
CS262 Lecture Notes
Eric Brewer

BigTable

Goal: a general-purpose data-center storage system

○ big or little objects
○ ordered keys with scans
○ notion of locality
○ very large scale
○ durable and highly available
○ hugely successful within Google -- very broadly used

Data model: a big sparse table

○ rows are sort order
■ atomic operations on single rows
■ scan rows in order
■ locality by rows first

○ columns: properties of the row
■ variable schema: easily create new columns
■ column families: groups of columns

● for access control (e.g. private data)
● for locality (read these columns together, with nothing else)
● harder to create new families

○ multiple entries per cell using timestamps
■ enables multi-version concurrency control across rows

Basic implementation:

○ writes go to log then to in-memory table “memtable” (key, value)
○ periodically: move in memory table to disk => SSTable(s)

■ “minor compaction”
● frees up memory
● reduces recovery time (less log to scan)

■ SSTable = immutable ordered subset of table: range of keys and subset
of their columns

● one locality group per SSTable (for columns)
■ tablet = all of the SSTables for one key range + the memtable

● tablets get split when they get too big
● SSTables can be shared after the split (immutable)

■ some values may be stale (due to new writes to those keys)
○ reads: maintain in-memory map of keys to {SSTables, memtable}

■ current version is in exactly one SSTable or memtable
■ reading based on timestamp requires multiple reads
■ may also have to read many SSTables to get all of the columns

○ scan = merge-sort like merge of SSTables in order

■ easy since they are in sorted order
○ Compaction

■ SSTables similar to segments in LFS
■ need to “clean” old SSTables to reclaim space

● also to actually delete private data
■ Clean by merging multiple SSTables into one new one

● “major compaction” => merge all tables

Bloom Filters

● goal: efficient test for set membership: member(key) -> true/false
● false => definitely not in the set, no need for lookup
● true => probably is in the set

○ so do lookup to make sure and get the value
● generally supports adding elements, but not removing them

○ but some tricks to fix this (counting)
○ or just create a new set once in a while

● basic version:
○ m bit positions
○ k hash functions
○ for insert: compute k bit locations, set them to 1
○ for lookup: compute k bit locations

■ all = 1 => return true (may be wrong)
■ any = 0 => return false

○ 1% error rate ~ 10 bits/element

■ good to have some a priori idea of the target set size
● use in BigTable

○ avoid reading all SSTables for elements that are not present (at least mostly
avoid it)

○ saves many seeks

Three pieces to the implementation:
● client library with the API (like DDS)
● tablet servers that serve parts of several tables
● master that tracks tables and tablet servers

○ assigns tablets to tablet servers
○ merges tablets
○ tracks active servers and learns about splits
○ clients only deal with master to create/delete tables and column family changes
○ clients get data directly from servers

All tables part of one big system

● root table points to metadata tables
○ never splits => always three levels of tablets

● these point to user tables

Tricky bits:

● SSTables work in 64k blocks
○ pro: caching a block avoid seeks for reads with locality
○ con: small random reads have high overhead and waste memory

■ solutions?
● Compression: compress 64k blocks

○ big enough for some gain
○ encoding based on many blocks => better than gzip
○ second compression within a block

● Each server handles many tablets
○ merges logs into one giant log

■ pro: fast and sequential
■ con: complex recovery

● recover tablets independently, but their logs are mixed...
○ solution in paper: sort the log first, then recover...

● long time source of bugs
○ Could we keep the logs separate?

● Strong need for monitoring tools
○ detailed RPC trace of specific requests
○ active monitoring of all servers

