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Abstract

We study subtree-prune-and-regraft (SPR) operations on leaf-labelled rooted
binary trees, also known as rooted binary phylogenetic trees. This study is moti-
vated by the problem of graphically representing evolutionary histories of biolog-
ical sequences subject to recombination. We investigate some basic properties of
the induced SPR-metric on the space

� r
n of leaf-labelled rooted binary trees with

n leaves. In contrast to the case of unrooted trees, the number �U � T ��� of trees in� r
n which are one SPR operation away from a given tree T � � r

n depends on the
topology of T . In this paper, we construct recursion relations which allow one to
determine the unit-neighbourhood size �U � T ��� efficiently for any tree topology. In
fact, using the recursion relations we are able to derive a simple closed-form for-
mula for the unit-neighbourhood size. As a corollary, we construct sharp upper and
lower bounds on the size of unit-neighbourhoods and investigate the diameter of� r

n . Lastly, we consider an enumeration problem relevant to population genetics.

Keywords: rooted trees, ordered trees, subtree prune regraft, neighbourhood

1. Introduction

Biology abounds with examples where graphical representations and combinatorics
have proved very useful. Through this bridge between biology and mathematics, many
interesting ideas have been carried over from the latter and have lead to significant de-
velopments in the former. Of particular interest to geneticists is the usage of trees to
represent evolutionary histories of biological sequences. In addition to obtaining a tree
which best describes the evolutionary relationship of given sequences, one is often also
interested in knowing how different a tree is from other trees; that is, one is interested
in a quantitative measure of how far a tree is from another. The answer to that question,
of course, depends on how the distance is measured, and therefore one needs to specify
which metric should be used in measuring the distance between two trees.

A type of metric widely used in biology is that defined in terms of certain operations
which rearrange trees [1, 5]; the distance between two trees is defined as the minimum
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number of operations required to transform one tree to the other. A particular kind of
operation which will be the focus of this paper is the so-called subtree pruning and
regrafting [5]. In a subtree-prune-and-regraft (SPR) operation, one detaches an edge
from a tree T , thus “pruning” a subtree t from T , and “regrafts” t to somewhere else on
the remaining part of T . We defer a more precise definition of SPR operations until � 2.

In [1], Allen and Steel have considered the space � ur
n of leaf-labelled n-leaved

unrooted binary trees. After having defined the neighbourhood of a tree T ��� ur
n as

the set of all trees in � ur
n which are one SPR operation away from T , Allen and Steel

have shown that the size of the neighbourhood of T does not depend on the topology
of T and is equal to 2 � n � 3 ��� 2n � 7 � . Moreover, they have shown that the diameter
diamSPR ��� ur

n � , measured using the SPR-metric, satisfies the following bounds [1]:

n 	 2 � o � n ��
 diamSPR ��� ur
n �
 n � 3 � (1.1)

In the present paper, we investigate analogous questions for rooted trees, which, as
we discuss presently, are more relevant to biology than unrooted trees. In contrast to the
case of unrooted trees, the size �U � T ��� of the neighbourhood of a leaf-labelled rooted
binary tree T ��� r

n depends on the topology of T . We are, however, able to construct
recursion relations which can be used to compute �U � T ��� efficiently for any tree topol-
ogy type. Furthermore, using the recursion relations, we derive a simple closed-form
formula for �U � T ��� . We find two particular topology types, one of which realises the
maximum value of �U � T ��� and the other the minimum, and we combine this finding
with the aforementioned results to construct sharp bounds for �U � T ��� . Also, we show
that the diameter of � r

n satisfies bounds similar to that shown in (1.1).
When representing genealogical processes by trees, it is natural to use rooted trees

instead of unrooted trees, for the existence of a distinguished point on a tree enables
us to define a sense of time direction; that is, time flows from the root to the leaves.
This distinction between rooted and unrooted trees leads to observable differences in
practice. For instance, in [2] Hein has proposed an algorithm for reconstructing the
most parsimonious evolutionary histories of sequences which have undergone recom-
bination. As he points out in the paper, if unrooted trees are used in the algorithm,
internal contradictions might arise, thus preventing the construction of a graphical rep-
resentation. If rooted trees are used, however, it could be possible to compute the exact
minimum number of recombination events and thereby construct a consistent graphi-
cal representation [4]. Our findings from the present paper are used in [4], where SPR
operations on rooted trees are used to represent recombination events.

In genetics, one is naturally lead to consider leaf-labelled rooted binary trees whose
internal vertices, which correspond to biological events, are totally ordered. Such trees
are sometimes called ordered trees. In this paper we consider an enumeration problem
which arises in population genetics. Namely, we derive closed-form formulae for the
number of rooted and ordered trees which are compatible with a bipartition of the label
set.

This paper is organised as follows. In � 2 we lay out some basic definitions and state
a few fundamental results regarding the combinatorics of leaf-labelled rooted binary
trees. In � 3 we construct recursion relations for the size of unit-neighbourhoods and
derive a closed-form formula for �U � T ��� . In � 4 we obtain sharp upper and lower bounds
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on the size of unit-neighbourhoods. The diameter of the space � r
n is discussed in � 5.

In � 6 we discuss the aforementioned enumeration problem relevant to genetics.

(NOTE: We have written a computer program to check explicitly all our results for
n 
 9.)

2. Preliminaries

2.1. Definitions

By a rooted binary phylogenetic tree we mean a leaf-labelled rooted binary tree
whose branch lengths are not specified. The space of leaf-labelled rooted binary trees
with n leaves is denoted by � r

n . The degree of a vertex v is the number of edges which
are incident with v. For n � 2, a tree in � r

n has n labelled degree-1 vertices called
leaves; n � 2 unlabelled degree-3 vertices; and a distinguished vertex of degree 2 called
the root. A 1-leaved tree consists of a single labelled degree-0 vertex which serves as
both the root and the leaf. A vertex which is not a leaf is called an internal vertex. The
leaves of an n-leaved tree are bijectively labelled by a finite set L of n elements. Let
L � T � be the label set for the leaves in T � � r

n . Then, for a subtree s � T , L � s ��� L � T �
denotes the label set for the leaves in s. In the remainder of this paper, when we say a
tree without any qualification, we shall mean a leaf-labelled rooted binary tree.

We say that two vertices u � v � T are adjacent if there exists an edge which joins u
and v. A path from vertex v0 to vertex vk is an alternating sequence v0 � e1 � v1 � e2 ��������� ek � vk

of vertices vi and edges ei, such that (1) ei joins vi � 1 and vi, and (2) all eis and vis are
distinct. For v a degree-3 vertex in T , we define γ � v � as the number of degree-3 vertices,
not including v itself, in the path between v and the root of T .

In a rooted tree, time flows from the root to the leaves. We say that vertex v � T is a
descendant of vertex u � T if there exists a path from u to v which goes strictly forward
in time; u is called an ancestor of v. A subtree s of a tree T � � r

n is a tree in � r
n � , where

n � 
 n, and is defined by the property that if a vertex v � T is contained in s, then so
are all its descendants. In this paper a subtree whose root is adjacent to the root of T is
called an R-subtree.

An n-leaved rooted binary tree contains 2n � 2 edges. For any (sub)tree s, we denote
by � � s � the number of leaves in s and define η � s � : 	 2 � � s � � 2, which is equal to the
number of edges in s.

Lemma 2.1. (Schröder) The number of inequivalent leaf-labelled rooted binary trees
with n leaves is [3]

R � n � : 	 � � r
n �
	 � 2n � 3 � !! 	 � 2n � 3 ��� � 2n � 5 ���������� 3 � 1 	 � 2n � 2 � !

2n � 1 � n � 1 � ! �

2.2. SPR Operations

There are three kinds of SPR operations that can be performed on leaf-labelled rooted
binary trees. An illustration of these operations is shown in Figure 1. In what follows,
let T (resp. T � ) denote a tree before (resp. after) an SPR operation. The notation T � t
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denotes the part of T obtained from removing a subtree t and the edge incident with the
root of t but not contained in t. In words the three SPR operations are as follows.

(1) An edge e is cut to prune a non-R-subtree t, and t is regrafted onto a pre-existing
edge in the remaining part T � t of T , thus creating a new degree-3 vertex. The
vertex in T � t where e used to be incident gets removed. The root of T remains
the root of T � . (In Figure 1, T � T1 is an example of this kind. The edge eb is cut
and then regrafted onto the edge ea.)

(2) Let s1 and s2 be the two R-subtrees of T , and let e1 and e2, respectively, be the
edges which join their roots to the root of T . The edge e1 is cut to prune s1, and
s1 is regrafted onto a pre-existing edge in s2. The edge e2 gets removed and the
degree-3 vertex in s2 where e2 used to be incident gets replaced by a degree-2
vertex, which becomes the root of T � . (In Figure 1, T � T2 is an example of
this kind. The edge ec is cut and regrafted onto ea. The root of the R-subtree
containing t1 � t2 and t3 becomes the root of T2.)

(3) An edge e is cut to prune a non-R-subtree t, and t is joined to the root of T . The
root of T � is given by creating a new vertex of degree 2 on e. (In Figure 1, T � T3

is an example of this kind. The edge eb is cut and then joined to the root of T . A
new degree-2 vertex is created on the edge and it serves as the root of T3.)

t1 t2 t3 t4 t5

t3 t4 t5t2t1

1 SPR

Root
Root

Root

ec

t3t2t5t1 t4 t1 t3 t4 t5 t2

Root
1 SPR

1 SPR

T1 T2 T3

T

eb

ea

Figure 1: An illustration of SPR operations. Big open circles
�

labelled by t j represent
subtrees.

For any pair of trees T � T � � � r
n , we measure the distance between them using the

SPR-metric d : � r
n � � r

n ����� 0; that is, the distance d � T � T � � is a non-negative integer
defined as the minimum number of SPR operations necessary to transform T into T � .
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3. The Unit-Neighbourhood of a Tree

We define the unit-neighbourhood of a tree T � � r
n as

U � T ��	�� T � � � r
n � d � T � T � ��	 1 � �

3.1. Topology Types

We here define two topology types, shown in Figure 2, for which simple recursion
relations for �U � T ��� will later be formulated. A type A tree is characterised by the
feature that only a single leaf is on one side of the root. In Figure 2(b), if v denotes the
degree-3 vertex with which the leaf ln is adjacent, then k 	 γ � v � . The notion of “left” and
“right” in the figure is irrelevant. For ease of reference, we have given labels to some
edges; these labels are not a part of the definition of a leaf-labelled rooted binary tree.
The reader should refer to the captions therein for further explanation. We emphasise
that what we introduce here does not define a classification, since a tree can fall into
more than one type. For instance, for n � 3, any tree T � � r

n is type B, but it may also
be type A.

TYPE B � k � 0 �

sksk � 1s2s1t

Root

ea

edec

ln

(a)

TYPE A

Root

eb

t1 t2 liln

ea

ed

eb

ec

(b)

e2 ekek � 1e1

eL

Figure 2: A schematic representation of topology types. Big open circles
�

and boxes�
represent subtrees, and every subtree contains at least one leaf. Leaves are labelled

by ln � li � L . (a) An n-leaved type A tree. (b) An n-leaved type B tree.

3.2. “ � ” Operations on Trees

We here define a reduction operation which will be used in our recursion relations.
The “ � ” operation we presently define reduces the number of leaves in a tree by one.
In the following discussion, we use the labels shown in Figure 2.

(1) If T ��� r
n is type A, then T � ln is given by removing the leaf ln; removing the

root of T ; removing the edges ea and ed ; and making the vertex where ea, eb, ec

used to be incident into the root of T � ln. An example of this kind of operation
is illustrated in Figure 3(a).
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(2) If T ��� r
n is type B, then T � ln is given by removing the leaf ln; removing the

edge ec; removing the degree-3 vertex where ea, eb, ec used to be incident; and
merging the edges ea and eb into one. An example of this kind of operation is
illustrated in Figure 3(b).

t2t1 t1 t2 t1 t2t2t1

(a)
T

ln

� ln

T
ln li

� ln

T � ln
(b)

T � ln
li

Figure 3: An illustration of “ � ” operations. (a) T is type A. (b) T is type B, with k 	 1.

3.3. Recursion Relations for �U � T ���
In this subsection, we construct recursion relations for �U � T ��� . The topology types

defined in � 3.1 constitute a rather coarse description. For instance, type B encompasses
many distinct tree topologies. It is interesting to note that the dependence of type B
recursion relation on tree topology is encoded in a single parameter k.

The recursion relations can be applied in several different ways, depending on which
type one chooses to call a tree and which “ � ” operation one chooses to use. The final
answer for �U � T ��� , however, does not depend on how one chooses to compute it. In
fact, type B recursion relation alone is sufficient for computing �U � T ��� for any tree T .
Type A recursion relation, however, will be useful for our discussion in � 4.

Proposition 3.2. Let n � 4 and let T ��� r
n . Then, the size of the unit-neighbourhood

U � T � satisfies the recursion relation

�U � T ���
	
� �U � T � ln ����� 6n � 16 � if T is type A �
�U � T � ln ����� 2 � 4n � k � 11 � � if T is type B �

where ln is as shown in Figure 2, and T � ln is an � n � 1 � -leaved tree obtained using
the “ � ” operation defined in � 3.2. In the recursion relation for type B trees, k is a
non-negative integer defined as in Figure 2(b).

REMARK: �U � T ���
	 2, for all T � � r
3 , serves as the boundary condition for the recur-

sion relations.

Proof. We have divided our proof into several parts. In our discussion, we shall con-
form to the notations shown in Figure 2.

TYPE A:

(A-1) A tree in U � T � can be generated by a single SPR operation within the part to
the left of the root of T . There are �U � T � ln ��� such operations.
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(A-2) Any edge except for ea and ed can be detached from T and regrafted onto ed

to generate a tree in U � T � which has not been included in (A-1). There are
η � T � � 2 	 2n � 4 such edges in T .

(A-3) The edge ed can be detached and regrafted onto an edge other than ea � eb � ec and
ed to generate a tree in U � T � which has not been included in (A-1) or (A-2).
There are η � T � � 4 	 2n � 6 possibilities.

(A-4) Any edge except for ea � eb � ec and ed can be detached from T and regrafted onto
the root of T to generate a tree in U � T � which has not been included above.
There are η � T � � 4 	 2n � 6 such edges.

Adding up the contributions gives

�U � T ��� 	 �U � T � ln ����� � 2n � 4 � � � 2n � 6 � � � 2n � 6 � 	 �U � T � ln ����� 6n � 16 �

TYPE B (k � 1):

(B-1) There are �U � T � ln ��� inequivalent SPR operations which do not directly in-
volve ea or ec (i.e. neither cutting them nor regrafting onto them).

(B-2) The edge ea can be detached from T and regrafted onto any edge except for
ea � eb and ec to yield a new tree in U � T � . There are η � T � � 3 	 2n � 5 inequiv-
alent such SPR operations.

(B-3) The edge ec can be detached from T and regrafted onto any edge except for
ea � eb � ec � ed � ek to generate a tree in U � T � which has not already been accounted
for in (B-1) or (B-2). There are 2n � 2 � 5 	 2n � 7 such SPR operations.

(B-4) Any edge in the subtree t can be detached from t and regrafted onto either ea or
ec. There are 2η � t � such operations which generate inequivalent trees in U � T � .

(B-5) For j 	 1 � 2 ��������� k � 1, if � � s j � � 1, any edge in the subtree s j can be detached
from s j and regrafted onto either ea or ec. Also, e j can be detached from T and
regrafted onto either ea or ec. There are a total of 2∑k � 1

j � 1

�
η � s j � � 1 � inequivalent

such SPR operations.

(B-6) If � � sk � � 1, any edge in the subtree sk can be detached from sk and regrafted
onto either ea or ec. There are 2η � sk � such SPR operations. (Note: detaching ek

and regrafting it onto either ea or ec generates a tree already included in (B-2).)

(B-7) The edge ea or ec can be detached and regrafted onto the root. This contributes
2 to �U � T ��� .

(B-8) The edge eL can be detached and regrafted onto either ea or ec to yield a tree in
U � T � which has not already been included above. This contributes 2 to �U � T ��� .
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In summary, we have

�U � T ���	 �U � T � ln ����� � 2n � 5 � � � 2n � 7 � � 2η � t � � 2
k � 1

∑
j � 1

�
η � s j � � 1 � � 2η � sk � � 4

	 �U � T � ln ����� 2

�
2 � n � 3 � � η � t � � k

∑
j � 1

η � s j � � � k � 1 � � 2 �
	 �U � T � ln ����� 2

�
4n � k � 11 � �

where the last line follows from η � t � � ∑k
j � 1 η � s j � 	 2n � 2k � 6.

TYPE B (k 	 0):
In this case, the only edges to the right of the root are ea � eb and ec (c.f. Figure 2(b)).

(B-1 � ) There are �U � T � ln ��� inequivalent SPR operations which do not involve ea or
ec directly.

(B-2 � ) An edge in the subtree t can be detached from t and regrafted onto either ea or
ec. There are 2η � t � inequivalent such operations.

(B-3 � ) The edge ec can be detached from T and regrafted onto any edge to the left of
the root. There are η � T � � 3 	 2n � 5 such operations.

(B-4 � ) Likewise, the edge ea can be detached from T and regrafted onto any edge to
the left of the root. Again, there are η � T � � 3 	 2n � 5 such operations.

Note that, since k 	 0, detaching ea (resp. ec) and regrafting it to the root of T is
equivalent to detaching ec (resp. ea) and regrafting it to eL. Also, detaching eL and
regrafting it to ea (resp. ec) is equivalent to detaching ea (resp. ec) and regrafting it to
eL. These operations generate trees which have already been included in the above list.
Hence, we obtain

�U � T ��� 	 �U � T � ln ����� 2η � t � � 2 � 2n � 5 � 	 �U � T � ln ����� 2 � 4n � 11 � �
where η � t ��	 2 � n � 2 � � 2 	 2n � 6 has been used.

3.4. A Closed-Form Formula for �U � T ���
As we have mentioned before, it is always possible to compute �U � T ��� only using

the type B recursion relation. Applying the recursion relation in a systematic way, one
can obtain the following result:

Proposition 3.3. Let n � 3 and let T � � r
n . Let � v1 � v2 ��������� vn � 2 � be the set of degree-3

vertices in T . Then, with γ � vi � defined as in � 2.1, �U � T ��� is given by

�U � T ��� 	 2 � n � 2 ��� 2n � 5 � � 2
n � 2

∑
i � 1

γ � vi � � (3.2)
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Proof. Label the degree-3 vertices of T by � v1 � v2 ������� � vn � 2 � so that

γ � vn � 2 � 
 γ � vn � 3 � 
 ����� 
 γ � v1 � � (3.3)

Now, successively perform “ � ” operations in the order

� l1 � � l2 � ����� � � ln � 3 � (3.4)

where li denotes a leaf incident with vi in T � ∑i � 1
k � 1 lk. Note that, because of the

imposed ordering in (3.3), “ � li” operation does not change the value of γ � v j � for
j 	 i � 1 � i � 2 ��������� n � 2. After performing all the operations in (3.4), we end up with a
3-leaved tree, whose unit-neighbourhood size is 2. In summary, using Proposition 3.2
we obtain

�U � T ��� 	 2 � n

∑
m � 4

2 � 4m � 11 � � 2
n � 3

∑
i � 1

γ � vi � 	 2 � n � 2 ��� 2n � 5 � � 2
n � 2

∑
i � 1

γ � vi � �

where in the last equality γ � vn � 2 � has been added to the summation (Note that the or-
dering in (3.3) implies that γ � vn � 2 � 	 0, so adding it to the summation does not change
the value of �U � T ��� ).

Recall Allen and Steel’s formula [1]

AS � n � : 	 2 � n � 3 ��� 2n � 7 �
for the size of the unit-neighbourhood of an unrooted binary tree in � ur

n . The first
term in our formula (3.2) is none other than AS � n � 1 � . This result reflects the fact that
there exists a one-to-one correspondence between the set � ur

n � 1 of leaf-labelled unrooted
binary trees with n � 1 leaves and the set � r

n of leaf-labelled rooted binary trees with
n leaves. Furthermore, the definition of an SPR operation for n-leaved rooted trees is
more restrictive than that for � n � 1 � -leaved unrooted trees. That is, there are more
inequivalent SPR operations for � n � 1 � -leaved unrooted trees than for n-leaved rooted
trees. The second term in (3.2) is the necessary correction term which accounts for this
fact.

4. Sharp Bounds on the Size of Unit-Neighbourhoods

In this section, we define two special types of trees and examine the size of their unit-
neighbourhoods. We then use our findings to obtain sharp upper and lower bounds for
�U � T ��� .

4.1. Two Special Types of Trees

Consider the sequence a1 � a2 � a3 ��������� where

am 	 �
log2 � m � 1 � � 1 � � (4.5)

Here,
� � � denotes the greatest integer function, also known as the floor function. More

explicitly, the sequence is of the form

0 � 0 � 1 � 1 � 1 � 1 � 2 � 2 � 2 � 2 � 2 � 2 � 2 � 2 � 3 � 3 � 3 � 3 � 3 � 3 � 3 � 3 � 3 � 3 � 3 � 3 � 3 � 3 � 3 � 3 � 4 ������� �
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containing two 0s, four 1s, eight 2s, sixteen 3s, thirty two 4s, etc.
Also, consider the strictly ascending sequence b1 � b2 � b3 ������� � where bm 	 m � 1; that

is, the sequence is
0 � 1 � 2 � 3 � 4 � 5 � 6 � 7 ������� �

containing one 0, one 1, one 2, one 3, one 4, etc.
Let T ��� r

n . If its n � 2 degree-3 vertices can be labelled by � v1 � v2 ������� � vn � 2 � so
that γ � vm ��	 am (resp. γ � vm � 	 bm) for every m � � 1 � 2 ��������� n � 2 � , then we shall call
T a “γ-exponential” (resp. “γ-uniform”) tree. Examples of γ-exponential and γ-uniform
trees are shown in Figure 4.
(SIDE REMARK: The name “γ-exponential” is derived from the fact that non-negative
integers are exponentially distributed in � a1 � a2 ��������� � , and the name “γ-uniform” from
the fact that non-negative integers are uniformly distributed in � b1 � b2 ������� � � .)

22
1 1 1 1

0 0

(a) (b)

0
1

2
3

4
5

6
7

Figure 4: Examples of special types of trees. Leaf labels are suppressed and the values
of γ � vi � for degree-3 vertices vi are shown. (a) A 10-leaved γ-exponential tree. (b) A
10-leaved γ-uniform tree.

4.2. Unit-Neighbourhoods of γ-Exponential and γ-Uniform Trees

In this subsection, we examine the size of unit-neighbourhoods of γ-exponential and
γ-uniform trees. As we show in the following proposition, these trees are special in the
sense that they realise extreme values of the unit-neighbourhood size.

Proposition 4.4. Let n � 4 and define δmax � n � : 	 maxT ��� r
n
�U � T ��� and δmin � n � : 	

minT ��� r
n
�U � T ��� . Then,

I. �U � T ���
	 δmax � n � if and only if T is γ-exponential,

II. �U � T ���
	 δmin � n � if and only if T is γ-uniform.

Proof. Consider the case n 	 4. It turns out that every tree T � � r
4 is either γ-exponential

or γ-uniform. Moreover, we can use Proposition 3.2 or Proposition 3.3 to show explic-
itly that �U � T ��� 	 12 if T is γ-exponential, whereas �U � T ��� 	 10 if T is γ-uniform.
Hence, both statements I and II in the proposition are true for n 	 4.

PROOF OF PART I: Let H I denote the induction hypothesis that, for 4 
 n 
 r � 1 where
r � 5, �U � T ��� 	 δmax � n � if T is γ-exponential. Let T be an r-leaved γ-exponential tree
and let lr denote a leaf adjacent to an internal vertex v with γ � v � 	 ar � 2, where ar � 2

is defined in (4.5). Then, T � lr also is a γ-exponential tree. Hence, by our induction
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hypothesis H I, we know that �U � T � lr ����	 δmax � r � 1 � . Moreover, since a γ-exponential
tree is type B for r � 4, we can use the recursion relation from Proposition 3.2 to obtain

�U � T ���
	 δmax � r � 1 � � 2 � 4r � ar � 2 � 11 � �
Suppose T � � � r

r is type A. Then, �U � T � � l � ��� 
 δmax � r � 1 � � where l � is the single
leaf on the right hand side of the root in Figure 2(a). Furthermore, since 6r � 16 �
2 � 4r � ar � 2 � 11 � , for all r � 5, we conclude that �U � T � ��� 	 �U � T � � l � ��� � 6r � 16 �
�U � T ��� .

We now show that for all type B tree T � � � r
r which is not γ-exponential, �U � T � �����

�U � T ��� . Let l � be a leaf in T � such that k � is as large as it can be in the following
formula from Proposition 3.2: �U � T � ��� 	 �U � T ��� l � ����� 2 � 4r � k ��� 11 � . By definition,
δmax � r � 1 ��� �U � T ��� l � ��� . Furthermore, since T � is not γ-exponential, k � �

ar � 2 for all
r � 5, and therefore 2 � 4r � ar � 2 � 11 � � 2 � 4r � k � � 11 � . Hence, �U � T � ����� �U � T ��� , and
we thus conclude that if T is γ-exponential, then �U � T ��� 	 δmax � r � . This completes our
induction.

The converse can be shown as follows. Let T be an n-leaved tree such that �U � T ��� 	
δmax � n � . Then, from the formula for �U � T ��� in (3.2), we know that ∑n � 2

i � 1 γ � vi � must be as
small as possible. But, in a rooted binary tree, γ � v1 � � γ � v2 � ��������� γ � vn � 2 � 	 a1 � a2 ������� � an � 2

gives the minimum value of ∑n � 2
i � 1 γ � vi � , and therefore T must be γ-exponential.

PROOF OF PART II: Assume that, for 4 
 n 
 r � 1 where r � 5, �U � T ��� 	 δmin � n � if
T is γ-uniform. We refer to this assumption as hypothesis H II. Let T be an r-leaved
γ-uniform tree.

Since a γ-uniform tree is of type A, we can use the type A recursion relation from
Proposition 3.2 to obtain

�U � T ��� 	 �U � T � lr ����� 6r � 16 	 δmin � r � 1 � � 6r � 16 �
where the second equality follows from the induction hypothesis H II.

Suppose T � is type B. Then, �U � T � ��� 	 �U � T � � l �r ��� � 2 � 4r � k � 11 � � δmin � r � 1 � �
2 � 4r � k � 11 � , where k is as shown in Figure 2(b). But, in a tree with r leaves, k
is bounded from above. More precisely, k 
 r � 3, and we therefore have 6r � 16 

2 � 4r � k � 11 � for every r � 5. Hence, we conclude that �U � T � ��� � �U � T ��� .

Suppose T � is a type A tree which is not γ-uniform and let l �r denote the single leaf
on the right hand side of the root in Figure 2(a). Then, applying the type A recur-
sion relation gives �U � T � ��� 	 �U � T � � l �r ��� � 6r � 16 � δmin � r � 1 � � 6r � 16. Hence,
�U � T � ��� � �U � T ��� . We have thus shown that if T is an r-leaved γ-uniform tree, then
�U � T ��� 	 δmin � r � . This completes our induction.

We now sketch the proof of the converse. Let T be an n-leaved tree such that
�U � T ��� 	 δmin � n � . Then, it implies that ∑n � 2

i � 1 γ � vi � must be as large as possible in (3.2).
It is easy to show that, in a rooted binary tree, γ � v1 � � γ � v2 � ������� � γ � vn � 2 � 	 0 � 1 � 2 ������� � n � 3
yields the maximum value of ∑n � 2

i � 1 γ � vi � . Thus, T must be γ-uniform.

4.3. The Bounds

Using the recursion relations from � 3.3 and the results from � 4.2, we can derive a
corollary of the following form:

11



Corollary 4.5. For all T � � r
n , n � 4, the size of the unit-neighbourhoodU � T � satisfies

the bounds

3n2 � 13n � 14 
 �U � T ��� 
 4 � n � 2 � 2 � 2
n � 2

∑
m � 1

�
log2 � m � 1 � � �

That is, δmin � n ��	 3n2 � 13n � 14 and δmax � n � 	 4 � n � 2 � 2 � 2∑n � 2
m � 1

�
log2 � m � 1 � � .

Proof. Let T be an n-leaved γ-uniform tree. Then, by Proposition 3.3 and Proposi-
tion 4.4, we have

�U � T ��� 	 δmin � n ��	 2 � n � 2 ��� 2n � 5 � � 2
n � 2

∑
m � 1

bm �

where bm 	 m � 1 (c.f. � 4.1). Hence, δmin � n � 	 2 � n � 2 � � 2n � 5 � � 2 � n � 3 ��� n � 2 � 	 2 	
3n2 � 13n � 14.

Let T be an n-leaved γ-exponential tree. Then, it follows from Proposition 3.3 and
Proposition 4.4 that

�U � T ���
	 δmax � n � 	 2 � n � 2 ��� 2n � 5 � � 2
n � 2

∑
m � 1

am 	 4 � n � 2 � 2 � 2
n � 2

∑
m � 1

�
log2 � m � 1 � ��

and we have our desired result.

5. Diameter of � r
n

As Allen and Steel have done for unrooted trees [1], we can obtain the following result
for rooted trees:

Proposition 5.6. Let n � 3 and let diamSPR( � r
n ) denote the diameter of � r

n , defined as
the maximum value of d � T � T � � over all trees T � T � � � r

n . Then,

n 	 2 � o � n ��
 diamSPR( � r
n ) 
 n � 2 �

Proof. From Corollary 4.5, we know that δmax � n � � 4 � n � 2 � 2. Following exactly the
same line of reasoning as Allan and Steel have done in [1], one can analyse

�
4 � n � 2 � 2 � diamSPR

�
� r

n � � � 2n � 3 � !!
using Stirling’s approximation to derive the lower bound. The lower bound for the
rooted case is the same as that in the unrooted case, because for both cases the unit-
neighbourhood size grows quadratically with respect to n.

For small values of n, say n 
 6, it is easy to come up with examples of T � T � � � r
n

such that d � T � T � � 	 n � 2. We wish to show that, for all n � 3, n � 2 SPR operations are
sufficient to transform any T1 � � r

n to any T2 � � r
n . Note that the root of a tree partitions

the label set L into two disjoint proper subsets of L . Let � A1 � Ac
1 � and � A2 � Ac

2 � be such
bipartitions of L associated to two trees T1 and T2, respectively. Here, Ai denotes a
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proper subset of L and Ac
i its complement relative to L . Let S1 � � A1 � Ac

1 � and S2 �
� A2 � Ac

2 � . Since A1 � Ac
1 � A2 and Ac

2 are proper subsets, if S1 � S2 	�� , then Sc
1 � S2

�	� and S1 � Sc
2
�	�� . Therefore, it is always possible to label the bipartitions so that

A1 � A2
�	�� and Ac

1 � Ac
2
�	�� . Upon making such a choice of labelling, let li � A1 � A2

and l j � Ac
1 � Ac

2. Note that the leaves li and l j are on opposite sides of the root in both
T1 and T2. Now, prune all the leaves, except for li and l j, from T1 and then regraft those
n � 2 leaves, labelled by L � � li � l j � , to make T2. It is clear that this is always possible.
Thus we conclude that d � T1 � T2 �
 � n � 2 � for all T1 � T2 � � r

n .

6. Number of Trees Compatible with a Bipartition of L

The set � v1 � v2 ��������� vn � 2 � of degree-3 vertices in T � � r
n is a partially ordered set whose

binary relation denoted 
 is given by ancestral relation; we say that vi � v j if vi is a
descendant of v j. Two degree-3 vertices vi and v j are incomparable if vi is not in the
path to the root from v j and vice versa. An ordered tree is a leaf-labelled rooted binary
tree whose corresponding set � v1 � v2 ������� � vn � 2 � of degree-3 vertices is a totally ordered
set; that is, for any two vertices vi and v j, either vi � v j or v j � vi. In this case, the binary
relation is given by age ordering. As before, vi � v j if vi is a descendant of v j. If there
exists no ancestral relation between vi and v j, then either vi � v j or v j � vi is allowed.
Furthermore, we impose the condition that vi

�	 v j if i
�	 j. Two trees equivalent as

leaf-labelled rooted binary trees are distinct as ordered trees if the ordering of their
degree-3 vertices are different. It is well-known in population genetics that the number
of inequivalent ordered trees with n leaves is

D � n � : 	
n

∏
m � 2

�
m
2 � 	 n! � n � 1 � !

2n � 1 �

Recall that R � n � : 	 � � r
n � 	 � 2n � 3 � !!.

Let � B � Bc � denote a bipartition of the label set L into two proper subsets. A tree
T is said to be compatible with the bipartition � B � Bc � if there exists an edge in T such
that cutting the edge decomposes T into two connected components, one containing the
leaves labelled by B and the other the leaves labelled by Bc. In population genetics – for
example, when using the so-called infinite-sites model – the number of trees compatible
with a bipartition of L is a quantity of interest. Suppose �B � 	 k and �Bc � 	 n � k, and
let wr � n � k � (resp. wo � n � k � ) denote the number of rooted trees (resp. ordered trees)
compatible with the bipartition � B � Bc � . Clearly, if k 	 1 or k 	 n � 1, then wr � n � k �	
R � n � and wo � n � k ��	 D � n � . For 2 
 k 
 n � 2, it is not difficult to show that the number
of rooted trees compatible with � B � Bc � is

wr � n � k � : 	 � 2n � 3 � R � k � R � n � k � �
For ordered trees, we have the following result:

Proposition 6.7. For n � 4 and 2 
 k 
 n � 2, the number of ordered trees compatible
with the bipartition � B � Bc � , where �B � 	 k and �Bc � 	 n � k, is

wo � n � k � : 	 D � k � D � n � k �
	 � n
k � 1� � � n

n � k � 1� � � n � 2
k � 1 ��� �
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Proof. We first show that wo � n � k � is given by the following expression:

wo � n � k � : 	 D � k �
n � k � 1

∑
p � 0

�
D � n � k � p � 1 �

�
p � k � 2

p � p � 1

∏
s � 0

�
n � k � s

2 � �
� D � n � k �

k � 1

∑
p � 0

�
D � k � p � 1 �

�
p � n � k � 2

p � p � 1

∏
s � 0

�
k � s

2 � �
� D � k � D � n � k �

�
n � 2
k � 1 � � (6.6)

Consider an urn containing k black balls labelled by B and n � k white balls labelled by
Bc. Draw two balls from the urn. If one black ball and one white ball are drawn, then
simply replace both balls back into the urn. If two black (resp. white) balls labelled Xi

and X j are drawn, then replace with a single black (resp. white) ball labelled Xi � X j.
Here, Xi could be li1 � li2 � ����� � li j , where li1 � li2 ������� � li j � L . Note that, in total, k � 1
pairs of black balls can be drawn. When the � k � 1 � th pair of black balls labelled Xi and
X j are drawn, then replace with a white ball labelled Xi � X j. If only white balls remain
in the urn, keep drawing pairs and replace with a white ball with a new label until only
one white ball remains in the urn. Every possible sequence of draws ends up with a
single white ball labelled l1 � l2 � ����� � ln, where � l1 � l2 ��������� ln � 	 L .

There exists a one-to-one correspondence between the set of sequences of distinct
urn contents which arise in the above urn model and the set of n-leaved ordered trees
which contain an ordered subtree with k leaves labelled by B. The ordering of urn
contents in a sequence corresponds to the ordering of internal vertices in an ordered tree.
The initial set of balls correspond to the leaves and a ball with a composite label li1 �
li2 � ����� � li j corresponds to an internal vertex whose descendant leaves are precisely
li1 � li2 ������� � li j . The white ball replaced into the urn when the � k � 1 � th pair of black
balls are drawn corresponds to the root of the k-leaved ordered subtree whose leaves
are labelled by B.

When the � k � 1 � th pair of black balls are drawn, we can associate to the completed
sequence of black ball contents an ordered tree with k leaves labelled by B. By analogy,
there are D � k � inequivalent ways of achieving this. Suppose p pairs of white balls have
been drawn before the � k � 1 � th pair of black balls are drawn. Since all balls are labelled,
there are ∏p � 1

s � 0

� n � k � s
2 � inequivalent ways of drawing p pairs of white balls. Moreover, a

sequence α1 � α2 ��������� αp of p pairs of white balls drawn and a sequence β1 � β2 ������� � βk � 2

of k � 2 pairs of black balls drawn can be combined in
� p � k � 2

p � inequivalent ways to
form a longer sequence of length p � k � 2 while maintaining the ordering of αis and
that of βis. Recall that, when the � k � 1 � th pair of black balls are drawn, a labelled
white ball is replaced into the urn. Hence, the number of white balls then remaining in
the urn is n � k � p � 1. Subsequent drawings of pairs of white balls with replacement
correspond to generating D � n � k � p � 1 � ordered trees. Lastly, we note that p can take
any value between 0 and n � k � 1, inclusive. We have thus derived the expression in
the first line of (6.6).

The expression in the second line of (6.6) is obtained by replacing k with n � k, and
vice versa, in the above paragraphs. It corresponds to the number of n-leaved ordered
trees which contain an ordered subtree with n � k leaves labelled by Bc.
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The last line in (6.6) corrects for double counting. That is, both the first line and the
second line in (6.6) include the number of ordered trees which contain both an ordered
subtree with k leaves labelled by B and an ordered subtree with n � k leaves labelled by
Bc. The combinatorial factor

�
n � 2
k � 1 � is for the ordering of the n � k � 1 internal vertices

of an � n � k � -leaved ordered tree relative to the k � 1 internal vertices of a k-leaved
ordered tree. This completes the derivation of (6.6).

Now, notice that ∏ j
s � 0

� i � s
2 � 	 D � i � 	 D � i � j � 1 � , which implies that the expres-

sion inside the bracket in the first line of (6.6) is equal to D � n � k � �
n � k � p � 1

2 � �
p � k � 2

p � .

Furthermore, since ∑n � k � 1
p � 0

� n � k � p � 1
2 �

� p � k � 2
p � 	 � n

k � 1 � , the first line in (6.6) becomes

D � k � D � n � k � � n
k � 1 � . In a similar vein, the second line of (6.6) can be re-written as

D � n � k � D � k � � n
n � k � 1 � . This completes our proof of the proposition.
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