
1

Logging and
Recovery

Chapter 18

If you are going to be in the
logging business, one of the

things that you have to do is to
learn about heavy equipment.

- Robert VanNatta,
Logging History of

Columbia County

Review: The ACID properties

•• AA tomicity: All actions in the Xact happen, or none happen.

•• CC onsistency: If each Xact is consistent, and the DB starts
consistent, it ends up consistent.

•• II solation: Execution of one Xact is isolated from that of other
Xacts.

•• DD urability: If a Xact commits, its effects persist.

• The Recovery Manager guarantees Atomicity & Durability.

Motivation
• Atomicity:

– Transactions may abort (“Rollback”).
• Durability:

– What if DBMS stops running? (Causes?)

crash!
Desired Behavior after
system restarts:
– T1, T2 & T3 should be

durable.
– T4 & T5 should be

aborted (effects not seen).

T1
T2
T3
T4
T5

Assumptions

• Concurrency control is in effect.
– Strict 2PL, in particular.

• Updates are happening “in place”.
– i.e. data is overwritten on (deleted from) the disk.

• A simple scheme to guarantee Atomicity &
Durability?

2

Handling the Buffer Pool

• Force write to disk at
commit?
– Poor response time.
– But provides durability.

• Steal buffer-pool frames
from uncommited Xacts?
– If not, poor throughput.
– If so, how can we ensure

atomicity?

Force

No Force

No Steal Steal

Trivial

Desired

More on Steal and Force
• STEAL (why enforcing Atomicity is hard)

– To steal frame F: Current page in F (say P) is
written to disk; some Xact holds lock on P.

• What if the Xact with the lock on P aborts?
• Must remember the old value of P at steal time (to

support UNDOing the write to page P).

• NO FORCE (why enforcing Durability is hard)
– What if system crashes before a modified page is

written to disk?
– Write as little as possible, in a convenient place, at

commit time,to support REDOing modifications.

Basic Idea: Logging

• Record REDO and UNDO information, for every
update, in a log.
– Sequential writes to log (put it on a separate disk).
– Minimal info (diff) written to log, so multiple updates

fit in a single log page.
• Log: An ordered list of REDO/UNDO actions

– Log record contains:
<XID, pageID, offset, length, old data, new data>

– and additional control info (which we’ll see soon).

Write-Ahead Logging (WAL)

• The Write-Ahead Logging Protocol:
Must force the log record for an update before

the corresponding data page gets to disk.
Must write all log records for a Xact before
commit.

• #1 guarantees Atomicity.
• #2 guarantees Durability.

• Exactly how is logging (and recovery!) done?
– We’ll study the ARIES algorithms.

3

WAL & the Log
• Each log record has a unique Log Sequence

Number (LSN).
– LSNs always increasing.

• Each data page contains a pageLSN.
– The LSN of the most recent log record

for an update to that page.
• System keeps track of flushedLSN.

– The max LSN flushed so far.
• WAL: Before a page is written,

– pageLSN ≤ flushedLSN

LSNs pageLSNs

RAM

flushedLSN

pageLSN

Log records
flushed to disk

“Log tail”
in RAM

DB

Log Records
Possible log record types:
• Update
• Commit
• Abort
• End (signifies end of commit

or abort)
• Compensation Log Records

(CLRs)
– for UNDO actions
– (and some other tricks!)

prevLSN
XID
type

length
pageID

offset
before-image
after-image

LogRecord fields:

update
records
only

Other Log-Related State

• Transaction Table:
– One entry per active Xact.
– Contains XID, status (running/commited/aborted),

and lastLSN.
• Dirty Page Table:

– One entry per dirty page in buffer pool.
– Contains recLSN -- the LSN of the log record which

first caused the page to be dirty.

Normal Execution of an Xact

• Series of reads & writes, followed by commit or
abort.
– We will assume that page write is atomic on disk.

• In practice, additional details to deal with non-atomic writes.

• Strict 2PL.
• STEAL, NO-FORCE buffer management, with Write-

Ahead Logging.

4

Checkpointing
• Periodically, the DBMS creates a checkpoint, in order to

minimize the time taken to recover in the event of a system
crash. Write to log:
– begin_checkpoint record: Indicates when chkpt began.
– end_checkpoint record: Contains current Xact table and dirty page

table. This is a `fuzzy checkpoint’:
• Other Xacts continue to run; so these tables only known to reflect

some mix of state after the time of the begin_checkpoint record.
• No attempt to force dirty pages to disk; effectiveness of checkpoint

limited by oldest unwritten change to a dirty page. (So it’s a good idea
to periodically flush dirty pages to disk!)

– Store LSN of chkpt record in a safe place (master record).

The Big Picture: What’s Stored Where

DB

Data pages
each
with a
pageLSN

Xact Table
lastLSN
status

Dirty Page Table
recLSN

flushedLSN

RAM

prevLSN
XID
type

length
pageID

offset
before-image
after-image

LogRecords

LOG

master record

Simple Transaction Abort

• For now, consider an explicit abort of a Xact.
– No crash involved.

• We want to “play back” the log in reverse
order, UNDOing updates.
– Get lastLSN of Xact from Xact table.
– Can follow chain of log records backward via the

prevLSN field.
– Note: before starting UNDO, could write an Abort

log record.
• Why bother?

Abort, cont.

• To perform UNDO, must have a lock on data!
– No problem!

• Before restoring old value of a page, write a CLR:
– You continue logging while you UNDO!!
– CLR has one extra field: undonextLSN

• Points to the next LSN to undo (i.e. the prevLSN of the record we’re
currently undoing).

– CLR contains REDO info
– CLRs never Undone

• Undo needn’t be idempotent (>1 UNDO won’t happen)
• But they might be Redone when repeating history (=1 UNDO

guaranteed)
• At end of all UNDOs, write an “end” log record.

5

Transaction Commit

• Write commit record to log.
• All log records up to Xact’s lastLSN are flushed.

– Guarantees that flushedLSN ≥ lastLSN.
– Note that log flushes are sequential, synchronous

writes to disk.
– Many log records per log page.

• Make transaction visible
– Commit() returns, locks dropped, etc.

• Write end record to log.

Crash Recovery: Big Picture

Start from a checkpoint (found
via master record).
Three phases. Need to:
– Figure out which Xacts

committed since checkpoint,
which failed (Analysis).

– REDO all actions.
(repeat history)

– UNDO effects of failed Xacts.

Oldest log
rec. of Xact
active at crash

Smallest
recLSN in
dirty page
table after
Analysis

Last chkpt

CRASH

A R U

Recovery: The Analysis Phase

• Reconstruct state at checkpoint.
– via end_checkpoint record.

• Scan log forward from begin_checkpoint.
– End record: Remove Xact from Xact table.
– Other records: Add Xact to Xact table, set

lastLSN=LSN, change Xact status on commit.
– Update record: If P not in Dirty Page Table,

• Add P to D.P.T., set its recLSN=LSN.

Recovery: The REDO Phase
• We repeat History to reconstruct state at crash:

– Reapply all updates (even of aborted Xacts!), redo
CLRs.

• Scan forward from log rec containing smallest
recLSN in D.P.T. For each CLR or update log rec LSN,
REDO the action unless:
– Affected page is not in the Dirty Page Table, or
– Affected page is in D.P.T., but has recLSN > LSN, or
– pageLSN (in DB) ≥ LSN.

• To REDO an action:
– Reapply logged action.
– Set pageLSN to LSN. No additional logging!

6

Recovery: The UNDO Phase

ToUndo={ l | l a lastLSN of a “loser” Xact}
Repeat:

– Choose largest LSN among ToUndo.
– If this LSN is a CLR and undonextLSN==NULL

• Write an End record for this Xact.
– If this LSN is a CLR, and undonextLSN != NULL

• Add undonextLSN to ToUndo
• (Q: what happens to other CLRs?)

– Else this LSN is an update. Undo the update,
write a CLR, add prevLSN to ToUndo.

Until ToUndo is empty.

Example of Recovery

begin_checkpoint
end_checkpoint
update: T1 writes P5
update T2 writes P3
T1 abort
CLR: Undo T1 LSN 10
T1 End
update: T3 writes P1
update: T2 writes P5
CRASH, RESTART

LSN LOG

00
05
10
20
30
40
45
50
60

Xact Table
lastLSN
status

Dirty Page Table
recLSN

flushedLSN

ToUndo

prevLSNs

RAM

Example: Crash During Restart!

begin_checkpoint, end_checkpoint
update: T1 writes P5
update T2 writes P3
T1 abort
CLR: Undo T1 LSN 10, T1 End
update: T3 writes P1
update: T2 writes P5
CRASH, RESTART
CLR: Undo T2 LSN 60
CLR: Undo T3 LSN 50, T3 end
CRASH, RESTART
CLR: Undo T2 LSN 20, T2 end

LSN LOG
00,05

10
20
30

40,45
50
60

70
80,85

90

Xact Table
lastLSN
status

Dirty Page Table
recLSN

flushedLSN

ToUndo

undonextLSN

RAM

Additional Crash Issues
• What happens if system crashes during

Analysis? During REDO?
• How do you limit the amount of work in REDO?

– Flush asynchronously in the background.
– Watch “hot spots”!

• How do you limit the amount of work in UNDO?
– Avoid long-running Xacts.

7

Logical vs. Physical Logging

• Roughly, ARIES does:
– Physical REDO
– Logical UNDO

• Why?

Logical vs. Physical Logging, Cont.

• Page-oriented REDO logging
– Independence of REDO (e.g. indexes & tables)
– Not quite physical, but close

• Can have logical operations like increment/decrement
(“escrow transactions”)

• Logical UNDO
– To allow for simple management of physical

structures that are invisible to users
– To allow for logical operations

• Handles escrow transactions

Nested Top Actions

• Trick to support physical operations you do not
want to ever be undone
– Example?

• Basic idea
– At end of the nested actions, write a dummy CLR

• Nothing to REDO in this CLR

– Its UndoNextLSN points to the step before the
nested action.

Summary of Logging/Recovery

• Recovery Manager guarantees Atomicity &
Durability.

• Use WAL to allow STEAL/NO-FORCE w/o
sacrificing correctness.

• LSNs identify log records; linked into
backwards chains per transaction (via
prevLSN).

• pageLSN allows comparison of data page and
log records.

8

Summary, Cont.

• Checkpointing: A quick way to limit the
amount of log to scan on recovery.

• Recovery works in 3 phases:
– Analysis: Forward from checkpoint.
– Redo: Forward from oldest recLSN.
– Undo: Backward from end to first LSN of oldest

Xact alive at crash.
• Upon Undo, write CLRs.
• Redo “repeats history”: Simplifies the logic!

