duplicate) columns
cannot increase the number of crossing-over events needed, so any lower-bound
computed for the reduced matrix will be a lower-bound for the original M .
Next, consider the derivation of M(I) using Rmin(I) crossing-over events and one
mutation per site in I, and consider an actual specification of the relative order
that the events and mutations occur (this is called a “history”). Any mutation
of a site in I can only occur once in the history, and it can result in only one new
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sequence (not yet derived in the history). Similarly, each crossing-over event with
breakpoint in I can only create one new sequence. A crossing-over event with
breakpoint outside of I, or a mutation outside of I cannot create a new sequence
in the set M(I). The history must create all the distinct sequences in M(I)
starting from some ancestral sequence which might itself be in M(I). It follows
that there must be at least h(M(I)) crossing-over events whose breakpoint is
(strictly) in I, so h(M(I)) ≤ Rmin(M(I)). Clearly, h(M(I)) is also a lower bound
on Tmin(M(I), t) for any t, because a single gene-conversion can also create at
most one new sequence in M(I).

In [20], local haplotype lower bounds for an interval I were raised by consid-
ering subsets of sites in the interval. That approach was further explored in [2]
and optimized in [26]. In our software, we use the latter approach to obtain the
highest possible local haplotype bounds for each interval I.

The Composite global lower bound: We are interested in a lower bound on
Tmin(M, t), not just a bound on Tmin(M(I), t) for a single interval I. Of course,
h(M) (the haplotype bound applied to the interval consisting of all the sites) is
a lower bound on Tmin(M, t), but in the computations we have done, it is a very
poor lower bound, often a negative number. The same is true of Rmin(M), but
a much better composite global lower bound on Rmin(M) can be obtained from
the local lower bounds. We say a point p “covers” an interval I if p is contained
in I with at least one SNP site on each side of p. Then we obtain a composite
global bound on Rmin(M) by solving the Crossover Coverage Problem: Find
the smallest set of points B so that each interval I is covered by at least h(M(I))
points of B. |B| is a valid lower bound on Rmin(M), and B can be found using
a simple polynomial-time algorithm[20]. However, |B| is not necessarily a lower
bound on Tmin(M, t). To use the local bounds to obtain a composite bound on
Tmin(M, t), we next formulate a natural generalization of the Crossover Coverage
Problem.

We say a line-segment “covers” an interval I if at least one end p of the line-
segment covers I. Note that a line-segment that strictly contains I does not cover
it, and that a line-segment covers I only once even if both of its endpoints are
in I. The intuitive meaning is that a line-segment represents a gene-conversion,
and a line-segment covers an interval I only if the action of the gene-conversion
it represents could create a new sequence in M(I). Then we obtain a composite
bound on Tmin(M, t) by solving the Gene-Conversion Coverage Problem:
Find the smallest set consisting of points P , and line segments S with length
at most t, so that each interval I is covered by at least h(M(I)) elements of
P ∪ S. Each point in P represents a crossing-over and each line-segment in S
represents a gene-conversion. Clearly, a derivation of M using exactly Tmin(M, t)
recombinations, where the conversion tract of any gene-conversion is of length
at most t, defines a set of points and line-segments that cover each interval I
at least h(M(I)) times. Therefore, a solution to the Gene-Conversion Coverage
Problem is a valid lower bound on Tmin(M, t).
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4.1 A special case of the Gene-Conversion Coverage Problem

We first show that when t is unbounded, the Gene-Conversion Coverage Problem
has a simple, yet disappointing solution. For the following discussion, let B be a
minimum-sized set of breakpoints that solves the Crossover Coverage Problem,
and let |B| = n. Number the breakpoints in B left to right choosing an arbitrary
ordering of breakpoints that lie on the same point. For any k ≤ bn

2 c, let P (B, k)
be a pairing of the leftmost k breakpoints to the rightmost k breakpoints of B
under the mapping i → n − k + i, and create a line-segment between the two
endpoints of each pair in P (B, k). Let S be the set of these k line-segments,
and let P be the set n− 2k unpaired points in B. We will show that there is a
solution of the Gene-Conversion Coverage Problem that has this form for some
k, and show that the best k can be easily obtained.

Note that in P (B, k), if i < j ≤ k, then i maps to a breakpoint to the left of
the breakpoint that j maps to, a property that we call “monotonicity”. Define
L(I) as the number of breakpoints in B to the left of I, and R(I) as the number
of breakpoints in B to the right of I. We say a line-segment is “contained in” I
if both of its ends are contained in I. Define the “coverage” of interval I as the
number of elements of P ∪ S that cover I.

Lemma 1. Let I be any interval where some line-segment in S is contained in
I. Then exactly k − (L(I) + R(I)) line-segments in S are contained in I.

Proof. First, if a line-segment (a, b) in S is contained in I, then k ≥ L(I) + 1 so
breakpoint L(I) + 1 (the leftmost breakpoint in I) must be the left end of some
line-segment in S. Moreover, by monotonicity, the right endpoint of that segment
(which is at breakpoint n−k+L(I)+1) must be at or to the left of b, and hence
in I. Since the pairing P (B, k) involves the rightmost k breakpoints in B, all the
breakpoints in I to the right of n−k+L(I)+1 must be right endpoints of some
line-segment in S, and again by monotonicity, their paired left endpoints must be
to the right of L(I)+1, and hence must be in I. The rightmost breakpoint in I is
n−R(I), so there are exactly n−R(I)− [n−k+L(I)+1]+1 = k−(L(I)+R(I))
line-segments in S that are contained in I. ut

Lemma 2. For k ≤ n−maxI h(M(I)), the coverage of any interval I is at least
h(M(I)).

Proof. Let B(I) be the number of breakpoints in B that are contained in I. The
coverage of I is exactly B(I) minus the number of line-segments in S contained
in I. Since, B(I) ≥ h(M(I)) for all I, we only need to examine intervals where
some line-segment in S is contained in the interval. Let I be such an interval.
By assumption, k ≤ n−maxI h(M(I))) ≤ n− h(M(I)), so

k − (L(I) + R(I)) ≤ n− h(M(I))− (L(I) + R(I)) = B(I) − h(M(I)).

Therefore h(M(I)) ≤ B(I) − [k − (L(I) + R(I))], and by the Lemma 1, the
coverage of I is at least h(M(I)). ut
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Corollary 1. If k = min(bn
2 c, n−maxI h(M(I))), then the coverage of I is at

least h(M(I)), for each interval I.

Theorem 1. If B is a minimum sized set of breakpoints (of size n) solving the
Crossover Coverage Problem, then the optimal solution to the Gene-Conversion
Coverage Problem has size exactly max(dn

2 e, maxI h(M(I))).

Proof. By the Corollary, if we set k to min(bn
2 c, n − maxI h(M(I))), then ev-

ery interval I has coverage at least h(M(I)), and |S ∪ P | is exactly n − k =
max(dn

2 e, maxI h(M(I))). But both of those terms are trivial lower bounds on
the number of needed line-segments and single breakpoints in any solution to
the Gene-Conversion Coverage Problem, and hence that choice of k gives the
optimal solution. ut

So when t is unbounded, we have a simple, efficient algorithm for the Gene-
Conversion Coverage Problem: solve the Crossover Coverage Problem, yielding
set B, and then apply Theorem 1. Note that Theorem 1 holds regardless of which
(optimal) solution B is used, and provides a lower bound on Tmin(M, t) for any
t, as well as for Tmin(M). It can also be shown that Theorem 1 holds even if
we use HK or history or connected component local lower bounds, instead of
Haplotype local lower bounds.

4.2 Improving the Bounds

Theorem 1 establishes trivial lower bounds on Tmin(M, t) and Tmin(M). It’s
importance is that it proves that the natural extension of the way that good
lower bounds on Rmin(M) were obtained, will not yield non-trivial lower bounds
when gene-conversion is included. To get higher bounds we have to use additional
constraints. The first such constraint is to bound the permitted tract length to
t in any solution to the Gene-Conversion Coverage Problem. We do not have a
polynomial-time algorithm for this version of the problem, but next show how
to effectively solve it using integer linear programming.

An ILP formulation for bounded t: We define φ(i) as the physical position in
the chromosome of site i. Given an input matrix M with m sites, and a bound
t, we define an integer-valued variable Ki,j for each pair of integers i, j where
0 < i ≤ m − 1, 0 < j ≤ m − 1, i ≤ j, and either i = j or φ(j) − φ(i + 1) < t.
The value that variable Ki,j takes on in the ILP solution specifies the number
of line-segments [i, j] (whose two endpoints are between sites i, i + 1 and sites
j, j +1) that will be used in the solution. For an interval I = [a, b], we define the
set A(I) = {Ki,j : a ≤ i < b or a ≤ j < b}. Set A(I) is the set of the variables
that can specify a line-segment that covers I. We allow i = j to indicate a single
point. Then the following ILP solves the Gene-Conversion Coverage Problem
when t is bounded:

Minimize
∑

(i,j) Ki,j

Subject to∑
Ki,j∈A(I) Ki,j ≥ h(M(I)), for each interval I.
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Further improvements: We can often increase the composite global lower bound
on Tmin(M, t) with the following observation. We say sites p, q are incompatible
when all four binary combinations 00, 01, 10, 11 appear at those two sites. If p, q
are incompatible, then there must be at least one breakpoint in the interval [p, q],
and this can introduce additional constraints on possible gene conversions. For
example, consider the following four sequences: 000, 011, 110, 101. All three sites
are pairwise incompatible. Let a, b, c denote the first, second, and third sites,
respectively. Intervals [a, b], [b, c], [a, c] all have a local bound of 1. We can cover
those intervals using a single line-segment with one endpoint between a and b,
and the other endpoint between b and c. That single segment covers all three of
the intervals. However, it is easy to see that a gene conversion corresponding to
that single segment cannot make sites a and c incompatible. Thus, there must
be at least two gene-conversion or crossing-over events for this example. Those
additional constraints can increase the resulting global lower bound, and can be
incorporated into the ILP with the following constraints:

∑
p≤a<q,b≥q Ka,b +

∑
a<p,p≤b<q Ka,b +

∑
p≤a<q Ka,a ≥ 1, for each pair of in-

compatible sites p, q.

Note that Ka,a defines a crossing-over event rather than gene-conversion.
The above ILP formulation can be solved reasonably fast for data of the size

of current biological interest. Some timing details will be presented in Section 6.
This approach has been implemented in the program HapBound-GC. A demon-
stration version of HapBound-GC uses the free GNU GLPK package to solve
the ILP.

Another way to raise the composite lower bound involves the interaction of
local bounds and global bounds that use those local bounds. Consider a subset
of sites K that span an interval I, and let M(K) be the sequences M restricted
to the sites in K. The action of a gene-conversion can create a sequence in M(K)
differing from both of the parent sequences only if there are sites in K to the
left and right of one of the two breakpoints of the gene-conversion. Moreover,
if the two ends of a gene-conversion are in the interval spanned by K, then the
gene-conversion can create a new sequence in M(K) only if there is a site in
K between those two breakpoints. Those observations constrain where we must
place points and line-segments in a solution to the Gene-Conversion Coverage
Problem. In fact, such constraints are used in the ILP for the subsets described in
Section 4 that yield the highest local haplotype bounds. However, we can further
raise the composite global bound by enumerating each subset of sites K up to a
certain size, and computing the haplotype lower bound on the sequences M(K).
Then, we generate constraints for the ILP requiring that the number of points
and line-segments covering K must be at least the computed haplotype bound
for M(K), and requiring that the selection of covering points and line-segments
be constrained as described above. These additional ideas result in larger lower-
bounds at the cost of increasing the size of the ILP and the time needed to solve
it. Our experience shows that when CPLEX is used, the ILP formulation can
still be solved reasonably fast when enumerating all size-3 (or even 4) subsets of
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sites. Unfortunately, the free GNU GLPK runs much slower than CPLEX when
all size-3 subsets are used for data containing more than 30 sites.

5 Computing upper bounds on Tmin(M, t): A practical
algorithm to derive M explicitly

In this section we describe our algorithm that produces an explicit sequence of
recombination and mutation events to generate an input set of sequences M .
This of course gives an upper bound on Tmin(M, t).

The overall framework of our upper bound on Tmin(M, t) is similar to that
of the upper bound described in [26] where only mutations and crossing-over
events are allowed. The main distinction lies in that we here use the following
more general derivation cost: Given a row r in a binary matrix A and a specified
maximum tract length t, c(r|A − r, t) is defined as the minimum total number
of crossing-over events and gene-conversions with tract length at most t that are
needed to derive row r from some other rows in A. In [26], only single-crossovers
were allowed in defining the derivation cost, denoted w(r|A − r).

The following procedure, called Procedure History, is the key component
of our method to compute an upper bound on Tmin(M, t).

Step 0. Set A = M .
Step 1. Set W=0.
Step 2. Repeat Steps 2a and 2b until neither operation is possible.

Step 2a. Collapse two identical rows of A into one row.
Step 2b. Remove any column k of A containing less than two 0s or less

than two 1s.
Step 3. If A is empty, then stop. Otherwise, remove a row from A, say row

r, set W ←W + c(r|A− r, t), and go to step 2.

The final upper bound τ(M, t) on Tmin(M, t) is defined as the minimum final
value of W over all possible executions of Procedure History. (Two inequivalent
executions have different sequences of row removals in Step 3.)

Of course, if we explicitly explore all possible executions, then the method
would only be practical for very small problem instances. Instead, we use branch
and bound ideas to find τ(M, t) without explicitly exploring all possible execu-
tions of Procedure History. The details of the branch and bound method are
similar to those in [26], and their use results in dramatic speedups allowing
practical computation of τ(M, t) for moderate size data. Some timing details
are presented in Section 6. We implemented this method into a program called
SHRUB-GC which is available on the web (www.cs.ucdavis.edu/∼gusfield).

The fact that τ(M, t) is an upper bound on Tmin(M, t) follows from the
observation that every execution of Procedure History, with final cost denoted
W ∗, specifies backwards in time a series of W ∗ recombination events (along
with one mutation per site) that derive M . These events can be represented in
an directed acyclic graph (DAG), and our program can produce this DAG. More
specifically, an execution of Step 2a creates a new node with two directed edges
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out of it (this is a “coalescent” event); an execution of Step 2b creates a directed
edge on which site k mutates; and removing the row r in Step 3 corresponds to
creating c(r|A − r, t) crossing-over and gene-conversion events, along with the
needed coalescent nodes, to derive row r from the sequences in A− r.

The generalized derivation cost c(r|A−r, t) can be computed by an O(nmt2)
time algorithm recently presented in [19], where n and m are the number of
sequences and the length of each sequence in M . There may exist several dis-
tinct combinations of c(r|A− r, t) crossing-over and gene-conversion events that
produce r from A− r. We modified the algorithm in [19] to generate r using the
minimum number of gene-conversions possible over all histories that use exactly
c(r|A − r, t) crossing-over and gene-conversion events to generate r from A− r.
That derivation of r can be used in the construction of the larger DAG that
derives M .

6 Application: Distinguishing Gene-Conversion from
Crossing-Over

One of the key motivations for the development of our lower and upper bound
methods is to use them to estimate the relative extent that gene-conversion,
compared to crossing-over, was involved in the true historical generation of a
set of sequences. Further, the successful use of our methods to distinguish the
average behavior of sets of sequences whose true generation involved moderate
to high levels of gene-conversion, from that of sets that used a low level, is also
a validation of the biological relevancy of the objective function Tmin(M, t) and
bounds on it. In this section we highlight some key empirical results.

Define ∆τ(M, t) := τ(M, 0)−τ(M, t), where both τ(M, 0) and τ(M, t) denote
either our lower or upper bounds on Tmin(M, t) (context will determine which
one). Note that ∆τ(M, t) ≥ 0 for all M and t, since τ(M, 0) corresponds to the
case when no gene-conversion is allowed.

There may exist several distinct combinations of single-crossovers and gene-
conversions that produce τ(M, t). We use γ(M, t) to denote the minimum number
of gene-conversions over all such combinations of single-crossovers and gene-
conversions. As mentioned above, we modified the algorithm in [19] so that
γ(M, t) can be computed for the upper bound. Computing it in the lower bound
can be done by an easy modification of the ILP presented in Section 4.

The general idea of the simulations reported in this section is to generate
sets of sequence data with varying amounts of gene-conversion. We expect that
γ(M, t) and ∆τ(M, t) will increase as t increases, but will do so faster and will be
larger for data actually generated with gene-conversions than for data without
gene-conversions. That is, as we allow our methods to try to use more gene-
conversions, they will be able to do so more effectively on sequences that were
actually generated using gene-conversions. Another reflection of the same intu-
ition is that the proportion of total recombinations that are gene-conversions
should grow at t grows, but in a more pronounced way for data that was gener-
ated using gene-conversions.



Distinguishing Gene-Conversion from Single-Crossover Recombination 11

f = 0.0
f = 2.5
f = 5.0
f = 7.5
f = 10.0

ρ = 5

t

β
(t

)

1 500 1000 1500 2000

0.4

0.3

0.2

0.1

0

ρ = 5

t

α
(t

)

1 500 1000 1500 2000

0.4

0.3

0.2

0.1

0

ρ = 2

t

β
(t

)

1 500 1000 1500 2000

0.4

0.3

0.2

0.1

0

ρ = 2

t

α
(t

)

1 500 1000 1500 2000

0.4

0.3

0.2

0.1

0

Fig. 1. Upper bound expectations α(t) := E[γ(M, t)/τ (M, t) | τ (M, 0) 6= 0] and β(t) :=
E[∆τ (M, t)/τ (M, 0) | τ (M, 0) 6= 0], for n = 20, s = 30, k = 5000 and λ = 500. We
carried out computations for t = 1, 500, 1000, 1500, 2000 and joined the corresponding
consecutive points by a straight line to generate these plots.

6.1 Simulation Study

Our main empirical result is that the expected behavior of both γ(M, t) and
τ(M, t) as t increases, does depend critically on the extent that gene-conversions
were used to generate M . We examined α(t) := E[γ(M, t)/τ(M, t) | τ(M, 0) 6= 0]
and β(t) := E[∆τ(M, t)/τ(M, 0) | τ(M, 0) 6= 0] in our study. The first expectation
reflects the fraction of all events that are gene-conversions, in solutions that
minimize the total number of events. The second expectation summarizes the
reduction in the number of total recombination events for a given t, compared to
the number when no gene-conversion is allowed. If our methods truly reflect the
extent of gene-conversion used to generate the sequences, and properly reflect
the tract lengths used, then both of these summary statistics should increase
with increasing f (defined below) and t.

We used Hudson’s program MS [16] to generate simulated data. MS uses a
finite-sites uniform recombination model, and the user specifies the number k of
sites to be considered in the model. We used k = 5000 in our study. In humans,
the genome-wide average of the scaled recombination rate ρ is about 0.4 per kb,
which translates to ρ ≈ 2 for a region of 5000 bps long. Instead of specifying the
mutation rate, we specified the number s of polymorphic sites to be generated.
With g being the probability per generation per sequence that gene conversion
initiates between a pair of adjacent sites and r the probability per generation per
sequence that crossing-over occurs between a pair of adjacent sites, f is defined
as g/r, for r 6= 0. That is, f specifies the relative rate of gene-conversions used
by MS, compared to crossing-over, in the generation of sequences M . Larger f
specifies a higher rate of gene-conversions. It is believed that in humans, f is in
the range 2 to 10 [15]. Program MS assumes that the conversion tract length is
geometrically distributed with mean conversion tract length λ, provided by the
user. We analyzed 500 simulated datasets for each set of parameters.
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Figure 1 illustrates our upper bound results on datasets generated with n =
20, s = 30, k = 5000, λ = 500 and ρ = 2 or 5. An important thing to note is that,
for f = 0 (i.e., when no gene-conversions were used in the generation of M), both
α(t) and β(t) remain close to zero as t changes. That is, when the data were
generated without gene-conversions, the allowance of gene-conversions in the
bounding methods does not reduce the bounds very much. In effect, the methods
cannot “make up” gene-conversions that did not actually occur in the generation
of the sequences. Similarly, for fixed f , both α(t) and β(t) first increase rapidly
as t increases from zero, but increasing t beyond 1500 does not seem to influence
them very much. This behavior is consistent with the fact that, for λ = 500, the
probability of the tract length being less than or equal to 1500 is about 95%.
These characteristics are a very strong validation of the biological relevancy of
our methods.

As f increases, both α(t) and β(t) grow, and this growth is more pronounced
for larger t. In general α(t) is more sensitive to changes in f and t than is β(t).
For fixed f and t, both α(t) and β(t) tend to increase as the recombination rate ρ
increases, with α(t) more so than β(t). The general behavior of our lower bound
is quite similar to that of our upper bound.

In general, as t, f or ρ increases, the running times of our programs increase.
The average running time per dataset of SHRUB-GC ranged from a fraction of
a second to a bit over a minute on a 2 GHz pentium PC. HapBound-GC is faster
than SHRUB-GC, with the average running time per dataset being less than a
second.

6.2 Gene-Conversion Presence (GCP) Test

Based on the simulation results of our methods, one can devise various tests for
determining whether gene-conversion was used to generate a given dataset. We
here suggest a simple test involving γ(M, t): For a given maximum tract length t,
we say that γ(M, t) > 0 indicates the presence of gene-conversion. Percentages
of simulated datasets with γ(M, t) > 0 are summarized in Table 1, for mean
tract length λ = 500. Percentages for f = 0 can be regarded as false positive
rates, whereas percentages for f > 0 can be regarded as sensitivity. Results for
three different methods are shown in the table: (U) requiring γ(M, t) > 0 in the
upper bound method only, (L) requiring γ(M, t) > 0 in the lower bound method
only, and (U&L) requiring γ(M, t) > 0 in both upper and lower bound methods.

The outcome of these tests depends on the value of t used, but our results
indicate that increasing t beyond a certain point does not change the percentages
by a considerable amount; that is, in our simulations using λ = 500, the difference
between t = 1 and t = 1000 is much more significant than that between t = 1000
and t = 2000. In practice, the user is advised to decide on an appropriate t based
on what is believed to be the mean tract length for the species being studied.

Results in Table 1 suggest that for small ρ (say, ρ ≤ 2), false positive rates
are low and method U seems to work better than method L or method U&L.
For ρ = 5, however, both methods U and L lead to somewhat high false positive
rates. Since using the combined method U&L reduces the false positive rate, a
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Table 1. Percentage of datasets with γ(M, t) > 0 for n = 20, s = 30, k = 5000 and
λ = 500. “U” denotes having γ(M, t) > 0 in the upper bound method, “L” having
γ(M, t) > 0 in the lower bound method, and “U&L” having γ(M, t) > 0 in both upper
and lower bound methods.

t = 1 t = 500 t = 1000 t = 1500 t = 2000
ρ f U L U&L U L U&L U L U&L U L U&L U L U&L

2 0.0 0.8 0.6 0.6 0.8 1.0 0.8 1.2 1.6 1.2 1.6 3.0 1.6 1.8 3.0 1.8
2.5 20.6 15.0 12.4 32.6 30.2 25.2 36.6 35.6 29.8 37.4 38.4 31.0 38.6 40.4 32.6
5.0 38.6 31.4 24.8 56.8 55.0 46.8 61.2 61.2 53.4 63.8 63.0 56.0 64.6 65.2 58.0
7.5 46.8 37.0 29.8 62.6 61.0 52.0 65.8 67.0 57.2 68.2 70.4 60.6 69.6 72.0 62.2

10.0 57.0 45.4 36.0 74.4 72.6 64.4 78.8 78.2 71.0 79.8 80.4 73.0 81.8 81.2 74.8

5 0.0 4.6 4.6 2.8 8.4 9.4 6.0 10.2 12.6 7.4 11.8 16.2 8.8 12.6 18.4 9.6
2.5 40.6 37.2 25.0 63.6 64.6 54.4 68.0 71.8 61.2 69.6 72.6 62.8 71.8 73.8 64.6
5.0 64.4 50.6 42.2 81.4 82.6 74.2 87.4 88.6 81.6 89.8 90.4 85.2 91.0 90.6 86.2
7.5 72.6 63.2 51.4 92.8 92.4 88.0 96.0 94.4 92.2 96.8 95.4 93.8 97.0 95.4 94.0

10.0 81.6 69.4 61.8 95.8 93.6 91.4 97.2 96.8 94.8 97.4 97.0 95.2 98.0 97.0 95.8

conservative strategy would be to use that method if ρ > 2 or if ρ is unknown. All
three methods perform significantly better with increasing f (i.e., high sensitivity
can be achieved for f ≥ 5). Further, we remark that, although not shown here,
our GCP test performs better with increasing number of segregating sites, given
that all other parameters remain fixed.

6.3 GCP Test on Arabidopsis thaliana Data

We applied the above GCP Test to the Arabidopsis thaliana data of Plagnol et
al.[22] To be conservative, we used method U&L. The data consist of 96 samples
broken up into 1338 short fragments, each of length between 500 and 600 bps.

Most fragments contain a significant fraction of missing data, which were
handled in [22] as follows. Given a fragment, they first found the set of all pairs
of columns containing 00, 01, 10 and 11. Then, if there were less than or equal
to ten missing data restricted to that set, they tried all possible assignments of
values to those missing data and declared that the fragment contains a clear gene-
conversion event if their test produced an affirmative answer for any assignment.
In our approach, instead of assigning values to missing data, we removed certain
columns and rows so that the remaining dataset was free of missing data.

Typically ρ < 1 for each fragment, as estimated in [22], so the above sim-
ulation results imply that our GCP test should have a low false positive rate,
provided that the actual evolution of Arabidopsis thaliana has been consistent
with the model used for simulation. Since we ignored homoplasy events (re-
current or back mutations) in our simulations, we decided to account for their
possibility as follows. First, we ran our GCP test using t = 1, thus allowing
for at most one SNP in the conversion tract. Note that a gene-conversion event
in such a case has similar effects as does a homoplasy event. Second, when we
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performed GCP tests for t > 1, we ignored those datasets that had affirmative
GCP test results for t = 1.

Plagnol et al. [22] identified four fragments as containing clear signals for
gene-conversion, with potential tracts being 55, 190, 200 and 400 bps long. In
contrast, 22 fragments passed our test when the maximum tract length was
set to 200. (Increasing t beyond 200 did not change our results.) Of these 22
fragments, three coincided with those found in [22]. We believe that the fact
that we handled missing data differently is responsible for our not detecting any
signal for gene-conversion in the remaining one fragment (whose potential tract
length is 400 bps) identified in [22]. All in all, our detection methods are more
general than the method used in [22], and we believe that that led us to identify
many more fragments than they did. Effectively, the method of Plagnol et al. [22]
can only detect fragments with τ(M, t) = 1 and γ(M, t) = 1. All 19 additional
fragments we identified had τ(M, t) > 1 and γ(M, t) ≥ 1.

Acknowledgment

We thank Vincent Plagnol for providing us with the Arabidopsis thaliana data
and for communicating with us regarding the data. This research is supported
by the National Science Foundation grants EIA-0220154 and IIS-0513910.

References

1. V. Bafna and V. Bansal. The number of recombination events in a sample history:
conflict graph and lower bounds. IEEE/ACM Transactions on Computational
Biology and Bioinformatics, 1:78–90, 2004.

2. V. Bafna and V. Bansal. Improved recombination lower bounds for haplotype data.
In Proceedings of RECOMB 2005, pages 569–584, 2005.

3. C. Carlson, M. Eberle, L. Kruglyak, and D. Nickerson. Mapping complex disease
loci in whole-genome association studies. Nature, 429:446–452, 2004.

4. A. G. Clark. Finding genes underlying risk of complex disease by linkage disequi-
librium mapping. Curr. Opin. Genet. Dev., 13:296–302, 2003.

5. G. Drouin, F. Prat, M. Ell, and G.D. Clarke. Detecting and characterizing gene
conversion between multigene family members. Mol. Bio. Evol., 16:1369–1390,
1999.

6. N. El-Mabrouk. Deriving haplotypes through recombination and gene conversion
pathways. J. Bioinformatics and Computational Biology, 2(2):241–256, 2004.

7. P. Fearnhead, R.M. Harding, J.A. Schneider, S. Myers, and P. Donnelly. Appli-
cation of coalescent methods to reveal fine scale rate variation and recombination
hotspots. Genetics, 167:2067–2081, 2004.

8. L. Frisse, R.R. Hudson, A. Bartoszewicz, J.D. Wall, J. Donfack, and A. Di Rienzo.
Gene conversion and different population histories may explain the contrast be-
tween polymorphism and linkage disequilibrium levels. Am. J. Hum. Genet.,
69:831–843, 2001.

9. D. Gusfield. Optimal, efficient reconstruction of Root-Unknown phylogenetic net-
works with constrained and structured recombination. JCSS, 70:381–398, 2005.



Distinguishing Gene-Conversion from Single-Crossover Recombination 15

10. D. Gusfield, S. Eddhu, and C. Langley. The fine structure of galls in phylogenetic
networks. INFORMS J. on Computing, special issue on Computational Biology,
16:459–469, 2004.

11. D. Gusfield, S. Eddhu, and C. Langley. Optimal, efficient reconstruction of phylo-
genetic networks with constrained recombination. J. Bioinformatics and Compu-
tational Biology, 2(1):173–213, 2004.

12. D. Gusfield, D. Hickerson, and S. Eddhu. An efficiently-computed lower bound
on the number of recombinations in phylogenetic networks: Theory and empirical
study. To appear in Discrete Applied Math, special issue on Computational Biology.

13. J. Hein. Reconstructing evolution of sequences subject to recombination using
parsimony. Math. Biosci, 98:185–200, 1990.

14. J. Hein. A heuristic method to reconstruct the history of sequences subject to
recombination. J. Mol. Evol., 36:396–405, 1993.

15. J. Hein, M. Schierup, and C. Wiuf. Gene Genealogies, Variation and Evolution: A
primer in coalescent theory. Oxford University Press, UK, 2004.

16. R. Hudson. Generating samples under the Wright-Fisher neutral model of genetic
variation. Bioinformatics, 18(2):337–338, 2002.

17. R. Hudson and N. Kaplan. Statistical properties of the number of recombination
events in the history of a sample of DNA sequences. Genetics, 111:147–164, 1985.

18. A. J. Jeffreys and C. A. May. Intense and highly localized gene conversion activity
in human meiotic crossover hot spots. Nature Genetics, 36:151–156, 2004.

19. M. Lajoie and N. El-Mabrouk. Recovering haplotype structure through recombi-
nation and gene conversion. Bioinformatics, 21(Suppl 2):ii173–ii179, 2005.

20. S. R. Myers and R. C. Griffiths. Bounds on the minimum number of recombination
events in a sample history. Genetics, 163:375–394, 2003.

21. B. Padhukasahasram, P. Marjoram, and M. Nordborg. Estimating the rate of gene
conversion on human chromosome 21. Am. J. Hum. Genet., 75:386–97, 2004.

22. V. Plagnol, B. Padhukasahasram, J. D. Wall, P. Marjoram, and M. Nordborg.
Relative influences of crossing-over and gene conversion on the pattern of link-
age disequilibrium in Arabidopsis thaliana. Genetics, in press. Ahead of Print:
10.1534/genetics.104.040311.

23. S. Sawyer. Statistical tests for detecting gene conversion. Mol. Biol. Evol., 6:526–
538, 1989.

24. Y.S. Song and J. Hein. Parsimonious reconstruction of sequence evolution and
haplotype blocks: Finding the minimum number of recombination events. In Proc.
of 2003 Workshop on Algorithms in Bioinformatics, pages 287–302, 2003.

25. Y.S. Song and J. Hein. On the minimum number of recombination events in the
evolutionary history of DNA sequences. J. Math. Biol., 48:160–186, 2004.

26. Y.S. Song, Y. Wu, and D. Gusfield. Efficient computation of close lower and upper
bounds on the minimum number of needed recombinations in the evolution of
biological sequences. Proc. of ISMB 2005, Bioinformatics, 21:i413–i422, 2005.

27. J. C. Stephens. Statistical methods of DNA sequence analysis: Detection of intra-
genic recombination or gene conversion. Mol. Bio. Evol., 2:539–556, 1985.

28. The International HapMap Consortium. A haplotype map of the human genome.
Nature, 437:1299–1320, 2005.

29. J. D. Wall. Close look at gene conversion hot spots. Nat. Genet., 36:114–115, 2004.
30. T. Wiehe, J. Mountain, P. Parham, and M. Slatkin. Distinguishing recombination

and intragenic gene conversion by linkage disequilibrium patterns. Genet. Res.,
Camb., 75:61–73, 2000.


