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CS262, Fall 2008 :  Parallel DBs and MapReduce
Parallel Databases

History of Database Machines vs. Commodity HW.
Side benefit of relational model: parallelism.

Basic concepts
Pipeline vs. partition parallelism
Speedup (fixed problem size) vs. Scaleup (problem and HW grow)
Barriers to parallelism: Startup, Interference and Skew

Note in paper about interference: 1% slowdown limits scaleup to 37x
Shared mem & disk revisited

Inevitably you want caching, leading to processor affinity.  Why not code it up?
DB dataflow models: iterators and pipelines.  more on this next time!

Hashjoin and sort algorithms.
Sort benchmarks, balancing the HW pipeline

Ramification for manycore?  datacenters?
The "hard stuff": DB layout, query optimization, mixed workloads, UTILITIES!

MapReduce
Goals

automatic parallelization/distribution
fault-tolerance
I/O scheduling
status/monitoring

Structure
Pasted Graphic
map (k1, v1) -> list(k2, v2)
reduce(k2, list(v2)) -> list(whatever)

Platform:
Commodity PCs (dual processor), commodity NW, 100's/1000's of machines, cheap IDE 
disks
GFS for reliable file storage
job = {tasks}, passed to scheduler

Basic Execution:
data "automatically" partitioning into M "splits".  Reduce done by hashing mod R.  M and R 
specified by the user.
Splits are of a single "file" into physical chunks (# of Bytes)
Mappers write to memory buffers.  Periodically, buffers are flushed locally.  Location sent 
to master.
Master notifies Reduce workers about flushed results of Mappers.  Fetches them via RPC.
Reduce then performs Sort-based groupBy.  Output appended to final output file in GFS for 
this reduce partition.
When all M's and R's done, Master wakes up user program to "return" from the 
MapReduce call.  R Reduce files are left in place, possibly to be reused in another 
MapReduce stage.

FT:
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Master pings workers for failure.
Completed map tasks are reset as "idle" (i.e. not yet started) because they're inaccessible 
on the failed node's disk.  In-Progress Maps and Reduces also set as "idle".  Completed 
Reduces are safely in GFS.
All reducers need to be told of a failure, due to "pull" model.
Master failure can be handled by checkpointing of worker state.
To ensure correctness, need ATOMIC commit of map and reduce.  So tentatively write to 
private temp files (R for M's, 1 for R's).
When Mapper completes, it sends message to master  with the names of the R files, which 
it records in its data structure.  Subsequent such messages ignored.
When Reduce completes, worker renames temp output to final output name.  Atomic 
rename in GFS ensures that only one of possibly many redundant reducers "wins".
Clearly, non-deterministic functions provide loose semantics.

Locality:
Master assigns Mappers with an understanding of where the GFS blocks of the input are.  
Best on a machine with a replica, else "close" in the network (same switch).

Granularity:
Many more M's and R's than machines.  Good for load-balancing, and you need to LB after 
failures. Since master has to bookkeep the M's and R's -O(M*R) state and O(M+R) 
scheduling decisions, don't want this insanely big. Also, may not want too many R's cos 
result is spread into many files.
Rule of thumb: choose M to be about 16MB-64MB, R a small multiple (e.g. 100) of the 
#machines.  2K machines, M=200K, R=5K.

Stragglers:
Note causes: faulty though correctable disks, shared resource utilization, bugs in code.
One solution: competition.  Redundant execution of the last in-progress tasks.  When 
useful, when not?

Combiner function: for commutative/associative Reduce
partial pre-aggregation at the mapper.  output to the local intermediate file to be sent to 
reducer.

Other stuff
Side effects: up to the programmer to make atomic and idempotent.
Optionally skip bad input records: signal handler sends a UDP packet with seqno to 
Master.  If it sees >1 such, skips it next time.
Sequential local version for debugging.
HTTP server in master for status, stderr, stdout
Running aggregation of "counters" for sanity check

Performance
1800 machines, 2GHz Xeons, 4GB RAM< 160GB disk (!!), Gb Ethernet.  Two level tree 
switched net with 100-200 Gbps aggregate at root
Grep experiment: see startup cost in graph -1 minute startup, 150 seconds total!  Startup 
includes code propagation, opening 1000 files in GFS, getting GFS metadata for locality 
optimization.  WOW.
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Performance

Sort: 891 seconds, 1800 machines, 3600 disks.  1057 seconds was TeraSort benchmark. 
(2006 was 435 Secs on 80 Itanium machines with 2520 disks, 2000 was 1952 IBM SP 
machines with 2168 disks!)

Note FLuX project (ICDE 03, SIGMOD 04)
Fully pipelined
Process pairs + Partitioning
quite complex, but more powerful

Big picture questions
when is complexity merited? Architectural elegance in MapReduce?
Programming models


