
SeqHive: A Reconfigurable Computer Cluster for
Genome Re-sequencing

Kristian Stevens∗, Henry Chen§, Terry Filiba§, Peter McMahon† and Yun S. Song‡
∗Department of Computer Science, University of California Davis, Davis, California 95616

Email: kastevens@ucdavis.edu
§Berkeley Wireless Research Center, 2108 Allston Way, Berkeley, California 94704
†Department of Electrical Engineering, Stanford University, Stanford, California 94305

‡Department of Electrical Engineering and Computer Sciences, UC Berkeley, Berkeley, California 94720

Abstract—We demonstrate how Field Programmable Gate
Arrays (FPGAs) may be used to address the computing chal-
lenges associated with assembling genome sequences from re-
cent ultra-high-throughput sequencing technologies. Advances in
sequencing technology allow researchers to generate immense
amounts of raw data in the form of short reads with high error
rates. A prerequisite to effectively utilizing this data for most
applications is accurate alignment to a reference genome. While
dynamic programming (DP) alignment algorithms are generally
avoided on conventional architectures due to their computational
complexity, they can be tailored for efficient implementation
on systolic architectures. We describe and implement the first
system capable of assembling large genomes using DP. We imple-
mented application-specific DP algorithms for aligning data from
ultra-high-throughput sequencers in a reconfigurable computing
cluster. To obtain the necessary throughput while maintaining
scoring integrity, we extended the compact encoding scheme of
Lipton and Lopresti for our application. Each FPGA is capable of
rapidly aligning multiple reads in parallel against a long reference
genome. The reconfigurable cluster proves to be scalable and
capable of processing real world datasets with a sustained
performance of 11 tera cell updates per second. We examine the
advantages and practicality of our system by benchmarking real
genomic data from a large sequencing project. Our exhaustive
validation confirms that application specific computing hardware
can provide more accurate results than current heuristic methods
and remain practical. While directly addressing the important
problem of genomic assembly, particularly in circumstances
where error rates or evolutionary divergence is high, the methods
presented are also relevant to many other current applications
for this type of data.

I. INTRODUCTION AND BACKGROUND

In this paper, we examine a role for reconfigurable com-
puting hardware in the compelling scientific challenge of
obtaining a complete genome sequence. The current approach
is Whole-Genome Shotgun (WGS), in which many identical
copies of a genome are randomly fragmented into substrings
of manageable length, and a deep random sample from this
pool is then sequenced. The computationally challenging as-
sembly part of WGS sequencing involves stitching together
overlapping substrings (reads) to reconstruct the superstring
genome. Assembly is substantially aided if there exists a
reference genome with high sequence similarity. This is almost
always from the same species as the sample being sequenced.
Genome sequencing that uses a reference genome for assembly
is referred to as resequencing.

The central computational problem we accelerate with re-
configurable hardware is the accurate alignment of a very large
number of reads to a reference genome. A correct alignment
positions each read at the homologous location where the
read and the reference genome share a common evolutionary
history. Importantly, reads differ from their corresponding
reference genome substrings by errors and evolutionary events
such as substitutions and indels (insertions and deletions).
Therefore, we must use an alignment algorithm that can
compensate for, if not accurately model, the potential differ-
ences between the two strings. The classic sequence alignment
algorithms are based on dynamic programming (DP) and take
O(mn)-time, where m is the length of the read and n the
length of the reference genome. The scale of our problem is
impressive and no system has been implemented to accomplish
it using DP. The Drosophila melanogaster genome (sequenced
10 fold) requires 8× 1017 recursions be computed, while the
comparable depth in the human genome requires 9× 1019.

Here we describe the first system capable of resequencing a
genome as large as Human within the time required to obtain
the input reads. To accomplish this, it was necessary to imple-
ment an architecture that can efficiently pack multiple systolic
arrays onto a single FPGA to exploit both the available coarse-
and fine-grained parallelism. The reconfigurability provided
by the FPGAs is critical for our system since it allows us to
handle different length reads and different scoring functions.
Importantly, we demonstrate the practicality of our approach
by benchmarking on real genomic data from a large high-
throughput sequencing project [http://www.dpgp.org]. Our
system has a number of advantages over current heuristic
methods.

Our current multi-FPGA prototype uses the widely available
open source Berkeley Emulation Engine 2 (BEE2) system,
described in Section II-B1. We have also ported and bench-
marked our design to the Xilinx Virtex-5 architecture, antici-
pating wide availability of the next-generation BEE3 system.
We show how the larger LUTs on the Virtex-5 can be used to
extend the algorithm without a performance penalty.

1) Ultra-High-Throughput Sequencing: Genome sequenc-
ing technology has recently entered a revolutionary phase,
opening vast new opportunities for biological sciences and
related fields [1]. The fast and cost effective generation
of immense amounts of raw, unassembled sequence data



can now be obtained from commercially available platforms.
Large-scale resequencing projects are underway. Of particular
importance to public health is the Human 1000 Genomes
Project [http://1000genomes.org]. Concurrently, other projects
are sequencing a similar number of genomes of scientifically
important model organisms, such as the Drosophila Population
Genomics Project [http://www.dpgp.org]. The scale of data
being generated is prompting the computational community to
respond with faster algorithms and larger computational infras-
tructure to assemble and analyze the data. The methodology
described here is directly relevant to these projects.

Several competing ultra high-throughput sequencing plat-
forms are commercially available: the 454 sequencer from
Roche Diagnostics; SOLiD from Applied Biosystems; and
Illumina’s Genome Analyzer. In this paper we focus on the
Illumina platform because it is the primary technology used
in the aforementioned projects and currently the most popular.
Illumina’s sequencer currently delivers millions of reads in
a single run. The reads are of uniform length between 25
and 100 bp per run. Each run takes a few days to complete,
depending on read length. For a system to be practical, it must
first be computationally powerful enough to keep up with this
rate of data production.

Single molecule technologies from companies such as He-
licos Biosciences and Pacific Biosystems promise to offer
a second wave of improvements, but currently suffer from
higher error rates [2]. Notably, both 454 and Helicos also have
insertion and/or deletion errors [2], [3]. Aligning reads under
these error processes is therefore an important consideration.

2) DP Sequence Alignment: Our implementation of align-
ment is an application-specific hybrid between local (Smith
Waterman) and global (Needleman-Wunsch) alignment al-
gorithms [4]. In the context of resequencing, we expect a
given read to be a substring of the reference genome, with
differences arising from mutation and error. Our scoring
methodology is similar to global alignment, but we do not
charge a penalty for the gaps at the beginning or the end of
the read. Unlike local (Smith Waterman) alignment, we align
all read characters to the genome.

To be more precise, let r1, . . . , rm denote a read and
g1, . . . , gn a reference genome, where m � n. Optimal
alignments are found by filling in an (m+ 1)-by-(n+ 1) DP
table C = (Cij), where i = 0, . . . ,m and j = 0, . . . , n (see
Figure 1). Each cell stores the score of the optimal alignment
running through it. With the first row and the first column
appropriately initialized, the following recursion computes the

Fig. 1. Illustration of DP table fill by anti-diagonal with arrows used
to indicate data dependencies. The cells along an anti-diagonal are filled
simultaneously, each being assigned to a systolic processing element (PE).
Communication is only required between adjacent (dependent) PEs which
need only store the current and last result.

optimal score for the other cells:

Cij = min

 Ci,j−1 + δ(−, gj),
Ci−1,j + δ(ri,−),
Ci−1,j−1 + δ(ri, gj).

(1)

The penalty for a character deletion in the read is given by
δ(−, gj), while the penalty for a character insertion in the
read is given by δ(ri,−). The substitution penalty is given by
δ(ri, gj). All penalties are non-negative. We examine the last
row of the table Cmj for optimal alignment ending at position
j in the reference.

Figure 1 illustrates how the dependency structure allows
for the DP table to be filled by anti-diagonal for maximal
parallelism [5]. To exploit this fine-grained parallelism we
map the recursion in (1) to a systolic array corresponding to
the anti-diagonal. Our implementation chains m processing
elements (PEs), corresponding to each position of the read, as
illustrated in Figure 2. In this configuration, communication
only happens between adjacent PEs. On the FPGA this results
in a simple layout procedure with low fan-out signals traveling
short distances.

Moreover, because the reads are a fixed short length, well
under the number of PEs that can be synthesized on a single
FPGA, we are able to exploit a coarser level of parallelism by
synthesizing multiple systolic arrays to align multiple reads
simultaneously. Particular attention is also paid to the scoring
function to achieve a high number of PEs for our application.
While the clock rate is an order of magnitude less than that of
modern conventional processors, the parallelism obtained on
an FPGA more than compensates for this.

Previous Work) The pioneering paper of Lipton and Lopresti
[5] introduced both a systolic array architecture for DNA
sequence alignment and an efficient encoding scheme to
minimize the datapath width for scoring. Specifically, their
encoding scheme allows the use of fewer bits for distance score
computations by sacrificing scoring flexibility. The encoding
scheme requires a specific scoring function (with mismatch
penalty = 2 and indel penalty = 1) that allows for signif-
icant logic reduction in the recursion logic, with the added
complexity of an accumulator. We extend their method to two
alternative scoring functions.

Systems implementing their encoding scheme offer the
most relevant comparison to our approach. Lipton and Lo-
presti targeted their architecture to a custom VLSI chip. The
SPLASH [6] architecture later demonstrated the power of the
emerging FPGA platforms for accelerating alignment. Two
current surveys [7], [8] provide a detailed discussion of the
development of the state-of-the-art in hardware-accelerated
sequence alignment. We also highlight the prominent contem-
porary FPGA implementation of Yu et al. [9] which showed
how the Lipton and Lopresti systolic cell could be efficiently
implemented in modern FPGA logic slices.

Our design goals differ in fundamental ways from what
has previously been demonstrated in the literature. First, we
aimed to produce a design that is optimized for aligning many
short-reads in parallel. Second, we aimed to build a cluster
implementation and demonstrate the expected performance



Xilinx Virtex 2 Pro FPGA on BEE2

DRAM

Ref.
Genome

PPC Shared FIFO

FIFO

DRAM
Interface

+
Serializer

FIFO

FIFO

Round
Robin

Scheduler

PE
1

PE
2

PE
3

PE
m

PE
1

PE
2

PE
3

PE
m

PE
1

PE
2

PE
3

PE
m

COUNTER 
/ TESTER

COUNTER 
/ TESTER

COUNTER 
/ TESTER

Fig. 2. Systolic array within a single FPGA. For aligning k length-m reads
in parallel, there are k length-m systolic arrays of processing elements (PEs).

increase from taking advantage of the coarse parallelism
available in the short-read alignment problem. Third, we wish
to have the flexibility to report multiple alignment locations.
Lastly, we motivate and implement application specific scoring
using a compact encoding.

II. IMPLEMENTATION

We describe our reconfigurable cluster for accelerated high
throughput genome resequencing. We begin with how the DP
recursion is implemented in a processing element (PE) and
then discuss the system’s larger-scale architecture.

A. Processing Element Design

We mapped our DP alignment algorithm into a systolic
array architecture where a processing element is dedicated to
each position in a read sequence. To fully exploit available
hardware, multiple systolic arrays must be synthesized on a
single FPGA due to the short length of the reads (see Figure 2).
A primary goal of our design was to reduce the size of the
PE to maximize parallelism.

The greatest influence on the size of a PE in the FPGA
implementation is the bitwidths of its data paths. PE size
is thus primarily driven by the the precision of the scoring
system employed and the value of the largest quantity that
the processing element must add or compare. Naively our
DP alignment has an implementation space complexity of
O(log(m|δ|)) where m is the length of the read and |δ| is
the number of bits needed to represent δ(., .). An attractive
aspect of short reads is that the value of m is typically small.
However, we must do better. It was demonstrated in a classic
paper by Lipton and Lopresti [5] that the dependence of the
PE size on m can be eliminated in certain circumstances.

We label the three inputs and one output (a quartet) of the
DP recursion scanning from left to right a, b, c, d, where a is
the upper left input and d is the output. In their paper, Lipton
and Lopresti proved that in any quartet of the DP table there
are only 2 possible offsets from the value in a, a − 1 and
a+ 1, for the scoring function: δ(r, g) = 2, δ(r,−) = 1, and
δ(−, g) = 1 (See Table I). If the range of possible relative
values in a quartet is bounded to k, the relative values can be
coded using dlg(k)e bits. We still determine the full score, but
only for the last row of the DP table. This is done at the last
PE by initializing a counter to the value of Cm,0. This counter

Fig. 3. Example PE logic diagram for the (1,1,1) scoring function.

TABLE I
THREE COMPACT OFFSET ENCODING SCHEMES.

Lipton and Lopresti’s Scoring:
δ(r, g) = 2, δ(r,−) = 1, δ(−, g) = 1
Base case:

0 1
1 0 or 2

Induction:
a b = a− 1, a+ 1

c = a− 1, a+ 1 d = a, a+ 1
Uniform Scoring:
δ(r, g) = 1, δ(r,−) = 1, δ(−, g) = 1
Base case:

0 1
1 0 or 1

Induction:
a b = a− 1, a, a+ 1

c = a− 1, a, a+ 1 d = a, a+ 1
Rare Indel Scoring:
δ(r, g) = 1, δ(r,−) = 2, δ(−, g) = 2
Base case:

0 2
2 0 or 1

Induction:
a b =

a− 2, a− 1, a, a+ 1, a+ 2
c = d =

a− 2, a− 1, a, a+ 1, a+ 2 a, a+ 1, a+ 2

is then incremented by the value of Cm,j − Cm,j−1 which is
computed from the encoded scores.

Because under many circumstances their scoring scheme,
henceforth (2, 1, 1), is not optimized for our problem, we
applied the same inductive reasoning to compactly encode
two alternative scoring functions. The uniform (1, 1, 1) scoring
system, also known as edit distance, can be motivated because
it assumes no prior knowledge about the relative frequency
of insertions, deletions, and substitutions. Likewise, since in
our data inserted and deleted bases are observed to be rarer
than substitutions, the (1, 2, 2) scoring function is of utility
because it captures our prior information about rare indels
in a reasonably compact design. Table I illustrates all three
scoring functions mentioned here. In the (1, 1, 1) case we
show that a recursion contains only 3 possible relative values
(a, a−1, a+1) implying only 2 bits are required to propagate
the score. In the (1, 2, 2) case we show that a recursion
contains only 5 possible relative values implying only 3 bits
are required to propagate the score.

B. Reconfigurable Cluster Implementation

Our multi-FPGA platform is implemented on a cluster of
eight BEE2 systems, each connected via a TCP/IP switch to a
central control server. The control server handles loading the
reference genome and read sequences into the systolic arrays,



setting control parameters, and reading back the results. On
each BEE2 a control FPGA acts as an interface between the
control server and four user FPGAs on which the systolic
arrays are implemented. On each user FPGA, all the arrays
are supplied with a reference genome from DRAM in parallel
and share a common reporting mechanism, but each systolic
array has an independently loadable read sequence register.

1) Berkeley Emulation Engine: As mentioned before, we
utilized the Berkeley Emulation Engine (BEE) system, which
is an FPGA-based computing platform with a wide range of
applications. The second-generation BEE platform, called the
BEE2 [10], is designed with high memory and I/O bandwidth.
A single BEE2 system has 5 Xilinx XC2VP70 Virtex-II Pro
FPGAs, each containing over 74,000 logic cells, 328 Block
SelectRAM (BlockRAM or BRAM) memory blocks of size
18kb, and 2 PowerPC 405 cores. Each FPGA is supplemented
with 4 DDR2 DIMM sockets. BEE2 systems can make use of
10/100 Mbps Ethernet connectivity.

2) FPGA Implementation: The systolic arrays within a
single FPGA are shown in Figure 2. For simultaneously
aligning k length-m reads, we have k length-m systolic arrays
of PEs. Each PE computes the recursion of (1) implemented
in Verilog HDL. The details of this computation are shown
in Figure 3. The inputs to each PE’s combinational logic are
a fixed read character, a shifting reference character, and the
scores from neighboring cells. The recursion is computed in a
PE’s combinational logic. The interdependency of the scoring
function, bus-width, and register size require that the scoring
function be implemented at compile time. Scores are 2-bits
each for the (1, 1, 1) scoring function. The read and reference
characters are encoded using 2-bits to represent the four letter
nucleotide alphabet. Each cell update computation is done in
one clock cycle. The systolic array is fed reference sequence
data from a dual ported BRAM that is loaded periodically
from DRAM (described in Section II-B3). Each PE passes
several pieces of data to the next PE in the array: the reference
sequence character, and the current and previous scores. The
last PE in the array computes the score in the last row (i.e.,
row m) of the DP table. Currently we implement a few options
for alignment reporting. The position of the alignments are
always reported; reporting the score is optional. Our design
can also report the best alignment or all locations below a
score threshold T . The latter requires additional buffering
mechanisms at the output illustrated in Figure 2. In this mode
the score is compared with a programmable threshold T , and
if the score is ≤ T , then the column position is written into
a FIFO. On a single FPGA, k reads are processed in parallel,
so there are k per-read FIFOs in each FPGA (see Figure 2). A
round-robin scheduler reads the candidates from all k per-read
FIFOs into a shared FIFO which is memory mapped to the
PowerPC. Per-read FIFOs are used because many reads may
simultaneously find match candidates, causing contention for
the shared FIFO.

3) DRAM: The 2VP70 FPGAs on the BEE2 system have
approximately 6Mb of on-chip BRAM, which is insufficient
for storing a long reference genome, and therefore off-chip
memory is required. We use the DDR2-SDRAM DIMMs

Fig. 4. Layout of a single BEE2 board and our eight board cluster.

available to each FPGA on the BEE2, with an addressable
2GB. In the application considered here, a single DIMM run
at 200MHz is used by each FPGA with a 2-bit encoding to
store a reference sequences as long as the Human genome
with room to spare.

Our design implements a generic DDR2 DRAM interface
that works with 144-bit data transfers. Due to the overhead
of initiating DRAM accesses, multiple 144-bit words are read
from DRAM and buffered internally in the FPGA. This puts
several hundred reference characters into BRAMs and masks
the non-constant access latencies of DRAM. In addition, the
dual-ported BRAMs on Xilinx Virtex-II Pro FPGAs allow
different aspect ratios, i.e., an 18kb BRAM can be written into
as a 64 × 256 memory, but read out as a 2 × 8192 memory.
The additional BRAM buffer eliminates the need for frequent
DRAM accesses and provides an easy way of breaking up the
data into individual reference characters.

4) BORPH Control Mechanism: The design is imple-
mented on a BEE2 running BORPH, a custom Linux distribu-
tion that supplies OS-level access to FPGA resources [11]. By
using BORPH, loading the DRAM with a reference sequence
can be done by simply writing into a file representation of
the DRAM’s memory space. Likewise, 32-bit control and
status registers, as well as the FIFOs for reporting results, are
accessible as Linux files. A detailed description of BORPH
and the memory interface was published in [12].

5) Overall Cluster Architecture: Shown in Figure 4 is the
overall architecture of our cluster consisting of eight BEE2
boards. A standard 1 Gbps Ethernet switch is used to connect
the BEE2s to a control server. The server is used to start and
stop computation runs on the BEE2s, and copies the input data
to and the results data from each BEE2. Each BEE2 board
contains 4 FPGAs and each FPGA simultaneously aligns k
length m reads. The implementations tested in Section III
are focused on exploring various read length instantiations
aligned with the (1, 1, 1) scoring scheme with all alignment
locations above threshold tracked. At maximum computational
density, the cluster contains 81, 920 total PEs. At the maximum
practical read parallelism the cluster contains 1, 536 length 31
systolic arrays using a total of 47, 616 PEs in parallel.

6) Virtex-5 Target: Anticipating the wider availability of
the multi-FPGA BEE3 platform, we also ported our design to



TABLE II
PERFORMANCE IN GCUPS OF OUR CLUSTER PER BEE2 FPGA,

INCLUDING AMORTIZED RECURRENT OVERHEAD.
# Reads Aligned Time (s) GCUPS per FPGA

900 18.7 366
1400 30.0 354
1800 38.2 358
2800 59.6 357
5600 119 359
11200 236 360
22400 477 357
44800 944 360

a Virtex-5 FPGA. The larger amount of logic hardware on the
XC5VLX155T, specifically the 6-input LUTs, allow us to add
functional extensions without a performance loss.

A compelling piece of functionality is to encode many
genomes into a single extended reference. This allows for
a more truthful representation of the underlying multiple
alignment problem and reduces the potential for scoring bias
arising from alternate reference characters. Our framework for
doing this is to use a 4-bit encoding where each bit is assigned
to one of the four nucleotide characters with its logical value
indicating presence or absence. This is also useful for encoding
the semantics of the empty set character, used frequently for
masking repeats in biological databases.

Our synthesized systolic arrays achieved a clock rate of
300MHz. In addition to the higher clock frequency, we also
were able to implement the extended reference with essentially
no increase in slice occupancy (less than 0.1%). We also
synthesized the (1, 2, 2) scoring alternative with only a 4%
increase in slice occupancy over the (1, 1, 1) scoring function.

III. RESULTS

A. Hardware Performance

To benchmark the performance of our implementation,
we used a cluster of eight BEE2 boards to align reads
from the previously mentioned Drosophila Population Ge-
nomics Project against the 100 Mbp reference genome.
We present performance results using the problem-size-
independent throughput measure, billions of Cell Updates Per
Second (GCUPS). A “cell update” refers to the calculation of
a single DP recursion.

Table II shows the performance of our alignment implemen-
tation on a single FPGA on a BEE2. The FPGA implemen-
tation uses a fixed amount of time to find alignments for a
set of k simultaneous reads; this time is directly proportional
to the length of the reference sequence. There is also a fixed
cost at startup to load the reference sequence into DRAM.
Specifically, our 100 Mbp reference took approximately 53
seconds to be loaded from the filesystem on the BEE2 into
DRAM. There is also overhead associated with loading the
reads into the FPGA registers, reading results out from the
FPGA and writing those results to the filesystem. While the
former is essentially amortized away, the latter is not and is
incorporated into our GCUPS measurements.

We ran multiple jobs in parallel on the cluster. There is a
startup cost associated with distributing reads to the BEE2s,
and loading the reference sequence for each of four FPGAs on
each BEE2. The startup time is approximately 240 seconds,
and is dominated by the reference sequence loading time.

TABLE III
DEPENDENCY OF RESOURCE UTILIZATION ON READ LENGTH m WHEN

PACKING AS MANY READS AS POSSIBLE k ONTO A SINGLE FPGA.
Read length # Reads / FPGA # PEs / FPGA Speed

m k m× k (GCUPS)
36 44 1592 318
48 38 1824 365
64 32 2048 410
76 28 2128 426
96 24 2304 461
256 10 2560 512
512 4 2048 410

1024 2 2048 410

Excluding the startup time (based on the valid assumption that
the run time will dominate the startup time for all practical
applications), we measured the sustained performance of the
cluster to be 11.5×1012 CUPS including non-startup overhead.
The cluster can align the reads associated with a 10 fold
redundant Drosophila genome in 2.5h and a Human genome
in 9.5d.

We tested the scalability of our architecture as follows. To
investigate how resource utilization depends on the length m
of reads, we varied m and packed as many reads as possible
per FPGA. This is an important study to carry out since
future advances in base-calling algorithms and sequencing
technology will likely increase read length. A summary of
our results is shown in Table III. With smaller m, one can
pack larger number k of reads, due to the finer granularity
and smaller incremental cost of instantiating additional systolic
arrays. However, the scaling bottoms out due to the overhead
associated with individual arrays. Conversely, though larger m
causes coarser granularity, instantiating fewer systolic arrays
means less overhead is incurred.

We benchmarked a software implementation of our DP
algorithm on a dual-processor 2.0 GHz quad-core Intel Xeon
server with 8 GB of RAM. Each read was run as a single
thread on one CPU core. On average, the serial code had
a throughput of 0.1 GCUPS per core. In our SeqHive im-
plementation, each FPGA yields over 1000X speedup over
the comparable quad-core implementation for reads of 64 bp
and longer. We considered benchmarking our system against
the fastest SIMD implementation, which reported 1 GCUPS
per 2.0 GHz core [13], but it does not handle long reference
sequences nor does it report coordinates.

Direct comparisons between our work and previous related
efforts are difficult, due to differences in design goals and
platform. However, we note that our PEs are implemented
at least as efficently as those reported by Yu et al. [9]:
our PEs each use two 4-input LUTs and eight FFs in our
Virtex 2 Pro 70 implementation, whereas Yu et al. reported
effectively mapping a PE to six 4-input LUTs and six FFs on
a Xilinx XCV1000E chip. Yu et al. [9] reported achieving a
performance of 136 GCUPS, with 4032 PEs on their Xilinx
XCV1000E-6 (Virtex) FPGA, running at 202MHz. Our imple-
mentation fitted 2560 PEs on a single FPGA, but running at
200MHz, could achieve performance in excess of 360 GCUPS
per FPGA. Yu et al.’s performance was hampered by limited
IO bandwidth, and our ability to fit more PEs onto each FPGA
was limited by the need to instantiate a DDR2 controller on
each chip.



TABLE IV
ALIGNMENT RESULTS FOR TEST DATA CONSISTING OF ONE MILLION

READS ALIGNED TO HUMAN DNA CLONE BCX98J21.
Nominal 36 bp Illumina GA1 Reads (T = 6)
Evo. Rates % True Positives % False Positives % False Negatives
θ, γ, ν Bowtie BWA FPGA Bowtie BWA FPGA Bowtie BWA FPGA

0% 81.20 81.30 92.91 1.20 1.10 0.95 17.60 17.60 6.13
.1% 76.30 80.20 92.44 1.20 1.10 1.33 22.50 18.60 6.21
.2% 71.60 79.00 91.93 1.20 1.20 1.71 27.20 19.90 6.35
1% 43.00 63.20 87.96 1.00 1.50 4.61 56.00 35.30 7.42
2% 22.40 41.00 82.52 0.70 1.60 7.92 76.90 57.50 9.54

Nominal 76 bp Illumina GA2 Reads (T = 12)
0% 93.80 93.70 97.82 1.20 1.30 0.75 5.10 5.00 2.17
.1% 88.20 92.80 97.40 1.20 1.30 1.15 10.60 5.90 2.59
.2% 83.00 91.70 96.98 1.20 1.30 1.55 15.80 7.00 3.01
1% 50.50 75.10 93.64 1.10 1.80 4.62 48.30 23.20 6.35
2% 26.60 49.40 89.12 0.80 1.90 8.33 72.60 48.70 10.87

Lower Cost, Higher Density 76 bp GA2 Reads (T = 12)
0% 34.00 59.80 91.74 0.00 0.00 0.04 66.00 40.20 8.2
.1% 28.70 57.00 91.19 0.00 0.00 0.39 71.30 42.90 8.41
.2% 24.20 53.80 90.61 0.00 0.10 0.74 75.70 46.10 8.63
1% 6.10 26.80 85.74 0.00 0.50 3.42 93.90 72.70 10.83
2% 1.10 8.30 78.34 0.00 0.40 6.17 98.90 91.40 15.48

B. Accuracy

We addressed the relative performance of our FPGA imple-
mentation of DP alignment to heuristic methods with a number
of different datasets and use cases in mind. We compared to
the popular fast heuristic method, Bowtie [14], and a more
recent one, BWA, that allows for indel events [15].

1) Data simulation: In order to evaluate the implemented
alignment algorithms, we created validation datasets, with the
error profile of experimental data, where the correct alignment
for each read is known. We started with experimentally deter-
mined reads obtained from multiple sequencing runs of a DNA
standard with accurately estimated empirical quality scores.
We simulated evolution using a three parameter model. The
substitution parameter θ is the probability that two nucleotides
in aligned sequences chosen at random will differ. Indels
are controlled by γ, the probability that a base in the read
is deleted, and ν, the probability that a base in the read is
inserted. For each read a simulator was employed as follows.
1) A starting location is randomly chosen for the read. 2) Using
the three parameter model of evolution above we mutate the
reference substring. 3) Using the read’s quality scores as an
error profile, the substring is further mutated at each position
with probability determined by the quality score.

2) Results: In Table IV we survey the alignment accuracy
for different datasets and applications. Three tiers of evo-
lutionary divergence were simulated: (i) θ= γ = ν = 0. (ii)
θ=γ= ν=0.1% or 0.2%, roughly corresponding to values
seen within a population. (iii) θ=γ=ν=1% or 2%, roughly
corresponding to values seen between closely related species.
Three datasets were tested from the Illumina GA1 and GA2.
Principal differences were read length and the density at which
reads were packed in the imaged field. Higher density implies
lower costs but higher error rates. A read was considered
correctly mapped (true positive) if its alignment coordinates
were identical to the results known by the simulator.

The FPGA implementation of alignment performed opti-
mally across the board in terms of sensitivity measured by
true positives and false negatives. The heuristic programs,
by nature, have very high specificity as demonstrated by
the low number of false positives. Remarkably though, the
FPGA implementation outperforms them in many circum-
stances, especially when the optimal T was chosen using

an ROC analysis (not shown). Arguably, sensitivity is more
important than specificity since redundancy can be used to
filter incorrectly aligned reads using consensus. The ability
to incorporate indels in the alignment model is critical when
indels are present in the data, hence we see a large accuracy
difference between the non-indel method and the two methods
incorporating indels.

IV. DISCUSSION

We have demonstrated that reprogrammable hardware can
play a significant role in the development and utilization of
high throughput resequencing data. The primary purpose of
the FPGA system we created is to act as an accelerator for
the most computationally intensive aspect of an exhaustive
resequencing algorithm, namely the alignment of reads by DP
to a reference genome. With the throughput attained, we can
comfortably keep up with current data production rates for
even large genomes. We directly addressed the utility of this
new data by enabling analyses that would be impractical using
conventional hardware. The enhanced ability of our platform to
align divergent sequences results in increased data utility and
lower cost. Our platform also opens the door to applications
currently unsuited to existing heuristic methods, for example,
using the genome from another species as a reference.

Acknowledgments: We thank Venkatesh Akella, Dan
Burke, Chen Chang, Charles Langley, Vinayak Nagpal, and
John Wawrzynek for their input during this project. This
research was supported by NIH R01-HG002942.

REFERENCES

[1] D. Bentley et al., “Accurate whole human genome sequencing using
reversible terminator chemistry,” Nature, vol. 456, no. 7218, p. 53, 2008.

[2] J. Bowers et al., “Virtual terminator nucleotides for next-generation
DNA sequencing,” Nat Meth, 7 2009.

[3] M. Margulies et al., “Genome sequencing in microfabricated high-
density picolitre reactors,” Nature, vol. 437, no. 7057, p. 376, 2005.

[4] D. Gusfield, Algorithms on strings, trees, and sequences. Cambridge
Univ Press, 1997.

[5] R. Lipton and D. Lopresti, “A systolic array for rapid string comparison,”
Chapel Hill Conference on VLSI, pp. 363–376, 1985.

[6] D. Hoang, “A systolic array for the sequence alignment problem,”
Technical Report, Dept. of Computer Science, Brown University, 1992.

[7] T. Ramdas and G. Egan, “A survey of FPGAs for acceleration of high
performance computing and their application to computational molecular
biology,” Proceedings of TENCON, pp. 1–6, 2005.

[8] L. Hasan, Z. Al-Ars, and S. Vassiliadis, “Hardware acceleration of
sequence alignment algorithms-an overview,” in Proc. Design & Tech-
nology of Integrated Systems in Nanoscale Era, 2007, pp. 92–97.

[9] C. Yu et al., “A Smith-Waterman systolic cell,” in Proc. 13th Int. Conf.
on Field-programmable Logic and Applications, 2003, pp. 375–384.

[10] C. Chang, J. Wawrzynek, and R. Brodersen, “BEE2: a high-end recon-
figurable computing system,” IEEE Design & Test of Computers, vol. 22,
no. 2, pp. 114–125, Mar 2005.

[11] H. K.-H. So and R. Brodersen, “A unified hardware/software runtime
environment for FPGA-based reconfigurable computers using BORPH,”
ACM Trans. on Embedded Computing Sys., vol. 7, no. 2, pp. 1–28, 2008.

[12] H. So, “Borph: An operating system for fpga-based reconfigurable
computers,” Ph.D. dissertation, University of California, Berkeley, 2007.

[13] M. Farrar, “Striped Smith-Waterman speeds database searches six times
over other SIMD implementations,” Bioinformatics, vol. 23, pp. 156–
161, 2007.

[14] B. Langmead, C. Trapnell, M. Pop, and S. Salzberg, “Ultrafast and
memory-efficient alignment of short DNA sequences to the human
genome,” Genome Biology, vol. 10, no. 3, p. R25, 2009.

[15] H. Li and R. Durbin, “Fast and Accurate Short Read Alignment with
Burrows-Wheeler Transform,” Bioinformatics, 2009.


