
4/16/08 10:17:35 PM2pcpaxos

1

Brewer/Hellerstein CS262 Spring 2008: 2PC and Paxos

A theme: two-phase protocols
Courtesy Jim Gray:

Marriage Ceremony: "Do you?" "I do!" "I now pronounce you..."
Theater: "Ready on the set?" "Ready!" "Action!"
Contract Law: Offer. Signature. Deal/lawsuit.

Actually these protocols are pretty simple
Fussy to prove they're safe/correct
Even fussier to tune them and maintain proofs, and that's where much of the sweat goes.

Two Phase Commit and Logging in R*
Setup

Roles
coordinator (transaction manager or TM)
subordinate (resource manager, or RM)

Goal: All or nothing agreement on commit (single subordinate veto is enough to abort).
Also, integrate properly with log processing and recovery.

Assumptions
Update in place, WAL
batch-force log records

Desired characteristics
guaranteed xact atomicity
ability to "forget" outcome of commit ASAP
minimal log writes and message traffic
optimized performance in no-failure case (the "fast path")
exploitation of completely or partially R/O xacts
maximize ability to perform unilateral abort

In order to minimize logging and comm:
rare failures do not deserve extra overhead in normal processing
Hierarchical commit better than 2P

The basic 2PC protocol with logging (normal processing):
Coordinator Log | Messages | Subordinate Log
 | PREPARE |
 | | prepare*/abort*
 | VOTE Y/N |
commit*/abort* | |
 | C/A |
 | | commit*/abort*
 | ACK |
 end | |
Rule: never need to ask something that you used to know! Log before ACKing.

Since subords force abort/commit before ACKing, they never need to ask coord to remind them about final outcome.
Costs:

subords: 2 forced log-writes, 2 msgs
coord: 1 forced log write, 1 async log write, 2 msgs per subord
total: 4n messages, 2N+1 log writes. Delays: 4 message delays, 3 sync writes.

we'll tune this down below
2PC and failures

Note: 2PC systems are not available during a coordinator failure! Yuck!! (See Paxos Commit, below, for discussion)
what about subordinate failure?

Recovery process protocol:
1 On restart, read log and accumulate committing xacts info in main mem
2 if you discover a local xact in the prepared state, contact coord to find out fate
3 if you discover a local xact that was not prepared, UNDO it, write abort record, forget
4 if a local xact was committing (i.e. this is the coord), then send out COMMIT msgs to subords that haven't ACKed Similar for

aborting.
Upon discovering a failure elsewhere

If a coord discovers that a subord is unreachable...

4/16/08 10:17:35 PM2pcpaxos

2

Brewer/Hellerstein CS262 Spring 2008: 2PC and Paxos

Two Phase Commit and Logging in R*

2PC and failures

Upon discovering a failure elsewhere
If a coord discovers that a subord is unreachable...

while waiting for its vote: coord aborts xact as usual
while waiting for an ACK: coord gives xact to recovery mgr

If subord discovers that coord is unreachable...
if it hasn't sent a YES vote yet, do unilateral abort
if it has sent a YES vote subord gives xact to recovery mgr

If a recovery mgr receives an inquiry from a subord in prepared state
if main mem info says xact is committing or aborting, send COMMIT/ABORT
if main mem info says nothing...?

An aside: Hierarchical 2PC
If you have a tree-shaped process graph

root (which talks to user) is a coord
leaves are subords
interior nodes are both

after receiving PREPARE, propagate to children.
vote after children. any NO below causes a NO vote (this is like stratified aggregation!)
after receiving COMMIT record, force-write log, ACK to parent, and propagate to children. similar for ABORT.

Tuning approach 1: Presumed Abort
recall... if main-mem says nothing, coord says ABORT
SO... coord can forget a xact immediately after deciding to abort it! (write abort record, THEN forget)
abort can be async write

no ACKS required from subords on ABORT
no need to remember names of subords in abort record, nor write end record after abort
if coord sees subord has failed, need not pass xact to recovery system; can just ABORT.

Look at R/O xacts:
subords who have only read send READ VOTEs instead of YES VOTEs, release locks, write no log records

logic is: READ & YES = YES, READ & NO = NO, READ & READ = READ
if all votes are READ, there’s no second phase
commit record at coord includes only YES sites
Tallying up the R/O work: N+1 msgs, no disk writes. Delays: 1 msg delay.

Tuning approach II: Presumed Commit
Should be the fast path, can we do it fast?
Inverting the logic:

require ACK for ABORT, not COMMIT!
subords force abort* record, not commit
no info? presume commit!

Problem!
subord prepares
coord crashes
on restart, coord aborts and forgets
subord asks about the xact, coord says "no info = commit!"
subord commits, but everybody else does not.

Solution:
coord records names of subords on stable storage before allowing them to prepare ("collecting" record)
then it can tell them about aborts on restart
everything else analogous (mirror) to P.A.
Tallying up R/O work: N+1 msgs, 2 diskwrites (collecting*, commit), Delays: 1 diskwrite delay, 1 msg delay.

Costs of the variants
2PC commit: 2N+2 writes, 4N messages. Delays: 3 write delays, 4 msg delays
PA commit: 2N+2 writes, 4N messages. Delays: 3 write delays, 4 msg delays
PC commit: 2N+2 writes, 3N messages. Delays: 3 write delays, 3 msg delays.
PA always beats plain 2PC
PA beats PC for R/O transactions
for xacts with only one writer subord, PC beats PA (PA has an extra ACK from subord)
for n-1 writer subords, PC much better than PA (PA forces n-1 times at subords on commits, sends n extra msgs)
choice between PA and PC could be made on a xact-by-xact basis!

4/16/08 10:17:35 PM2pcpaxos

3

Brewer/Hellerstein CS262 Spring 2008: 2PC and Paxos

Two Phase Commit and Logging in R*

Costs of the variants

for n-1 writer subords, PC much better than PA (PA forces n-1 times at subords on commits, sends n extra msgs)
choice between PA and PC could be made on a xact-by-xact basis!

"query" optimization? Overlog?
Paxos

Setup
3 roles being played

A single Proposer ("Leader"), proposes "values"
Leader-election protocol is well-known and predates this work

Acceptor, part of protocol to decide on "choosing" values
Learner, hears about "chosen" values

Goal: majority agreement to "choose" a proposed value
Imagine a single Consensus Box. Now emulate that with a distributed set of machines that can tolerate failure.
Non-triviality: only proposed values can be learned
"Consistency": 2 learners cannot learn different values
Liveness: if value C has been proposed, and enough processes are alive, eventually each learner will learn some value

Assumptions
Async machines
Independent, fail-stop failures

will tolerate F/(2F+1) nodes failing simultaneously.
vs. 2PC. vs. Byzantine Agreement.

msgs lost, delayed, reordered, but not corrupted.
The basic Paxos protocol

Proposer | Acceptors | Learner
prepare(n)→ | |
 |← promise (m,w) |
Accept(n,v) → | |
 |← accepted → |
 | | broadcast →
notes:

acceptors only promise(m,w) if m < n and they haven't promised something higher than n already
w is the last value accepted (or null)

proposer only issues accepts if a majority promised. if all acceptor returned null w's, proposed gets to choose v (the free case).
else v is the w it received with the highest associated m (the forced case).

why should a proposer bother accepting if it is forced by a non-null w?
Costs

4F messages, 4 message delays.
Paxos with failures

Acceptor failures
First, note that all majorities overlap by 1

Whenever a majority of acceptors is non-failed in future, previously accepted values will be stored with associated numbers.
Second, note how promises help

Learner failures
trivial

Proposer failures
Leader-election will replace proposer on failure
Proposer can fail any time before accept with no confusion
Fail after Accept msg sent out causes trouble: dueling proposers

new leader will be elected, and if old leader recovers she won't know she's no longer leader
prepare(n) will fail
new leader may try to restart with prepare(n+1)

gets promises
old leader recovers and tries to restart with prepare(n+1)

gets NACKs
old leader tries prepare(n+2)

gets promises
new leader tries to accept(n+1)

4/16/08 10:17:35 PM2pcpaxos

4

Brewer/Hellerstein CS262 Spring 2008: 2PC and Paxos

Paxos

Paxos with failures

Proposer failures

Fail after Accept msg sent out causes trouble: dueling proposers

new leader tries to accept(n+1)
gets NACKs

etc,.
Leader-election will eventually solve this

Many variants -- see Wikipedia entry
Multi-Paxos: for continuous stream of consensus tasks. Skips Phase 1.

Very typical implementation
(Actually, we can always skip Phase 1, even without multi)

Cheap Paxos: let F of the 2F+1 machines be slow
Fast Paxos: skip phase 1, let clients initiate phase 2 via broadcast to proposer and acceptors
Byzantine Paxos: allows for nodes to be malicious.

Paxos and distributed state machines
A nice model (the usual model!) for reasoning about fault-tolerant systems is the distributed state machine

multiple clients
server implemented by multiple nodes running redundant copies of the same deterministic state machine
how do we ensure that each machine runs the same commands in the same order?

a Paxos leader (proposer) serializes all client requests.
it uses Paxos to get consensus on the content of the n'th request

if leader fails, leader election picks a new one. recovery works out pretty well:
even if we have dueling leaders!

Phase 1 of Paxos is used to get one of the leaders to "win" the nth Paxos round
Only in Phase 2 does that leader actually issue the command.

the command for for round n is only chosen after Phase 2 for round n-1 completes
hence to choose a command, you have to be all caught up on history, and hence choose the "right" one.

how does a new leader "catch up"
well, it had been a listener, so it has a partial view of history
start by issuing Phase 1 requests for any gaps in history, and all "future" rounds (expained below)

will learn the history from the Promise responses
run Phase 2 for all the promises that responded with a value

at minimum local execution of the commands
to complete the sequence of historical commands, replace any remaining gap commands with no-op proposals

what does it mean to do phase one for all future rounds (infinitely many)?
propose a single sequence number in one message, representing an unbounded number of rounds

acceptor can simply say OK
Paxos Commit

Gray & Lamport 2006!! (from a 2004 TR)
History: Skeen's Non-Blocking (3-Phase) Commit

Handle the case of a failed transaction coordinator
multiple coordinators and failover
nobody every nailed this down (specific algorithm with correctness proofs)

Paxos makes this really simple
we can have multiple coordinators (transaction managers), and their decisions on commit are handled by Paxos

client issues "prepare" to multiple coordinators
subordinates respond "prepared" to all coordinators
Paxos used to deal with coordinator decisions if any of the coords fail.

Note -- still unanimous decision by subordinates! Majority used at coordinators.
Same logging all around
A version of this due to Mohan in 1983 (with a slower consensus protocol)
Paxos Commit also includes an optimization over the Mohan solution

coordinator need not be the Paxos proposer!
subordinates don't respond to coordinator prepare. instead, they serve as Paxos proposers for their own status
coordinators are Listeners on those proposals, and can issue commits upon getting a majority for each subordinate
saves one round of messages
Acceptors in Paxos must log each accepted message before sending it.

Total cost (with all optimizations): (N-1)(2F+3) msgs, N+F+1 writes. 4 message delays, 2 write delays.
Full paper is (typically) complex and full of fussy detail

