PFP: Parallel FP-Growth for Query Recommendation

Haoyuan Li
Google Beijing Research,
Beijing, 100084, China

Ming Zhang
Dept. Computer Science,
Peking University, Beijing,

100071, China

ABSTRACT

Frequent itemset mining (FIM) is a useful tool for discov-
ering frequently co-occurrent items. Since its inception, a
number of significant FIM algorithms have been developed
to speed up mining performance. Unfortunately, when the
dataset size is huge, both the memory use and computa-
tional cost can still be prohibitively expensive. In this work,
we propose to parallelize the FP-Growth algorithm (we call
our parallel algorithm PFP) on distributed machines. PFP
partitions computation in such a way that each machine
executes an independent group of mining tasks. Such parti-
tioning eliminates computational dependencies between ma-
chines, and thereby communication between them. Through
empirical study on a large dataset of 802,939 Web pages and
1,021, 107 tags, we demonstrate that PFP can achieve virtu-
ally linear speedup. Besides scalability, the empirical study
demonstrates that PFP to be promising for supporting query
recommendation for search engines.

Categories and Subject Descriptors

H.3 Information Storage and Retrieval]; H.4 [Information

Systems Applications]

General Terms

Algorithms, Experimentation, Human Factors, Performance

Keywords
Parallel FP-Growth, Data Mining, Frequent Itemset Mining

1. INTRODUCTION

In this paper, we attack two problems. First, we par-
allelize frequent itemset mining (FIM) so as to deal with
large-scale data-mining problems. Second, we apply our de-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ACM RS

Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

Yi Wang
Google Beijing Research,
Beijing, 100084, China

Dong Zhang
Google Beijing Research,
Beijing, 100084, China

Edward Chang

Google Research, Mountain
View, CA 94043, USA

veloped parallel algorithm on Web data to support query
recommendation (or related search).

FIM is a useful tool for discovering frequently co-occurrent
items. Existing FIM algorithms such as Apriori [9] and FP-
Growth [6] can be resource intensive when a mined dataset is
huge. Parallel algorithms were developed for reducing mem-
ory use and computational cost on each machine. Early
efforts (related work is presented in greater detail in Sec-
tion 1.1) focused on speeding up the Apriori algorithm. Since
the FP-Growth algorithm has been shown to run much faster
than the Apriori, it is logical to parallelize the FP-Growth
algorithm to enjoy even faster speedup. Recent work in
parallelizing FP-Growth [10, 8] suffers from high communi-
cation cost, and hence constrains the percentage of compu-
tation that can be parallelized. In this paper, we propose
a MapReduce approach [4] of parallel FP-Growth algorithm
(we call our proposed algorithm PFP), which intelligently
shards a large-scale mining task into independent compu-
tational tasks and maps them onto MapReduce jobs. PFP
can achieve near-linear speedup with capability of restarting
from computer failures.

The resource problem of large-scale FIM could be worked
around in a classic market-basket setting by pruning out
items of low support. This is because low-support itemsets
are usually of little practical value, e.g., a merchandise with
low support (of low consumer interest) cannot help drive
up revenue. However, in the Web search setting, the huge
number of low-support queries, or long-tail queries [2], each
must be maintained with high search quality. The impor-
tance of low-support frequent itemsets in search applications
requires FIM to confront its resource bottlenecks head-on.
In particular, this paper shows that a post-search recom-
mendation tool called related search can benefit a great deal
from our scalable FIM solution. Related search provides
related queries to the user after an initial search has been
completed. For instance, a query of ’apple’ may suggest
‘orange’, 'iPod’ and ’iPhone’ as alternate queries. Related
search can also suggest related sites of a given site (see ex-
ample in Section 3.2).

1.1 Related Work

Some previous efforts [10] [7] parallelized the FP-Growth
algorithm across multiple threads but with shared memory.
However, to our problem of processing huge databases, these
approaches do not address the bottleneck of huge memory
requirement.

Sorted transactions
(with infrequent
items eliminated)

Map inputs
(transactions)
key="": value

Map outputs

key: value

fcam
:fca

fc

f

: fcab

facdgimp fcamp

abcflmo fcabm

fca
fc
f

f

cb
c

bfhjo fb
bcksp cbp

fcam
:fca

fc

f

afcelpmn fcamp

QR3ITITT |(T|QRT 3 (Qp3T

(conditional transactions)

Reduce inputs
(conditional databases)
key: value

Conditional FP-trees

p: {fcam/fcam/chb}

{©:3)}p

m: {fcal/fcal/fcab} {(f:3,c:3,a:3)} | m

b: {fcal/flc} 0lb

a: {fcl/fcl/fc} {(3,c3)}|a

c {fIf/f} {E3)}c

Figure 1: A simple example of distributed FP-Growth.

To distribute both data and computation across multiple
computers, Pramudiono et al [8] designed a distributed vari-
ant of the FP-growth algorithm, which runs over a cluster
of computers. Some very recent work [5] [1] [3] proposed
solutions to more detailed issues, including communication
cost, cache consciousness, memory & I/O utilization, and
data placement strategies. These approaches achieve good
scalability on dozens to hundreds of computers using the
MPI programming model.

However, to further improve the scalability to thousands
or even more computers, we have to further reduce com-
munication overheads between computers and support au-
tomatic fault recovery. In particular, fault recovery becomes
a critical problem in a massive computing environment, be-
cause the probability that none of the thousands of comput-
ers crashes during execution of a task is close to zero. The
demands of sustainable speedup and fault tolerance require
highly constrained and efficient communication protocols.
In this paper, we show that our proposed solution is able to
address the issues of memory use, fault tolerance, in addition
to more effectively parallelizing computation.

1.2 Contribution Summary

In summary, the contributions of this paper are as follows:

1. We propose PFP, which shards a large-scale mining
task into independent, parallel tasks. PPF then uses
the MapReduce model to take advantage of its recov-
ery model. Empirical study shows that PFP achieves
near-linear speedup.

2. With the scalability of our algorithm, we are able to
mine a tag/Webpage atlas from del.icio.us, a Web
2.0 application that allows users tagging Webpages
they have browsed. It takes 2,500 computers only
24 minutes to mine the atlas consisting of 46, 000, 000
patterns from a set of 802,939 URLs and 1,021,107
tags. The mined tag itemsets and Webpage itemsets
are readily to support query recommendation or related
search.

2. PFP: PARALLEL FP-GROWTH

To make this paper self-contained, we first restate the
problem of FIM. We then define parameters used in PF-
Growth, and depict the algorithm. Starting in Section 2.2,
we present our parallel FP-Growth algorithm, or PFP.

Let I = {a1,a2,...,am} be a set of items, and a trans-
action database DB is a set of subsets of I, denoted by
DB = {Th,T>,...,Tn}, where each T; C I (1 < i < n)is
said a transaction. The support of a pattern A C I, denoted
by supp(A), is the number of transactions containing A in
DB. Ais a frequent pattern if and only supp(A4) > £, where
¢ is a predefined minimum support threshold. Given DB
and &, the problem of finding the complete set of frequent
patterns is called the frequent itemset mining problem.

2.1 FP-Growth Algorithm

FP-Growth works in a divide and conquer way. It requires
two scans on the database. FP-Growth first computes a list
of frequent items sorted by frequency in descending order
(F-List) during its first database scan. In its second scan,
the database is compressed into a FP-tree. Then FP-Growth
starts to mine the FP-tree for each item whose support is
larger than £ by recursively building its conditional FP-tree.
The algorithm performs mining recursively on FP-tree. The
problem of finding frequent itemsets is converted to search-
ing and constructing trees recursively.

Figure 1 shows a simple example. The example DB has
five transactions composed of lower-case alphabets. The first
step that FP-Growth performs is to sort items in transac-
tions with infrequent items removed. In this example, we
set £ = 3 and hence keep alphabets f, ¢, a, b, m,p. After this
step, for example, T1 (the first row in the figure) is pruned
from {f,a,c,d,g,i,m,p} to {f,c,a,m,p}. FP-Growth then
compresses these “pruned” transactions into a prefix tree,
which root is the most frequent item f. Each path on the
tree represents a set of transactions that share the same
prefix; each node corresponds to one item. Each level of the
tree corresponds to one item, and an item list is formed to
link all transactions that possess that item. The FP-tree is a

Procedure: FPGrowth(DB, §)
Define and clear F-List : F[];
foreach T'ransaction T; in DB do
foreach Item a; in T; do
F[(ll] ++§
end
end
Sort FJ;
Define and clear the root of FP-tree : r;
foreach T'ransaction T; in DB do
Make T; ordered according to F;
Call ConstructTree(T;,r);
end
foreach item a; in I do
Call Growth(r,a;,§);
end

Algorithm 1: FP-Growth Algorithm

compressed representation of the transactions, and it also al-
lows quick access to all transactions that share a given item.
Once the tree has been constructed, the subsequent pattern
mining can be performed. However, a compact representa-
tion does not reduce the potential combinatorial number of
candidate patterns, which is the bottleneck of FP-Growth.
Algorithm 1 presents the pseudo code of FP-Growth [6].
We can estimate the time complexity of computing F-List
to be O(DBSize) using a hashing scheme. However, the
computational cost of procedure Growth() (the detail is
shown in Algorithm 2) is at least polynomial. The procedure
FPGrowth() calls the recursive procedure Growth(), where
multiple conditional FP-trees are maintained in memory and
hence the bottleneck of the FP-Growth algorithm.
FP-Growth faces the following resource challenges:

1. Storage. For huge DB’s, the corresponding FP-tree
is also huge and cannot fit in main memory (or even
disks). It is thus necessary to generate some small DBs
to represent the complete one. As a result, each new
small DB can fit into memory and generate its local
FP-tree.

2. Computation distribution. All steps of FP-Growth can

be parallelized, and especially the recursive calls to
Growth().

3. Costly communication. Previous parallel FP-Growth
algorithms partition DB into groups of successive trans-
actions. Distributed FP-trees can be inter-dependent,
and hence can incur frequent synchronization between
parallel threads of execution.

4. Support value. The support threshold value & plays an
important role in FP-Growth. The larger the £, the
fewer result patterns are returned and the lower the
cost of computation and storage. Usually, for a large
scale DB, € has to be set large enough, or the FP-tree
would overflow the storage. For Web mining tasks,
we typically set £ to be very low to obtain long-tail
itemsets. This low setting may require unacceptable
computational time.

Procedure: Growth(r, a, &)
if r contains a single path Z then
foreach combination(denoted as 7y) of the nodes in
Z do
Generate pattern 8 = v U a with support =
minimum support of nodes in ~;
if B.support > € then
Call Output(B);
end
end
else
foreach b; in r do
Generate pattern § = b; U a with support =
b;.support;
if B.support > € then
Call Output(B);
end
Construct s conditional database ;
Construct 3's conditional FP-tree Treeg;
if Treeg # ¢ then
Call Growth(Treeg, 3,£);
end
end
end

Algorithm 2: The FP-Growth Algorithm.

Input Data

—I oo 1
e

Pl S iy —— - - - - == 1

' '

wcpusfcru| |cPru| eee |CPU|Map |

' '

1 1 |1 & 2. Shardin

[— s —— - = - -) 9
and Parallel

Fr===== 7 < —— W~ """ """ h

] 1 | Counting

' '

» cpus |cpPu cPU eee |CPU|Reduce:

f '

'

'

'

'

'

............... +.._--._---._.-.
cPU
4 3. Grouping
| Group List | Items
Y
_)l New Integrated Data |
/4\ ________ —
' '
' '
1 cPU cPU cPU H
'P CPUs '
! b Map ! 4. Parallel
A QR QR QR 1 |and
' 1 | self-Adaptive

Bt o= E——— 2225 | Ep-Growth
J s !
Q Group Group 2 ...\luupQ !
v i
!

P CPUs |CPU CPU eee |cCPu RedUCE:
_; '
Temporary Answer i

I
1 1
\Ppcpus |cPu| |cPru| eee |cPU|lmap
I
1

5. Aggregating

E ~ :J

Figure 2: The overall PFP framework, showing five
stages of computation.

2.2 PFP Outline

Given a transaction database DB, PFP uses three MapRe-
duce [4] phases to parallelize PF-Growth. Figure 2 depicts
the five steps of PFP.

Step 1: Sharding: Dividing DB into successive parts and
storing the parts on P different computers. Such di-
vision and distribution of data is called sharding, and
each part is called a shard".

Step 2: Parallel Counting (Section 2.3): Doing a MapRe-
duce pass to count the support values of all items that
appear in DB. Each mapper inputs one shard of DB.
This step implicitly discovers the items’ vocabulary I,
which is usually unknown for a huge DB. The result is
stored in F-list.

Step 3: Grouping Items: Dividing all the |I| items on F-
List into @ groups. The list of groups is called group
list (G-list), where each group is given a unique group-
id (gid). As F-list and G-list are both small and the
time complexity is O(]I]), this step can complete on a
single computer in few seconds.

Step 4: Parallel FP-Growth (Section 2.4): The key step of
PFP. This step takes one MapReduce pass, where the
map stage and reduce stage perform different impor-
tant functions:

Mapper — Generating group-dependent transactions: Each

mapper instance is fed with a shard of DB generated
in Step 1. Before it processes transactions in the shard
one by one, it reads the G-list. With the mapper algo-
rithm detailed in Section 2.4, it outputs one or more
key-value pairs, where each key is a group-id and its
corresponding value is a generated group-dependent
transaction.

Reducer — FP-Growth on group-dependent shards: When

all mapper instances have finished their work, for each
group-id, the MapReduce infrastructure automatically
groups all corresponding group-dependent transactions
into a shard of group-dependent transactions.

Each reducer instance is assigned to process one or
more group-dependent shard one by one. For each
shard, the reducer instance builds a local FP-tree and
growth its conditional FP-trees recursively. During the
recursive process, it may output discovered patterns.

Step 5: Aggregating (Section 2.5): Aggregating the results
generated in Step 4 as our final result. Algorithms
of the mapper and reducer are described in detail in
Section 2.5.

2.3 Parallel Counting

Counting is a classical application of MapReduce. Be-
cause the mapper is fed with shards of DB, its input key-
value pair would be like (key,value = T;), where T; C DB
is a transaction. For each item, say a; € T;, the mapper
outputs a key-value pair (key’ = a;,value’ = 1).

After all mapper instances have finished, for each key’
generated by the mappers, the MapReduce infrastructure
collects the set of corresponding values (here it is a set of

_lMapReduce provides convenient software tools for shard-
ing.

Procedure: Mapper(key, value=T;)
foreach item a; in T; do
Call Output({a;," 1"));
end
Procedure: Reducer(key=a;, value=5S(a;))
C « 0
foreach item "1’ in T; do
C«— C+ 1
end
Call OQutput({(null, a; + C));

Algorithm 3: The Parallel Counting Algorithm

1’s), say S(key'), and feed the reducers with key-value pairs
(key',S(key')). The reducer thus simply outputs

(key" = null,value” = key’ + sum(S(key"))).

It is not difficult to see that key” is an item and value” is
supp(key”). Algorithm 3 presents the pseudo code of the
first two steps: sharding and parallel counting. The space
complexity of this algorithm is O(DBSize/P) and the time
complexity is O(DBSize/P).

2.4 Parallel FP-Growth

This step is the key in our PFP algorithm. Our solution
is to convert transactions in DB into some new databases
of group-dependent transactions so that local FP-trees built
from different group-dependent transactions are independent
during the recursive conditional FP-tree constructing pro-
cess. We divide this step into Mapper part and Reducer
part in details.

Algorithm 4 presents the pseudo code of step 4, Paral-
lel FP-Growth. The space complexity of this algorithm is
O(Mazx(NewDBSize)) for each machine.

2.4.1 Generating Transactions for Group-dependent
Databases

When each mapper instance starts, it loads the G-list gen-
erated in Step 3. Note that G-list is usually small and can
be held in memory. In particular, the mapper reads and
organizes G-list as a hash map, which maps each item onto
its corresponding group-id.

Because in this step, a mapper instance is also fed with
a shard of DB, the input pair should be in the form of
(key,value = T;). For each T;, the mapper performs the
following two steps:

1. For each item a; € Tj, substitute a; by corresponding
group-id.

2. For each group-id, say gid, if it appears in T;, locate its
right-most appearance, say L, and output a key-value
pair (key’ = gid,value’ = {T;[1]... T;[L]}).

After all mapper instances have completed, for each dis-
tinct value of key’, the MapReduce infrastructure collects
corresponding group-dependent transactions as value value’,
and feed reducers by key-value pair (key’ = key’,value’).
Here value’ is a group of group-dependent transactions cor-

responding to the same group-id, and is said a group-dependent

shard.

Notably, this algorithm makes use of a concept introduced
in [6], pattern ending at..., to ensure that if a group, for
example {a,c} or {b,e}, is a pattern, this support of this

Procedure: Mapper(key, value=T5;)
Load G-List;
Generate Hash Table H from G-List;
afl — Split(T.);
for j = |13 — 1to 0 do
HashNum «— getHashNum(H, alj]);
if HashNum # Null then
Delete all pairs which hash value is HashNum
in H;
Call
Output({HashNum, a[0] + a[l] + ... + a[j]));
end
end
Procedure: Reducer(key=gid,value=D By;q)
Load G-List;
nowGroup — G-Listgid,;
Local F Ptree < clear;
foreach T; in DBgid) do
Call insert — build — fp — tree(Local F Ptree, T;);
end
foreach a; in nowGroup do
Define and clear a size K max heap : HP;
Call TopK F PGrowth(Local F Ptree, a;, HP);
foreach v; in HP do
Call Output((null,v; + supp(v;)));
end

end
Algorithm 4: The Parallel FP-Growth Algorithm

pattern can be counted only within the group-dependent
shard with key’ = gid, but does not rely on any other shards.

2.4.2 FP-Growth on Group-dependent Shards

In this step, each reducer instance reads and processes
pairs in the form of (key’ = gid,value’ = DB(gid)) one by
one, where each DB(gid) is a group-dependent shard.

For each DBgid), the reducer constructs the local FP-
tree and recursively builds its conditional sub-trees similar to
the traditional FP-Growth algorithm. During this recursive
process, it outputs found patterns. The only difference from
traditional FP-Growth algorithm is that, the patterns are
not output directly, but into a max-heap indexed by the
support value of the found pattern. So, for each DB gid),
the reducer maintains K mostly supported patterns, where
K is the size of the max-heap HP. After the local recursive
FP-Growth process, the reducer outputs every pattern, v,
in the max-heap as pairs in the form of

(key” = null, value” = v + supp(v))

2.5 Aggregating

The aggregating step reads from the output from Step 4.
For each item, it outputs corresponding top-K mostly sup-
ported patterns. In particular, the mapper is fed with pairs
in the form of (key = null,value = v + supp(v)). For each
a; € v, it outputs a pair (key’ = a;,value’ = v + supp(v)).

Because of the automatic collection function of the MapRe-
duce infrastructure, the reducer is fed with pairs in the form
of (key' = a;,value’ = V(a;)), where V(a;) denotes the set
of transitions including item aj;. The reducer just selects
from S(a;) the top-K mostly supported patterns and out-
puts them.

Procedure: Mapper(key, value=v + supp(v))
foreach item a; in v do
Call Output({a;,v 4+ supp(v)));
end
Procedure: Reducer(key=a;, value=S(v + supp(v)))
Define and clear a size K max heap : HP;
foreach pattern v in v + supp(v) do
if |HP| < K then
insert v 4+ supp(v) into HP;
else
if supp(H P[0].v) < supp(v) then
delete top element in HP;
insert v + supp(v) into HP;
end
end
end
Call Output((null, a; + C));

Algorithm 5: The Aggregating Algorithm

TTD WWD

URLs 802,939 802,739
Tags 1,021,107 1,021,107
Transactions | 15,898,949 7,009,457
Total items | 84,925,908 38,333,653

Table 1: Properties of the TTD (tag-tag) and WWD
(webpage-webpage) transaction databases.

Algorithm 5 presents the pseudo code of Step 5, Aggregat-
ing. The space complexity of this algorithm is O(K) and the
time complexity is O(|I|* Max(ItemRelated PattersNum)*
log(K)/P).

To wrap up PFP, we revisit our example in Figure 1. The
parallel algorithm projects DB onto conditional DBs, and
distributes them on P machines. After independent tree
building and itemset mining, the frequent patterns are found
and presented on the right-hand side of the figure.

3. QUERY RECOMMENDATION

Our empirical study was designed to evaluate the speedup
of PFP and its effectiveness in supporting query recommenda-
toin or related research. Our data were collected from del.
icio.us, which is a well-known bookmark sharing applica-
tion. With del.icio.us, every user can save their book-
marks of Webpages, and tag each bookmarked Webpage
with tags. Our crawl of del.icio.us comes from the Google
search engine index and consists of a bipartite graph covering
802,739 Webpages and 1,021,107 tags. From the crawled
data, we generated a tag transaction database and name it
TTD, and a URL transaction database WWD. Statistics of
these two databases are shown in Table 1.

Because it is often that some tags are labelled many times
by many users to a Webpage and some Webpages being as-
sociated with a tag many times, some tag/Webpage trans-
actions are very long and result in very deep and inefficient
FP-trees. So we divide each long transaction into many
short ones. For example, a long transaction containing 100
a’s, 100 b’s and 99 ¢’s is divided into 99 short transactions
{a,b,c} and a transaction of {a,b}. This method keeps the
total number of items as well as the co-occurrences of a, b
and c.

support of tags
e
)

tags

Figure 3: The long-tail distribution of the del.icio.us
tags.

3.1 Speedup Evaluation Of PFP

We conducted performance evaluation on Google’s MapRe-
duce infrastructure. As shown in Section 2.2, our algorithm
consists of five steps. When we distributed the processing of
the TTD dataset (described in Table 1) on 2,500 computers,
Step 1 and Step 2 takes 0.5 seconds, Step 5 takes 1.5 sec-
onds, Step 3 uses only one computer and takes 1.1 seconds.
Therefore, the overall speedup depends heavily upon Step
4. The overall speedup is virtually identical to the speedup
of Step 4.

The evaluation shown in Figure 4 was conducted at Google’s

distributed data centers. Some empirical parameter values
were: the number of groups, @, is 50,000 and K is 50. We
used various numbers of computers ranging from 100 up
to 2,500. It is notable that the TTD data set is so large
that we had to distribute the data and computation on at
least 100 computers. To quantify speedup, we took 100 ma-
chines as the baseline and made the assumption that the
speedup when using 100 machines is 100, compared to using
one machine. This assumption is reasonable for our experi-
ments, since our algorithm does enjoy linear speedup when
the number of machines is up to 500. From Figure 4, we
can see that up to 1500 machines, the speedup is very close
to the ideal speedup of 1:1. As shown in the table attached
with Figure 4, the accurate speedup can be computed as
1920/2500 = 76.8%. This level of scalability, to the best
of our knowledge, is far better than previous attempts [10,
8]. (We did not use the same data set as that used in [10,
8] to perform a side-by-side comparison. Nevertheless, the
substantial overhead of these algorithms hinder them from
achieving a near-linear speedup.)

Notice that the speedup cannot be always linear due to
Amdahl’s law. When the number of machines reaches a
level that the computational time on each machine is very
low, continue adding machines receives diminishing return.
Nevertheless, when the dataset size increases, we can add
more machines to achieve higher speedup. The good news
is that the larger a mined dataset, the later Amdalh’s law
would take effect. Therefore, PFP is scalable for large-scale
FIM tasks.

3.2 PFP for Query Recommendation

The bipartite graph of our del.ico.us data embeds two
kinds of relations, Webpage-tags and tag-Webpages. From

2500

——Real Speedup

2000k LT Ideal Speedup]
o 1500F J
3 .
el
Q
Q
&

1000+ B

500+
o \ . .
0 500 1000 1500 2000 2500

The number of machines

#. machines #. groups Time (sec) Speedup
100 50000 27624 100.0
500 50000 5608 492.6
1000 50000 2785 991.9
1500 50000 1991 1387.4
2000 50000 1667 1657.1
2500 50000 1439 1919.7

Figure 4: The speedup of the PFP algorithm.

the TTD and WWD transaction databases, we mined two
kinds of relationships, tag-tag and Webpage-Webpage, re-
spectively.

Figure 5 shows some randomly selected patterns from the
mining result. The support values of these patterns vary
significantly, ranging from 6 to 60,726, which could show
the characteristic of long tail Web data.

3.2.1 Tag-Tag Relationship

To the left of the figure, each row in the table shows a
patten consisting of tags. The tags are in various languages,
including English, Chinese, Japanese and Russian. So we
have to write a short description for each pattern to explain
the meaning of tags in their language.

The first three patterns contain only English tags and as-
sociate technologies with their inventors. Some rows include
tags in different languages and can act as translators. Row
7, 10 and 12 are between Chinese and English; Row 8 is
between Japanese and English; Row 9 is between Japanese
and Chinese; and row 11 is between Russian and English.

One interesting pattern conveys more complex semantics
is on Row 13, where ‘Whorf’ and ‘Chomsky’ are two ex-
perts in areas of ‘anthropology’ and ‘linguistics’; and they
did research on a tribe called ‘Piraha’. One other pattern
on Row 2 associates ‘browser’ with ‘firebox’. These tag-tag
relationship can be effectively utilized in suggesting related
queries.

3.2.2 Webpage-Webpage Relationship

To the right of Figure 5, each row of the table shows pat-
tern consisting of URLs. By browsing the URLs, we find
out and describe their goals and subjects. According to the
descriptions, we can see that URLs in every pattern are in-
trinsically associated. For example, all URLs in Row 1 point
to cell phone software download site. All pages in Row 10 are
popular search engines used in Japan. Please refer to Fig-
ure 6 for snapshots of Web pages of these four search engines.

Note that although Google is world-wide search engine and
Baidu is run by a Chinese company, what are included in
this pattern are their . jp mirrors. These Webpage-Webpage
association can be used to suggested related pages of a re-
turned page.

3.2.3 Applications

The frequent patterns can serve many applications. In
addition to the previously mentioned dictionary and query
suggestion, we think an interesting and practical one is vi-
sualizing the highly correlated tags as an atlas, which allows
users browsing the massive Web data while keeping in their
interests easily.

The output formats our PFP algorithm fits this applica-
tion well — for each item, a pattern of items are associated.
When the items are text like tags or URLs, many well de-
veloped methods can be used to build an efficient index on
them. Therefore, given an tag (or URL), the system can in-
stantly returns a group of tightly associated tags (or URLs).
Considering a tag as a geological place, the tightly associ-
ated tags are very likely interesting places nearby. Figure 7
shows a screen shot of the visualization method implemented
as a Java program. This shot shows the tag under current
focus of the user in the center of the screen, with neighbors
scattered around. To the left of the screen is a long list of
top 100 tags, which are shown with fisheye technique and
serve as a global index of the atlas.

4. CONCLUSIONS

In this paper we presented a massively parallel FP-Growth
algorithm. This algorithm is based on a novel data and
computation distribution scheme, which virtually eliminates
communication among computers and makes it possible for
us to express the algorithm with the MapReduce model. Ex-
periments on a massive dataset demonstrated outstanding
scalability of this algorithm. To make the algorithm suit-
able for mining Web data, which are usually of long tail
distribution, we designed this algorithm to mine top-k pat-
terns related to each item, rather than relying on a user
specified value for global minimal support threshold. We
demonstrated that PFP is effective in mining tag-tag as-
sociations and WebPage-WebPage associations to support
query recommendation or related search. Our future work
will apply PFP on query logs to support related search for
Google search engine.

S. REFERENCES

[1] Lamine M. Aouad, Nhien-An Le-Khac, and Tahar M.
Kechadi. Distributed frequent itemsets mining in
heterogeneous platforms. Engineering, Computing and
Archtecture, 1, 2007.

[2] A.-L. Barabasi and R. Albert. Emergence of scaling in
random networks. Science, 286:509-512, 1999.

[3] Gregory Buehrer, Srinivasan Parthasarathy, Shirish
Tatikonda, Tahsin Kurc, and Joel Saltz. Toward
terabyte pattern mining: An architecture-conscious
solution. In PPOPP, 2007.

[4] Jeffrey Dean and Sanjay Ghemawat. Mapreduce:
Simplified data processing on large clusters. In OSDI,
pages 137-150, 2004.

[5] Mohammad El-Hajj and Osmar R. Za iane. Parallel
leap: Large-scale maximal pattern mining in a

A livedoor #sa

e
et R
AoutER Dongesc
st |Gz

Figure 6: Examples of mining webpage-webpages re-
lationship: all the three webpages (www.google.co.jp,
www.livedoor.com, www.baidu.jp, and www.namaan.net)
are related to Web search engines used in Japan.

seo Web2.0 tools
search
photography reference tools
goog |e ' l l programming
software 28382 27563
mac 0 28455 27327 search
search 32415 26659
0gs blog ' 33057 78786
blog:
- 376 BB o0 b ol
s tools § 34390 55749
web 34769 s |
maps 3683150502 i web
googlemaps |] |
maps
gmail web2.0

googlemaps

Figure 7: Java-based Mining UI

distributed environment. In ICPADS, 2006.

[6] Jiawei Han, Jian Pei, and Yiwen Yin. Mining frequent
patterns without candidate generation. In SIGMOD,
2000.

[7] Li Liu, Eric Li, Yimin Zhang, and Zhizhong Tang.
Optimization of frequent itemset mining on
multiple-core processor. In VLDB, 2007.

[8] Iko Pramudiono and Masaru Kitsuregawa. Parallel
fp-growth on pc cluster. In PAKDD, 2003.

[9] Agrawal Rakesh and Ramakrishnan Srikant. Fast
algorithms for mining association rules. In Proc. 20th
Int. Conf. Very Large Data Bases, VLDB, 1994.

[10] Osmar R. Zaiane, Mohammad El-Hajj, and Paul Lu.
Fast parallel association rule mining without
candidacy generation. In ICDM, 2001.

Tags Deseription Support
internet Web2.0 is a new technique which
web2. 0 web | better supports internet applications, | 60726
blog such as blogs.
bfowser Fivefox 1s a famous browser 27414
firefox
nacosx apple . . .
bp Mac OS X iz a line of graphical
03% mac . 25623
operating systems of Apple Inc.
sof tware
dotnet Dotmet and net are Java . like
of .net development and computational
i platform provided by Microsoft. C# 15 | 6963
development) T
N the majer programming language
DTOEramming | oeported on NET.
Adobe howto tThex; are a lc-t1 of lonhne :utm‘mls
eaching people how to use
h hi
p Otos_ Olp photoshop, a well-known software of 6812
tutoria Adobe Inc.
iphone apple IPhone and mac are both famous
" Frwar products of Apple Inc. Apple alse | 2697
ac sottware developed a lot of other softwares.
+ -
E-:\“ i HE and 5 are Chinese B
Clunese 19
weh? 0 blog | MEANS log % means blog
e hY FS34 2 and 55— 4 ate
A F3A 2 Tapansse.
T i t2h FS4 27 means secondlife | 14
secondlife 4 — iy means game. And secondlife is
a galme Jfzecondlife com/).
B mE
PV CM .
EhE T ThFTse are all Iapar‘lfss Knan_]l and 13
. Chinese words means “image
7 EHBITR
&\ v
FHE is the Chinese name of Kaifi
FHE srudy Lee, a vice president of Google. He is
L - farmous for his contribution on Chinese
earning .
) colleage eduction. Hiz famous blog | 10
edycation . . .
| X delivers many his suggestions for
800gle DIOE | Cpinese smdents on the skills of
studying and learning.
IPHCTHAMCTEO and IpaBoCTABHe are
Eussian
EPICTHAHCIED | o ermancTBo means Christianity.
TPABOCTABHE 8
orthodox MPABOCTABHE means Orthodox.
A1l these three words relate to
religious.
iE ¥ iz tranditional Chinese in
‘}%ﬁ rzl“'““ Taiwan. -
A m:i:ﬂ::un IE¥ means beauty. Lots of people |
! search IE¥E for beauties™ photos.
whoif piraha | Whorf and Chomslky are all experts in
chomsky anthropology and linguistics, and 6
anthropology | they did research in a tribe named
linguistics Piraha.
billgates Bill Gates and Steve Jobs are
mnicrosoft founders of DNhecrosoft and Apple
steve jobs respectively, which are both high | &
apple mac technology companies. Mac 18 a
technology | famous product of Apple.

Webpages Description Support
www.openmoko.org Cell phone software 2607
www.grandcentral.com download related web
www.zyb.com sites.

WwWw.simpy.com Four social 242
www.furl.net bookmarking services
WWWw.connotea.org web sites, including
del.icio.us del.ici.os. The last
www.masternewmedia.org/ne | one is an article it
ws/2006/12/01/social_bookm | discuss this.
arking_services_and_tools.htm

www.troovy.com Five online maps. 240
www.flagr.com

http://outside.in

www.wayfaring.com

http://flickrvision.com

mail.google.com/mail Web sites related to 204
www.google.com/ig GMail service.
gdisk.sourceforge.net

www.netvibes.com

www.trovando.it Six fancy search 151
www.kartoo.com engines.

WWW.snap.com

www.clusty.com

www.aldaily.com

www.quintura.com

wwwl.meebo.com Integrated instant 112
www.ebuddy.com message software
www.plugoo.com web sites.
www.easyhotel.com Traveling agency web 109
www.hostelz.com sites.

www.couchsurfing.com

www.tripadvisor.com

www.kayak.com

www.easyjet.com/it/prenota | Italian traveling 98
www.ryanair.com/site/IT agency web sites.
www.edreams.it

www.expedia.it

www.volagratis.com/vgl

www.skyscanner.net

www.google.com/codesearch Three code search web | 98
www.koders.com sites and two articles
www.bigbold.com/snippets talking about code
www.gotapi.com search.

Oxcc.net /blog/archives/000

043.html

www.google.co.jp Four Japanese web 36
www.livedoor.com search engines.
www.baidu.jp

www.namaan.net

www.operatorll.com TV, media streaming 34
WWWw.joost.com related web sites.
www.keepvid.com

www.getdemocracy.com

www.masternewmedia.org

www.technorati.com From these web sites, 17
www.listible.com you can get relevant
www.popurls.com resource quickly.
www.trobar.org/prosody All web sites are 9

librarianchick.pbwiki.com
www.quotationspage.com
www.visuwords.com

about literature.

Figure 5: Examples of mining tag-tags and webpage-webpages relationships.

