
Discretized Streams: A Fault-Tolerant Model for

Scalable Stream Processing

Matei Zaharia
Tathagata Das
Haoyuan Li
Timothy Hunter
Scott Shenker
Ion Stoica

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2012-259

http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-259.html

December 14, 2012

Copyright © 2012, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

This research is supported in part by NSF CISE Expeditions award CCF-
1139158, gifts from Amazon Web Services, Google, SAP, Blue Goji, Cisco,
Cloudera, Ericsson, General Electric, Hewlett Packard, Huawei, Intel,
Microsoft, NetApp, Oracle, Quanta, Splunk, VMware, by DARPA (contract
#FA8650-11-C-7136), and by a Google PhD Fellowship.

Discretized Streams: A Fault-Tolerant Model for Scalable Stream Processing

Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott Shenker, Ion Stoica
University of California, Berkeley

Abstract
Many “big data” applications need to act on data arriv-
ing in real time. However, current programming models
for distributed stream processing are relatively low-level,
often leaving the user to worry about consistency of state
across the system and fault recovery. Furthermore, the
models that provide fault recovery do so in an expen-
sive manner, requiring either hot replication or long re-
covery times. We propose a new programming model,
discretized streams (D-Streams), that offers a high-level
functional API, strong consistency, and efficient fault re-
covery. D-Streams support a new recovery mechanism
that improves efficiency over the traditional replication
and upstream backup schemes in streaming databases—
parallel recovery of lost state—and unlike previous sys-
tems, also mitigate stragglers. We implement D-Streams
as an extension to the Spark cluster computing engine
that lets users seamlessly intermix streaming, batch and
interactive queries. Our system can process over 60 mil-
lion records/second at sub-second latency on 100 nodes.

1 Introduction
Much of “big data” is received in real time, and is most
valuable at its time of arrival. For example, a social net-
work may wish to detect trending conversation topics in
minutes; a news site may wish to train a model of which
users visit a new page; and a service operator may wish to
monitor program logs to detect failures within seconds.

To meet the scale of the largest data-intensive applica-
tions, it is necessary to parallelize their processing over
clusters. However, despite substantial work on batch pro-
gramming models for clusters, such as MapReduce and
Dryad [9, 18], that hide the intricacies of distribution and
fault tolerance, there are few equally high-level tools for
distributed stream processing. Most current distributed
streaming systems, including Twitter’s Storm [32], Ya-
hoo’s S4 [25], and streaming databases [3, 6], are based
on a record-at-a-time processing model, where long-
running stateful operators process records as they arrive,
update internal state, and emit new records. This model
raises several challenges in a large-scale cloud setting:
• Faults and stragglers: Record-at-a-time systems

provide fault recovery through either replication,
where there are two copies of each operator, or up-
stream backup, where nodes buffer sent messages
and replay them to a second copy of a failed down-

stream node [16]. Neither approach is attractive in
large clusters: replication needs 2× the hardware
and may not work if two nodes fail, while upstream
backup takes a long time to recover, as the entire sys-
tem must wait for the standby node to rebuild the
failed node’s operator state. Also, as we shall discuss,
neither approach handles stragglers (slow nodes).

• Consistency: In some record-at-a-time systems, it is
difficult to reason about global state, because differ-
ent nodes might be processing data that arrived at
different times. For example, suppose that a system
counts page views from male users on one node and
from females on another. If one of the nodes is back-
logged, the ratio of these counters will be wrong.

• Unification with batch processing: Because the
programming model for streaming systems is event-
driven, it is quite different from that of batch sys-
tems, so users must write two versions of each analyt-
ics task. Further, it is difficult to combine streaming
data with historical data, e.g., join a stream of events
against historical data to make a decision.

While these challenges are significant, we observe that
one set of cluster computing systems has already solved
them: batch systems such as MapReduce and Dryad.
These systems divide each application into a graph of
short, deterministic tasks. This enables efficient recovery
mechanisms, such as partial re-execution of the compu-
tation or speculative execution to handle stragglers [9].
In terms of consistency, these systems trivially provide
“exactly-once” semantics, as they yield the same output
regardless of failures. Finally, these systems are highly
scalable, and routinely run on thousands of nodes.

Based on this observation, we propose a radical design
point for a significantly more scalable streaming system:
run each streaming computation as a series of determin-
istic batch computations on small time intervals. We tar-
get time intervals as low as half a second, and end-to-end
latencies below a second. We believe that this is suffi-
cient for many real-world “big data” applications, where
the timescale of the events tracked (e.g., trends in social
media) is usually higher. We call our model “discretized
streams,” or D-Streams.

Unfortunately, none of the existing batch systems can
achieve sub-second latencies. The execution time of even
the smallest jobs in today’s systems is typically minutes.

1

This is because, to achieve resilience, jobs write their
outputs to replicated, on-disk storage systems, leading to
costly disk I/O and data replication across the network.

Our key insight is that it is possible to achieve sub-
second latencies in a batch system by leveraging Re-
silient Distributed Datasets (RDDs) [36], a recently pro-
posed in-memory storage abstraction that provides fault
tolerance without resorting to replication or disk I/O. In-
stead, each RDD tracks the lineage graph of operations
used to build it, and can replay them to recompute lost
data. RDDs are an ideal fit for discretized streams, allow-
ing the execution of meaningful computations in tasks as
short as 50–200 ms. We show how to implement sev-
eral standard streaming operators using RDDs, including
stateful computation and incremental sliding windows,
and show that they can be run at sub-second latencies.

The D-Stream model also provides significant advan-
tages in terms of fault recovery. While previous systems
relied on costly replication or upstream backup [16], the
batch model of D-Streams naturally enables a more ef-
ficient recovery mechanism: parallel recovery of a lost
node’s state. When a node fails, each node in the cluster
works to recompute part of the lost RDDs, resulting in
far faster recovery than upstream backup without the cost
of replication. Parallel recovery was hard to perform in
record-at-a-time systems due to the complex state main-
tenance protocols needed even for basic replication (e.g.,
Flux [29]),1 but is simple in deterministic batch jobs [9].
In a similar way, D-Streams can recover from stragglers
(slow nodes), an even more common issue in large clus-
ters, using speculative execution [9], while traditional
streaming systems do not handle them.

We have implemented D-Streams in Spark Streaming,
an extension to the Spark cluster computing engine [36].
The system can process over 60 million records/second
on 100 nodes at sub-second latency, and can recover from
faults and stragglers in less than a second. It outperforms
widely used open source streaming systems by up to 5×
in throughput while offering recovery and consistency
guarantees that they lack. Apart from its performance,
we illustrate Spark Streaming’s expressiveness through
ports of two applications: a video distribution monitor-
ing system and an online machine learning algorithm.

More importantly, because D-Streams use the same
processing model and data structures (RDDs) as batch
jobs, Spark Streaming interoperates seamlessly with
Spark’s batch and interactive processing features. This
is a powerful feature in practice, letting users run ad-hoc
queries on arriving streams, or combine streams with his-
torical data, from the same high-level API. We sketch
how we are using this feature in applications to blur the
line between streaming and offline processing.

1The one parallel recovery algorithm we are aware of, by Hwang et
al. [17], only tolerates one node failure and cannot mitigate stragglers.

2 Goals and Background
Many important applications process large streams of
data arriving in real time. Our work targets applications
that need to run on tens to hundreds of machines, and tol-
erate a latency of several seconds. Some examples are:

• Site activity statistics: Facebook built a distributed
aggregation system called Puma that gives advertis-
ers statistics about users clicking their pages within
10–30 seconds and processes 106 events/second [30].

• Spam detection: A social network such as Twitter
may wish to identify new spam campaigns in real
time by running statistical learning algorithms [34].

• Cluster monitoring: Datacenter operators often col-
lect and mine program logs to detect problems, using
systems like Flume [1] on hundreds of nodes [12].

• Network intrusion detection: A NIDS for a large
enterprise may need to correlate millions of events
per second to detect unusual activity.

For these applications, we believe that the 0.5–2 sec-
ond latency of D-Streams is adequate, as it is well be-
low the timescale of the trends monitored, and that the
efficiency benefits of D-Streams (fast recovery without
replication) far outweigh their latency cost. We purposely
do not target applications with latency needs below a few
hundred milliseconds, such as high-frequency trading.

Apart from offering second-scale latency, our goal is
to design a system that is both fault-tolerant (recovers
quickly from faults and stragglers) and efficient (does not
consume significant hardware resources beyond those
needed for basic processing). Fault tolerance is critical
at the scales we target, where failures and stragglers are
endemic [9]. In addition, recovery needs to be fast: due to
the time-sensitivity of streaming applications, we wish to
recover from faults within seconds. Efficiency is also cru-
cial because of the scale. For example, a design requiring
replication of each processing node would be expensive
for an application running on hundreds of nodes.

2.1 Previous Streaming Systems

Although there has been a wide array of work on dis-
tributed stream processing, most previous systems em-
ploy the same record-at-a-time processing model. In this
model, streaming computations are divided into a set of
long-lived stateful operators, and each operator processes
records as they arrive by updating internal state (e.g., a ta-
ble tracking page view counts over a window) and send-
ing new records in response [7]. Figure 1(a) illustrates.

While record-at-a-time processing minimizes latency,
the stateful nature of operators, combined with nondeter-
minism that arises from record interleaving on the net-
work, makes it hard to provide fault tolerance efficiently.
We sketch this problem before presenting our approach.

2

mutable state

synchronization

primaries

replicas

node 1 node 2

node 1’ node 2’

input

(a) Record-at-a-time processing model. Each node continu-
ously receives records, updates internal state, and sends new
records. Fault tolerance is typically achieved through repli-
cation, using a synchronization protocol like Flux or DPC
[29, 3] to ensure that replicas of each node see records in the
same order (e.g., when they have multiple parent nodes).

t = 1:

t = 2:

D-Stream 1 D-Stream 2

immutable
dataset

immutable
dataset

batch operation

…

input

(b) D-Stream processing model. In each time interval, the
records that arrive are stored reliably across the cluster to form
an immutable, partitioned dataset. This is then processed via
deterministic parallel operations to compute other distributed
datasets that represent program output or state to pass to the
next interval. Each series of datasets forms one D-Stream.

Figure 1: Comparison of traditional record-at-a-time stream processing (a) with discretized streams (b).

2.2 The Challenge of Fault and Straggler Tolerance

In a record-at-a-time system, the major recovery chal-
lenge is rebuilding the state of a lost, or slow, node. Previ-
ous systems, such as streaming databases, use one of two
schemes, replication and upstream backup [16], which
offer a sharp tradeoff between cost and recovery time.

In replication, which is common in database systems,
there are two copies of the processing graph, and input
records are sent to both. However, simply replicating the
nodes is not enough; the system also needs to run a syn-
chronization protocol, such as Flux [29] or Borealis’s
DPC [3], to ensure that the two copies of each operator
see messages from upstream parents in the same order.
For example, an operator that outputs the union of two
parent streams (the sequence of all records received on
either one) needs to see the parent streams in the same
order to produce the same output stream. Replication is
thus costly, though it recovers quickly from failures.

In upstream backup, each node retains a copy of the
messages it sent since some checkpoint. When a node
fails, a standby machine takes over its role, and the par-
ents replay messages to this standby to rebuild its state.
This approach thus incurs high recovery times, because a
single node must recompute the lost state, and still needs
synchronization for consistent cross-stream replay. Most
modern message queueing systems, such as Storm [32],
use this approach, and typically only provide “at-least-
once” delivery for the messages and rely on the user’s
code to manage the recovery of state.2

More importantly, neither replication nor upstream
backup handle stragglers. If a node runs slowly in the

2Storm’s Trident layer [23] automatically keeps state in a replicated
database instead, committing updates in batches. While this simplifies
the programming interface, it increases the base processing cost, by
requiring updates to be replicated transactionally across the network.

replication approach, the whole system is affected be-
cause of the synchronization required to have the replicas
receive messages in the same order. The same problem
occurs in upstream backup. The only way to mitigate a
straggler is to treat it as a failure, which is heavy-handed
and expensive for a problem that may be transient.3

Thus, while traditional streaming approaches work well
at smaller scales or with overprovisioned nodes, they face
significant problems in a large-scale datacenter setting
where faults and stragglers are endemic.

3 Discretized Streams (D-Streams)
Our model avoids the problems with traditional stream
processing by making the computation and its state fully
deterministic, regardless of message ordering inside the
system. Instead of relying on long-lived stateful opera-
tors that are dependent on cross-stream message order,
D-Streams execute computations as a series of short,
stateless, deterministic tasks. They then represent state
across tasks as fault-tolerant data structures (RDDs) that
can be recomputed deterministically. This enables effi-
cient recovery techniques like parallel recovery and spec-
ulation. Beyond fault tolerance, this model yields other
important benefits, such as clear consistency semantics,
a simple API, and unification with batch processing.

Specifically, our model treats streaming computations
as a series of deterministic batch computations on dis-
crete time intervals. The data received in each interval
is stored reliably across the cluster to form an input
dataset for that interval. Once the time interval com-
pletes, this dataset is processed via deterministic paral-
lel operations, such as map, reduce and groupBy, to pro-

3More generally, mitigating stragglers in any record-at-a-time sys-
tem through an approach like speculative execution seems challenging;
one would need to launch a speculative copy of the slow node whose
inputs are fully consistent with it, and merge in its outputs downstream.

3

t = 1:

t = 2:

pageViews ones counts

map reduce

. . .

Figure 2: Lineage graph for RDDs in the view count program.
Each oval is an RDD, whose partitions are shown as circles.

duce new datasets representing either program outputs or
intermediate state. We store these results in resilient dis-
tributed datasets (RDDs) [36], a fast storage abstraction
that avoids replication by using lineage for fault recovery,
as we shall explain. Figure 1(b) illustrates our model.

Users define programs by manipulating objects called
discretized streams (D-Streams). A D-Stream is a se-
quence of immutable, partitioned datasets (specifically,
RDDs) that can be acted on through deterministic oper-
ators. These operators produce new D-streams, and may
also produce intermediate state in the form of RDDs.

We illustrate the idea with a Spark Streaming pro-
gram that computes a running count of page view events
by URL. Spark Streaming exposes D-Streams through
a functional API similar to DryadLINQ and FlumeJava
[35, 5] in the Scala programming language, by extending
Spark [36].4 The code for this view count program is:

pageViews = readStream("http://...", "1s")

ones = pageViews.map(event => (event.url, 1))

counts = ones.runningReduce((a, b) => a + b)

This code creates a D-Stream called pageViews by an
event stream over HTTP, and groups these into 1-second
intervals. It then transforms the event stream to get a D-
Stream of (URL, 1) pairs called ones, and performs a
running count of these using a stateful runningReduce
operator. The arguments to map and runningReduce are
Scala syntax for a closure (function literal).

To execute this program, a system will launch map
tasks every second to process the new events dataset for
that second. Then it will launch reduce tasks that take
as input both the results of the maps and the results of
the previous interval’s reduces, stored in an RDD. These
tasks will produce a new RDD with the updated counts.

Finally, to recover from faults and stragglers, both D-
Streams and RDDs track their lineage, that is, the graph
of deterministic operations used to compute them [36].
The system tracks this information at the level of parti-
tions within each dataset, as shown in Figure 2. When a
node fails, we recompute the RDD partitions that were
on it by rerunning the tasks that built them on the data
still in the cluster. The system also periodically check-

4Other interfaces, such as streaming SQL, would also be possible.

points state RDDs (e.g., by replicating every fifth RDD)
to prevent infinite recomputation, but this does not need
to happen for all data, because recovery is often fast: the
lost partitions can be recomputed in parallel on separate
nodes. In a similar way, if a node straggles, we can spec-
ulatively execute copies of its tasks on other nodes [9], as
they will deterministically produce the same result. Thus,
D-Streams can recover quickly from faults and stragglers
without replicating the whole processing topology.

In the rest of this section, we describe the guarantees
and programming interface of D-Streams in more detail.
We return to our implementation in Section 4.

3.1 Timing Considerations

Note that D-Streams place records into input datasets
based on the time when each record arrives at the system.
This is necessary to ensure that the system can always
start a new batch on time, and in applications where the
records are generated in the same location as the stream-
ing program, e.g., by services in the same datacenter, it
poses no problem for semantics.5 In other applications,
however, developers may wish to group records based on
an external timestamp of when an event happened, e.g.,
when a user clicked a link, and records may arrive at the
system out of order due to network delays. D-Streams
provide two means to handle this case:

1. The system can wait for a limited “slack time” before
starting to process each batch, so that records coming
up to this time enter the right batch. This is simple to
implement but adds a fixed latency to all results.

2. User programs can correct for late records at the ap-
plication level. For example, suppose that an appli-
cation wishes to count clicks on an ad between time
t and t + 1. Using D-Streams with an interval size
of one second, the application could provide a count
for the clicks received between t and t +1 as soon as
time t +1 passes. Then, in future intervals, the appli-
cation could collect any further events with external
timestamps between t and t + 1 and compute an up-
dated result. For example, it could output a new count
for time interval [t, t + 1) at time t + 5, based on the
records for this interval received between t and t +5.
This computation can be performed using an efficient
incremental reduce operator that adds the old counts
computed at t +1 to the counts of new records since
then, avoiding wasted work. This approach is similar
to “order-independent processing” [19].

These timing concerns are inherent to stream process-
ing, as any system must tolerate external delays. They
have been studied in detail in streaming databases [19,
31]. Many of these techniques can be implemented over

5Assuming that nodes in the same cluster have their clocks synchro-
nized via NTP, which can easily limit skew to milliseconds [26].

4

D-Streams, as they are not intrinsically tied to record-by-
record processing, but rather concern when to compute
results and whether to update them over time. Therefore,
we do not explore these approaches in detail in this paper.

3.2 D-Stream Operators

To use D-Streams in Spark Streaming, users write a
driver program that defines one or more streams us-
ing our functional API. The program can register one
or more streams to read from outside, either by having
nodes listen on a port or by loading data periodically
from a distributed storage system (e.g., HDFS). It can
then apply two types of operators to these streams:

• Transformation operators, which produce a new D-
Stream from one or more parent streams. These in-
clude stateless transformations, where each output
RDD depends only on parent RDDs in the same time
interval, and stateful ones, which also use older data.

• Output operators, which let the program write data
to external systems. For example, the save operation
can output each RDD in a D-Stream to a database.

D-Streams support the same stateless transformations
available in typical batch frameworks [9, 35], including
map, reduce, groupBy, and join. We reused all of the op-
erators in Spark [36]. For example, a program could run a
canonical MapReduce word count on each time interval
of a D-Stream of sentences using the following code:

words = sentences.flatMap(s => s.split(" "))

pairs = words.map(w => (w, 1))

counts = pairs.reduceByKey((a, b) => a + b)

In addition, D-Streams provide several stateful trans-
formations for computations spanning multiple intervals,
based on standard stream processing techniques such as
sliding windows [7, 2]. These transformations include:

Windowing: The window operator groups all the records
from a sliding window of past time intervals into one
RDD. For example, calling sentences.window("5s") in
the code above yields a D-Stream of RDDs containing
the sentences in intervals [0,5), [1,6), [2,7), etc.

Incremental aggregation: For the common use case of
computing an aggregate, such as a count or max, over
a sliding window, D-Streams have several variants of an
incremental reduceByWindow operator. The simplest one
only takes an associative “merge” operation for combin-
ing values. For instance, in the code above, one can write:

pairs.reduceByWindow("5s", (a, b) => a + b)

This computes a per-interval count for each time inter-
val only once, but has to add the counts for the past five
seconds repeatedly, as shown in Figure 3(a). If the aggre-
gation function is also invertible, a more efficient version
also takes a function for “subtracting” values and main-

words interval
counts

sliding
counts

t-1

t

t+1

t+2

t+3

t+4
+

(a) Associative only

words interval
counts

sliding
counts

t-1

t

t+1

t+2

t+3

t+4 +
+

–

(b) Associative & invertible

Figure 3: reduceByWindow execution for the associative-only
and associative+invertible versions of the operator. Both ver-
sions compute a per-interval count only once, but the second
avoids re-summing each window. Boxes denote RDDs, while
arrows show the operations used to compute window [t, t +5).

tains the state incrementally (Figure 3(b)):

pairs.reduceByWindow("5s", (a,b) => a+b, (a,b) => a-b)

State tracking: Often, an application has to track states
for various objects in response to a stream of events indi-
cating state changes. For example, a program monitoring
online video delivery may wish to track the number of
active sessions, where a session starts when the system
receives a “join” event for a new client and ends when it
receives an “exit” event. It can then ask questions such
as “how many sessions have a bitrate above X .”
D-Streams provide a track operator that transforms
streams of (Key, Event) records into streams of (Key,
State) records based on three arguments:
• An initialize function for creating a State from the

first Event for a new key.
• An update function for returning a new State given

an old State and an Event for its key.
• A timeout for dropping old states.

For example, one could count the active sessions from a
stream of (ClientID, Event) pairs called as follows:

sessions = events.track(

(key, ev) => 1, // initialize function

(key, st, ev) => ev==Exit ? null : 1,// update

"30s") // timeout

counts = sessions.count() // a stream of ints

This code sets each client’s state to 1 if it is active and
drops it by returning null from update when it leaves.

These operators are all implemented using the batch
operators in Spark, by applying them to RDDs from dif-
ferent times in parent streams. For example, Figure 4
shows the RDDs built by track, which works by grouping
the old states and the new events for each interval.

Finally, the user calls output operators to send results
out of Spark Streaming into external systems (e.g., for

5

D-Stream of
(Key, Event) pairs

D-Stream of
(Key, State) pairs

track

groupBy + map

t = 1:

t = 2:

t = 3:
groupBy + map

. . .

Figure 4: RDDs created by the track operator on D-Streams.

display on a dashboard). We offer two such operators:
save, which writes each RDD in a D-Stream to a stor-
age system (e.g., HDFS or HBase), and foreachRDD,
which runs a user code snippet (any Spark code) on each
RDD. For example, a user can print the top K counts with
counts.foreachRDD(rdd => print(rdd.getTop(K))).

3.3 Consistency

Consistency of state across nodes can be a problem in
streaming systems that process each record separately.
For instance, consider a distributed system that counts
page views by country, where each page view event is
sent to a different node responsible for aggregating the
statistics for its country. If the node responsible for Eng-
land falls behind the node for France, e.g., due to load,
then a snapshot of their states would be inconsistent: the
counts for England would reflect an older prefix of the
stream than the counts for France, and would generally
be lower, confusing inferences about the events. Some
systems, such as Borealis [3], synchronize nodes to avoid
this problem, while others, like Storm and S4, ignore it.

With D-Streams, the semantics are clear: each inter-
val’s output reflects all of the input received until then,
even if the output is distributed across nodes, simply be-
cause each record had to pass through the whole deter-
ministic batch job. This makes distributed state far easier
to reason about, and is equivalent to “exactly-once” pro-
cessing of the data even if there are faults or stragglers.

3.4 Unification with Batch & Interactive Processing

Because D-Streams follow the same processing model,
data structures (RDDs), and fault tolerance mechanisms
as batch systems, the two can seamlessly be combined.
Spark Streaming provides several powerful features to
unify streaming and batch processing.

First, D-Streams can be combined with static RDDs
computed using a batch program. For instance, one can
join a stream of incoming messages against a precom-
puted spam filter, or compare them with historical data.

Second, users can run a D-Stream program on previ-
ous historical data using a “batch mode.” This makes it
easy compute a new streaming report on past data.

Third, users run ad-hoc queries on D-Streams interac-
tively by attaching a Scala console to their Spark Stream-
ing program. Spark provides a modified Scala interpreter

Aspect D-Streams Record-at-a-time systems

Latency 0.5–2 s
1–100 ms unless records
are batched for consistency

Consis-
tency

Records processed
atomically with in-
terval they arrive in

Some DB systems wait a
short time to sync opera-
tors before proceeding [3]

Late
records

Slack time or app-
level correction

Slack time, out of order
processing [19, 31]

Fault
recovery

Fast parallel recov-
ery

Replication or serial recov-
ery on one node

Straggler
recovery

Possible via specu-
lative execution

Typically not considered

Mixing
w/ batch

Simple unification
through RDD APIs

In some DBs [10]; not in
message queueing systems

Table 1: Comparing D-Streams with record-at-a-time systems.

that can run ad-hoc queries on RDDs, often with sub-
second response times [36]. By attaching this interpreter
to a streaming program, users can interactively query a
snapshot of a stream. For example, the user could query
the most popular words in a time range by typing:

counts.slice("21:00", "21:05").topK(10)

Discussions with developers who have written both of-
fline (Hadoop-based) and online processing applications
show that these features have significant practical value.
Simply having the data types and functions used for these
programs in the same codebase saves substantial devel-
opment time, as streaming and batch systems currently
have separate APIs. The ability to also query state in the
streaming system interactively is even more attractive: it
makes it simple to debug a running computation, or to
ask queries that were not anticipated when defining the
aggregations in the streaming job, e.g., to troubleshoot an
issue with a website. Without this ability, users typically
need to wait tens of minutes for the data to make its way
into a batch cluster, even though all the relevant state is
in memory on stream processing machines.

3.5 Summary

To end our overview of D-Streams, we compare them
with record-at-a-time systems in Table 1. The main dif-
ference is that D-Streams divide work into small, fully
deterministic tasks operating on batches. This raises their
minimum latency, but lets them employ far more effi-
cient deterministic recovery techniques. In fact, some
record-at-a-time systems also delay records, either to
synchronize operators for consistency or to await late
data [3, 31, 19], which raises their latency past the mil-
lisecond scale and into the second scale of D-Streams.

4 System Architecture
We have implemented D-Streams in a system called
Spark Streaming, which is built over a modified version

6

Master

D-Stream
lineage graph

Task scheduler

Block tracker

W
or

ke
r

 Task execution
Block manager

Input receiver

W
or

ke
r

 Task execution
Block manager

Input receiver replication of
input & check-
pointed RDDs

Client

Client

Figure 5: Components of Spark Streaming.

of the Spark processing engine [36]. Spark Streaming
consists of three components, shown in Figure 5:
• A master that tracks the D-Stream lineage graph and

schedules tasks to compute new RDD partitions.
• Worker nodes that receive data, store the partitions of

input and computed RDDs, and execute tasks.
• A client library used to send data into the system.

A major difference between Spark Streaming and tra-
ditional streaming systems is that Spark Streaming di-
vides its computations into short, stateless tasks, each of
which may run on any node in the cluster, or even on
multiple nodes. Unlike the rigid topologies in traditional
message passing systems, where moving part of the com-
putation to another machine is a major operation, this ap-
proach makes it straightforward to balance load across
the cluster, react to failures, or launch speculative copies
of slow tasks. It matches the approach used in batch sys-
tems, such as MapReduce, for the same reasons. How-
ever, tasks in Spark Streaming are far shorter, usually just
50–200 ms, due to running on in-memory RDDs.

In addition, state in Spark Streaming is stored in fault-
tolerant data structures (RDDs), instead of being part of
a long-running operator process as in previous systems.
RDD partitions can reside on any node, and can even be
computed on multiple nodes, because they are computed
deterministically. The system tries to place both state and
tasks to maximize data locality, but this underlying flex-
ibility makes speculation and parallel recovery possible.

These benefits come naturally from running on top of
a batch platform (Spark), but we also had to invest sig-
nificant engineering to make the system work at smaller
latencies. We discuss job execution in more detail before
presenting these optimizations.

4.1 Application Execution

Spark Streaming applications start by defining one or
more input streams. The system can load streams either
by receiving records directly from clients, or by loading
data periodically from an external storage system, such
as HDFS, where it might be placed by a log collection
system such as Flume [1]. In the former case, we ensure
that new data is replicated across two worker nodes be-

fore sending an acknowledgement to the client library,
because D-Streams require input data to be stored reli-
ably to recompute results. If a worker fails, the client li-
brary sends unacknowledged data to another worker.

All data is managed by a block store on each worker,
with a tracker on the master to let nodes find the locations
of other blocks. Because both our input blocks and the
RDD partitions we compute from them are immutable,
keeping track of the block store is straightforward—each
block is simply given a unique ID, and any node that has
that ID can serve it (e.g., if multiple nodes computed it).
The block store keeps new blocks in memory but drops
them out to disk in an LRU fashion if it runs out of space.

To decide when to start processing a new interval, we
assume that the nodes have their clocks synchronized via
NTP, and have each node send the master a list of block
IDs it received in each interval when it ends. The master
then starts launching tasks to compute the output RDDs
for the interval, without requiring any further kind of syn-
chronization. Like other batch schedulers [18], it simply
starts each task whenever its parents are finished.

Spark Streaming relies on Spark’s existing batch
scheduler within each timestep [36], and performs many
of the optimizations in systems like DryadLINQ [35]:
• It pipelines operators that can be grouped into a sin-

gle task, such as a map followed by another map.
• It places tasks based on data locality.
• It controls the partitioning of RDDs to avoid shuf-

fling data across the network. For example, in a re-
duceByKey operation, each interval’s tasks need to
“add” the new partial results from the current inter-
val (e.g., a click count for each page) and “subtract”
the results from several intervals ago. The sched-
uler partitions the state RDDs for different intervals
in the same way, so that data for each key (e.g., a
page) is consistently on the same node and can be
read without network I/O. More details on Spark’s
partitioning-aware scheduling are available in [36].

Finally, in our current implementation, the master is
not fault-tolerant, although the system can recover from
any worker failure. We believe that it would be straight-
forward to store the graph of D-Streams in the job reli-
ably and have a backup take over if the master fails, but
we have not yet implemented this, choosing instead to
focus on recovery of the streaming computation.

4.2 Optimizations for Stream Processing

We had to make several optimizations to the Spark en-
gine to process streaming data at the high speed:

Block placement: We found that replicating each in-
put block to a random node led to hotspots that limited
throughput; instead, we pick replicas based on load.

Network communication: We rewrote Spark’s data

7

 0

 0.5

 1

 1.5

 2

 2.5

 0 0.2 0.4 0.6 0.8 1

R
e
c
o
v
e
ry

 t
im

e
(m

in
)

System Load (Before Failure)

Upstream Backup
Parallel Recovery N = 5

Parallel Recovery N = 10
Parallel Recovery N = 20

Figure 6: Recovery time for single-node upstream backup vs.
parallel recovery on N nodes, as a function of the load before a
failure. We assume the time since the last checkpoint is 1 min.

plane to use asynchronous I/O to let tasks with remote
inputs, such as reduce tasks, fetch them faster.

Timestep pipelining: Because the tasks inside each
timestep may not perfectly utilize the cluster (e.g., at
the end of the timestep, there might only be a few tasks
left running), we allow submitting tasks from the next
timestep before the current one has finished. We modi-
fied Spark’s scheduler to allow concurrent submission of
jobs that depend on RDDs in a currently running job.

Lineage cutoff: Because lineage graphs between RDDs
in D-Streams can grow indefinitely, we modified the
scheduler to forget lineage after an RDD has been check-
pointed, so that its state does not grow arbitrarily.

5 Fault and Straggler Recovery
The fully deterministic nature of D-Streams makes it
possible to use two powerful recovery techniques that are
difficult to apply in traditional streaming system: parallel
recovery of lost state, and speculative execution.

5.1 Parallel Recovery

When a node fails, D-Streams allow the state RDD parti-
tions that were on the node, as well as the tasks that it was
currently running, to be recomputed in parallel on other
nodes. The system periodically checkpoints some of the
state RDDs, by asynchronously replicating them to other
worker nodes. For example, in a program computing a
running count of page views, the system could choose to
checkpoint the counts every minute. Then, when a node
fails, the system detects all missing RDD partitions and
launches tasks to recompute them from the latest check-
point. Many tasks can be launched at the same time to
compute different RDD partitions, allowing the whole
cluster to partake in recovery. Thus, parallel recovery fin-
ishes quickly without requiring full system replication.

Parallel recovery was hard to perform in previous sys-
tems because record-at-a-time processing requires com-
plex and costly bookkeeping protocols (e.g., Flux [29])
even for basic replication. It becomes simple with deter-
ministic batch models such as MapReduce [9].

To show the benefit of parallel recovery, Figure 6 com-

pares it with single-node upstream backup using a simple
analytical model. The model assumes that the system is
recovering from a minute-old checkpoint.

In the upstream backup line, a single idle machine per-
forms all of the recovery and then starts processing new
records. It takes a long time to catch up at high loads
because new records for it continue to arrive while it is
rebuilding old state. Indeed, suppose that the load before
failure was λ . Then during each minute of recovery, the
backup node can do 1 minute of work, but receives λ

minutes of new work. Thus, it fully recovers from the λ

units of work that the failed node did since the last check-
point at a time tup such that tup ·1 = λ + tup ·λ , which is

tup =
λ

1−λ
.

In the other lines, all of the machines partake in recov-
ery, while also processing new records. Supposing there
where N machines in the cluster before the failure, the re-
maining N −1 machines now each have to recover λ/N
work, but also receive new data at a rate of N

N−1 λ . The
time tpar at which they catch up with the arriving stream
satisfies tpar ·1 = λ

N + tpar · N
N−1 λ , which gives

tpar =
λ/N

1− N
N−1 λ

≈ λ

N(1−λ)
.

Thus, with more nodes, parallel recovery catches up with
the arriving stream much faster than upstream backup.

5.2 Straggler Mitigation

Besides failures, another key concern in large clusters is
stragglers [9]. Fortunately, D-Streams also let us mitigate
stragglers like batch systems do, by running speculative
backup copies of slow tasks. Such speculation would
again be difficult in a record-at-a-time system, because it
would require launching a new copy of a node, populat-
ing its state, and overtaking the slow copy. Indeed, repli-
cation algorithms for stream processing, such as Flux and
DPC [29, 3], focus on synchronizing two replicas.

In our implementation, we use a simple threshold to
detect stragglers: whenever a task runs more than 1.4×
longer than the median task in its job stage, we mark it as
slow. More refined algorithms could also be used, but we
show that this method still works well enough to recover
from stragglers within a second.

6 Evaluation
We evaluated Spark Streaming using both several bench-
mark applications and by porting two real applications to
use D-Streams: a video distribution monitoring system at
Conviva, Inc. and a machine learning algorithm for esti-
mating traffic conditions from automobile GPS data [15].
These latter applications also leverage D-Streams’ unifi-
cation with batch processing, as we shall discuss.

8

0
1
2
3
4
5
6
7

0 50 100

TopKCount

1 sec 2 sec

0
1
2
3
4
5
6
7

0 50 100
Nodes in Cluster

WordCount

1 sec 2 sec

0
1
2
3
4
5
6
7

0 50 100

C
lu

st
er

 T
hh

ro
ug

hp
ut

(G

B
/s

)

Grep

1 sec
2 sec

Figure 7: Maximum throughput attainable under a given la-
tency bound (1 s or 2 s) by Spark Streaming.

6.1 Performance

We tested the performance of the system using three ap-
plications of increasing complexity: Grep, which finds
the number of input strings matching a pattern; Word-
Count, which performs a sliding window count over 30s;
and TopKCount, which finds the k most frequent words
over the past 30s. The latter two applications used the in-
cremental reduceByWindow operator. We first report the
raw scaling performance of Spark Streaming, and then
compare it against two widely used streaming systems,
S4 from Yahoo! and Storm from Twitter [25, 32]. We
ran these applications on “m1.xlarge” nodes on Amazon
EC2, each with 4 cores and 15 GB RAM.

Figure 7 reports the maximum throughput that Spark
Streaming can sustain while keeping the end-to-end la-
tency below a given target. By “end-to-end latency,” we
mean the time from when records are sent to the system
to when results incorporating them appear. Thus, the la-
tency includes the time to wait for a new input batch to
start. For a 1 second latency target, we use 500 ms input
intervals, while for a 2 s target, we use 1 s intervals. In
both cases, we used 100-byte input records.

We see that Spark Streaming scales up nearly lin-
early to 100 nodes, and can process up to 6 GB/s (64M
records/s) at sub-second latency on 100 nodes for Grep,
or 2.3 GB/s (25M records/s) for the other, more CPU-
intensive applications.6 Allowing a larger latency im-
proves throughput slightly, but even the performance at
sub-second latency is high.

Comparison with S4 and Storm We compared Spark
Streaming against two widely used open source stream-
ing systems, S4 and Storm. Both are record-at-a-time
systems that do not offer consistency across nodes
and have limited fault tolerance guarantees (S4 has
none, while Storm guarantees at-least-once delivery of
records). We implemented our three applications in both
systems, but found that S4 was limited in the number
of records/second it could process per node (at most

6Grep was network-bound due to the cost to replicate the input data
to multiple nodes—we could not get the EC2 network to send more
than 68 MB/s in and out of each node. WordCount and TopK were more
CPU-heavy, as they do more string processing (hashes & comparisons).

0

10

20

30

100 1000
Record Size (bytes)

TopKCount

Spark Storm

0

10

20

30

100 1000
Record Size (bytes)

WordCount

Spark Storm

0

20

40

60

80

100 1000

Th
ro

ug
hp

ut
 (M

B
/s

/n
od

e)

Record Size (bytes)

Grep

Spark Storm

Figure 8: Storm and Spark Streaming throughput on 30 nodes.

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

Befo
re

fai
lur

e

On f
ail

ure

Nex
t 3

s

Sec
on

d 3
s

Thir
d 3

s

Fou
rth

 3s

Fifth
 3s

Sixt
h 3

s

Grep, 2 failures

Grep, 1 failure

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

Befo
re

fai
lur

e

On f
ail

ure

Nex
t 3

s

Sec
on

d 3
s

Thir
d 3

s

Fou
rth

 3s

Fifth
 3s

Sixt
h 3

s

Pr
oc

es
si

ng
 T

im
e

(s
)

WC, 2 failures

WC, 1 failure

Figure 9: Interval processing times for WordCount (WC) and
Grep under failures. We show the average time to process each
1s batch of data before a failure, during the interval of the fail-
ure, and during 3-second periods after. Results are over 5 runs.

7500 records/s for Grep and 1000 for WordCount), which
made it almost 10× slower than Spark and Storm. Be-
cause Storm was faster, we also tested it on a 30-node
cluster, using both 100-byte and 1000-byte records.

We compare Storm with Spark Streaming in Figure 8,
reporting the throughput Spark attains at sub-second la-
tency. We see that Storm is still adversely affected by
smaller record sizes, capping out at 115K records/s/n-
ode for Grep for 100-byte records, compared to 670K
for Spark. This is despite taking several precautions in
our Storm implementation to improve performance, in-
cluding sending “batched” updates from Grep every 100
input records and having the “reduce” nodes in Word-
Count and TopK only send out new counts every second,
instead of every time a count changes. Storm does better
with 1000-byte records, but is still 2× slower than Spark.

6.2 Fault and Straggler Recovery

We evaluated fault recovery under various conditions us-
ing the WordCount and Grep applications. We used 1-
second batches with input data residing in HDFS, and
set the data rate to 20 MB/s/node for WordCount and
80 MB/s/node for Grep, which led to a roughly equal
per-interval processing time of 0.58s for WordCount and
0.54s for Grep. Because the WordCount job performs an
incremental reduceByKey, its lineage graph grows indefi-
nitely (since each interval subtracts data from 30 seconds
in the past), so we gave it a checkpoint interval of 10 sec-
onds. We ran the tests on 20 four-core nodes, using 150
map tasks and 10 reduce tasks per job.

9

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Before
failure

On
failure

Next 3s Second
3s

Third
3s

Fourth
3s

Fifth 3s Sixth
3s

Pr
oc

es
si

ng
 T

im
e

(s
) 30s checkpoints

10s checkpoints
2s checkpoints

Figure 10: Effect of checkpoint interval on WordCount.

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Before
failure

On
failure

Next 3s Second
3s

Third
3s

Fourth
3s

Fifth 3s Sixth
3s

Pr
oc

es
si

ng
 T

im
e

(s
) 30s ckpts, 20 nodes

30s ckpts, 40 nodes
10s ckpts, 20 nodes
10s ckpts, 40 nodes

Figure 11: Recovery of WordCount on 20 and 40 nodes.

We first report recovery times under these these base
conditions, in Figure 9. The plot shows the average pro-
cessing time of 1-second data intervals before the failure,
during the interval of failure, and during 3-second peri-
ods thereafter, for either 1 or 2 concurrent failures. (The
processing for these later periods is delayed while recov-
ering data for the interval of failure, so we show how the
system restabilizes.) We see that recovery is fast, with de-
lays of at most 1 second even for two failures and a 10s
checkpoint interval. WordCount’s recovery takes longer
because it has to recompute data going far back, whereas
Grep just loses the four tasks that were on each failed
node. Indeed, with one failure, Grep is almost unaffected.

Varying the Checkpoint Interval We also varied the
checkpoint interval for WordCount to see its impact on
recovery. Figure 10 shows the results. Even at a large
checkpoint interval of 30s, results are delayed at most 3.5
seconds past the baseline processing time, and the sys-
tem fully restabilizes within 18s. With 2s checkpoints,
the system recovers in just 0.15s. Of course, more fre-
quent checkpointing comes at a cost, but note that even
checkpointing the state of reduce tasks every 2 seconds,
as we did, is far less expensive than full replication.

Varying the Number of Nodes To see the effect of
parallelism, we also tried the WordCount application on
40 nodes. Figure 11 shows the results for both 10s and
30s checkpoints. As expected, having twice the nodes
roughly cuts the recovery time in half.

Straggler Mitigation Finally, we tried slowing down
one of the nodes instead of killing it, by launching a 60-
thread process that overloaded the CPU. Figure 12 shows
the per-interval processing times without the straggler,
with the straggler but with speculative execution (backup
tasks) disabled, and with the straggler and speculative ex-
ecution enabled. Speculation improves the response time

0.55 0.54

3.02 2.40

1.00
0.64

0.0

1.0

2.0

3.0

4.0

WordCount Grep

Pr
oc

es
si

ng
 T

im
e

(s
)

No straggler

Straggler, no
speculation

Straggler, with
speculation

Figure 12: Processing time of intervals in Grep and WordCount
in normal operation, as well as in the presence of a straggler,
with and without speculation enabled.

significantly. Note that our current implementation does
not attempt to remember straggler nodes across time, so
these improvements occur despite repeatedly launching
new tasks on the slow node. This shows that even unex-
pected stragglers can be handled quickly. A full imple-
mentation would eventually blacklist the slow node.

6.3 Real Applications

We evaluated the expressiveness of D-Streams by port-
ing two real applications to them. Both applications are
significantly more complex than the test programs shown
so far, and both took advantage of D-Streams to perform
batch or interactive processing in addition to streaming.

6.3.1 Video Distribution Monitoring

Conviva, Inc. provides a management platform for high-
quality video distribution over the Internet. One feature
of this platform is the ability to track the performance
across different geographic regions, CDNs, client de-
vices, and ISPs, which allows the broadcasters to quickly
idenify and respond to delivery problems. The system re-
ceives events from video players and uses them to com-
pute more than fifty metrics, including complex metrics
such as unique viewers and session-level metrics such as
buffering ratio, over different grouping categories.

The current application is implemented in two sys-
tems: a custom-built distributed streaming system for live
data, and a Hadoop/Hive implementation for historical
data and ad-hoc queries. Having both live and histori-
cal data is crucial because customers often want to go
back in time to debug an issue, but implementing the ap-
plication on these two separate systems creates signif-
icant challenges. First, the two implementations have to
be kept in sync to ensure that they compute metrics in the
same way. Second, there is a lag of several minutes min-
utes before data makes it through a sequence of Hadoop
import jobs into a form ready for ad-hoc queries.

We ported the application to D-Streams by wrapping
the map and reduce implementations in the Hadoop ver-
sion. Using a 500-line Spark Streaming program and an
additional 700-line wrapper that executed Hadoop jobs
within Spark, we were able to compute all the metrics (a
2-stage MapReduce job) in batches as small as 2 seconds.
Our implementation uses the track operator described in
Section 3.2 to build a session state object for each client

10

0

1

2

3

4

0 32 64

A
ct

iv
e

se
ss

io
ns

(m

ill
io

ns
)

Nodes in Cluster

(a) Scalability

0
50

100
150
200
250

Query 1 Query 2 Query 3 R
es

po
ns

e
tim

e
(m

s)

(b) Ad-hoc queries

Figure 13: Results for the Conviva application. (a) shows the
number of client sessions supported vs. cluster size. (b) shows
the performance of three ad-hoc queries from the Spark shell,
which count (1) all active sessions, (2) sessions for a specific
customer, and (3) sessions that have experienced a failure.

ID and update it as events arrive, followed by a sliding
reduceByKey to aggregate the metrics over sessions.

We measured the scaling performance of the applica-
tion and found that on 64 quad-core EC2 nodes, it could
process enough events to support 3.8 million concur-
rent viewers, which exceeds the peak load experienced
at Conviva so far. Figure 13(a) shows the scaling.

In addition, we took advantage of D-Streams to add
a new feature not present in the original application: ad-
hoc queries on the live stream state. As shown in Fig-
ure 13(b), Spark Streaming can run ad-hoc queries from
a Scala shell in less than a second on the in-memory
RDDs representing session state. Our cluster could eas-
ily keep ten minutes of data in memory, closing the gap
between historical and live processing, and allowing a
single codebase to do both.

6.3.2 Crowdsourced Traffic Estimation

We applied the D-Streams to the Mobile Millennium traf-
fic information system [14], a machine learning based
project to estimate automobile traffic conditions in cities.
While measuring traffic for highways is straightforward
due to dedicated sensors, arterial roads (the roads in
a city) lack such infrastructure. Mobile Millennium at-
tacks this problem by using crowdsourced GPS data from
fleets of GPS-equipped cars (e.g., taxi cabs) and cell-
phones running a mobile application.

Traffic estimation from GPS data is challenging, be-
cause the data is noisy (due to GPS inaccuracy near
tall buildings) and sparse (the system only receives one
measurement from each car per minute). Mobile Millen-
nium uses a highly compute-intensive expectation max-
imization (EM) algorithm to infer the conditions, using
Markov Chain Monte Carlo and a traffic model to esti-
mate a travel time distribution for each road link. The
previous implementation [15] was an iterative batch job
in Spark that ran over 30-minute windows of data.

We ported this application to Spark Streaming using
an online version of the EM algorithm that merges in new
data every 5 seconds. The implementation was 260 lines

0

500

1000

1500

2000

0 25 50 75 100 G
PS

 o
bs

er
va

tio
ns

pe

r s
ec

on
d

Nodes in Cluster

Figure 14: Scalability of the Mobile Millennium application.

of Spark Streaming code, and wrapped the existing map
and reduce functions in the offline program. In addition,
we found that only using the real-time data could cause
overfitting, because the data received in five seconds is so
sparse. We took advantage of D-Streams to also combine
this data with historical data from the same time during
the past ten days to resolve this problem.

Figure 14 shows the performance of the algorithm on
up to 80 quad-core EC2 nodes. The algorithm scales
nearly perfectly because it is CPU-bound, and provides
answers more than 10× faster than the batch version.7

7 Discussion
We have presented discretized streams (D-Streams), a
new approach for building fault-tolerant streaming appli-
cations that run at large scales. By rendering the compu-
tation fully deterministic and storing its state in lineage-
based data structures (RDDs), D-Streams can use pow-
erful recovery mechanisms, similar to those in batch sys-
tems but acting at a much smaller timescale, to handle
faults and stragglers. Although our approach has an in-
herent minimum latency due to batching data, we have
shown that this can be made as low as several seconds,
which is enough for many real-world use cases.

Beyond their performance benefits, we believe that the
most important aspect of D-Streams is that they show
that streaming, batch and interactive computations can
be unified in the same platform. As “big” data becomes
the only size of data at which certain applications can
operate (e.g., spam detection on large websites), organi-
zations will need the tools to write both lower-latency ap-
plications and more interactive ones that use this data, not
just the periodic batch jobs used so far. D-Streams inte-
grate these modes of computation at a deep level, in that
they follow not only a similar API but also the same data
structures and fault tolerance model as batch jobs. This
enables rich features such as combining streams with his-
torical data or running ad-hoc queries on stream state.

While we have presented a basic implementation of
D-Streams, we believe that the approach presents several
opportunities to revisit questions in stream processing, as
well as new questions in integrating with batch and inter-

7Note that the raw rate of records/second for this algorithm is lower
than in our other programs because it performs far more work for each
record, drawing 300 Markov Chain Monte Carlo samples per record.

11

active queries. Some areas for future research include:

Query optimization: In D-Streams, as in batch systems,
there are several query parameters to tune, such as the
level of parallelism in each stage, but there is also a
unique opportunity to try different values of these set-
tings actively, because the same query is running every
few seconds. It would also be useful to optimize the in-
terval size dynamically based on load, lowering latencies
at low loads, and to automatically tune checkpointing.

Multitenancy: Any multi-user deployment will need to
run multiple streaming queries, which could potentially
share computation and state. In addition, it is important
to allot resources carefully to ad-hoc queries on streams
so that they do not slow the streaming computation itself.

Approximate results: In addition to recomputing lost
work, another way to handle a failure is to return par-
tial results. While not always possible, this is attractive
in monitoring applications that need to display aggregate
statistics quickly, like dashboards. D-Streams provide the
opportunity to compute partial results by simply launch-
ing a task before its parents are all done, and offer lineage
data to know which parents were missing. We are proto-
typing some approximate operators using this approach.

8 Related Work
Streaming Databases The seminal academic work on
streaming was in databases such as Aurora, Telegraph,
Borealis, and STREAM [7, 6, 3, 2]. These systems pio-
neered concepts such as windows and incremental oper-
ators. However, distributed streaming databases, such as
Borealis, used either replication or upstream backup for
recovery [16]. We make two contributions in this area.

First, D-Streams provide a more efficient recovery
mechanism, parallel recovery, that recovers faster than
upstream backup without the cost of replication. Paral-
lel recovery is feasible due to the fully deterministic na-
ture of D-Streams’ computations and state. In contrast,
streaming DBs update mutable state for each new record,
and thus require complex protocols for both replication
(e.g., Borealis’s DPC [3] or Flux [29]) and upstream
backup [16]. The only parallel recovery protocol we are
aware of, by Hwang et al [17], only tolerates one node
failure, and cannot handle stragglers.

Second, D-Streams also tolerate stragglers (slow ma-
chines), by running backup copies of slow tasks much
like batch systems [9]. Straggler mitigation is hard in
record-at-a-time systems because each node has mutable
state that cannot easily be recomputed on another node.

Bulk Incremental Processing CBP [21] and
Comet [13] provide “bulk incremental processing”
on traditional MapReduce platforms by running MapRe-
duce jobs on new data every few minutes. While these
systems benefit from the scalability and fault tolerance

of MapReduce within each timestep, they store all state
in a replicated, on-disk filesystem across timesteps,
incurring high overheads and latencies of tens of sec-
onds to minutes. In contrast, D-Streams can keep state
unreplicated in memory using RDDs and can recover
it across timesteps using lineage, yielding order-of-
magnitude lower latencies. Incoop [4] modifies Hadoop
MapReduce and HDFS to better support incremental
recomputation when an input file changes, but still relies
on replicated on-disk storage between timesteps.

Message Queueing Systems Systems like Storm, S4,
and Flume [32, 25, 1] offer a message passing model
where users write stateful code to process records, but
they generally provide limited fault tolerance guarantees.
For example, Storm ensures “at-least-once” delivery of
messages using upstream backup at the source, but re-
quires the user to manually handle the recovery of state,
e.g., by keeping all state in a replicated database [33].

The recently announced Trident project [23] provides
a functional API, similar to our D-Stream API, on top of
Storm, and automatically manages state. However, Tri-
dent still needs to store all state in a replicated database
to provide fault tolerance, which is expensive, and it does
not handle stragglers. It also lacks the integration with
batch and interactive queries possible in D-Streams.

Large-scale Streaming Several recent research sys-
tems have studied online processing in clusters. MapRe-
duce Online [8] is a streaming Hadoop runtime that
pushes records from mappers to reducers and uses an
upstream backup technique for reliability. However, it
offers limited fault tolerance properties: in particular, it
cannot recover reduce tasks with long-lived state (the
user must manually checkpoint such state into an exter-
nal system), and it does not mitigate stragglers. iMR [22]
is an in-situ MapReduce engine for log processing, but
can lose data on failure. Naiad [24] is an engine that
runs data flow computations incrementally, but does not
include a discussion of fault tolerance. Stormy [20] fo-
cuses on running multiple small streaming queries, each
of which fits on one node, and uses replication for recov-
ery. Percolator [28] performs incremental computations
using triggers, but does not offer consistency guarantees
across nodes or high-level operators like map and join.

Parallel Recovery Our parallel recovery mechanism is
conceptually similar to techniques in MapReduce, GFS,
and RAMCloud [9, 11, 27], which all leverage partition-
ing of recovery work on failure. Our contribution is to
show how to structure a streaming computation to allow
the use of this mechanism, and to show that parallel re-
covery can be implemented at a small enough timescale
for stream processing. Note also that unlike GFS and
RAMCloud, D-Streams can recompute lost state instead
of having to replicate all state, saving space and I/O.

12

9 Conclusion
We have proposed D-Streams, a stream processing model
for large clusters that provides strong consistency, effi-
cient fault recovery, and rich integration with batch pro-
cessing. D-Streams go against conventional streaming
wisdom by batching data in small time intervals and
passing it through deterministic parallel operations. This
enables highly efficient recovery mechanisms to han-
dle faults and stragglers at scale. Our implementation
of D-Streams lets users seamlessly intermix streaming,
batch and interactive queries, and can process up to 60M
records/second on 100 nodes at sub-second latency.

10 Acknowledgements
This research is supported in part by NSF CISE Expedi-
tions award CCF-1139158, gifts from Amazon Web Ser-
vices, Google, SAP, Blue Goji, Cisco, Cloudera, Eric-
sson, General Electric, Hewlett Packard, Huawei, Intel,
Microsoft, NetApp, Oracle, Quanta, Splunk, VMware,
by DARPA (contract #FA8650-11-C-7136), and by a
Google PhD Fellowship.

References
[1] Apache Flume. http://incubator.apache.org/flume/.
[2] A. Arasu, B. Babcock, S. Babu, M. Datar, K. Ito,

I. Nishizawa, J. Rosenstein, and J. Widom. STREAM:
The Stanford stream data management system. SIGMOD
2003.

[3] M. Balazinska, H. Balakrishnan, S. R. Madden, and
M. Stonebraker. Fault-tolerance in the Borealis
distributed stream processing system. ACM Trans.
Database Syst., 2008.

[4] P. Bhatotia, A. Wieder, R. Rodrigues, U. A. Acar, and
R. Pasquin. Incoop: MapReduce for incremental
computations. In SOCC ’11, 2011.

[5] C. Chambers, A. Raniwala, F. Perry, S. Adams, R. R.
Henry, R. Bradshaw, and N. Weizenbaum. FlumeJava:
easy, efficient data-parallel pipelines. In PLDI 2010.

[6] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J.
Franklin, J. M. Hellerstein, W. Hong, S. Krishnamurthy,
S. Madden, V. Raman, F. Reiss, and M. Shah.
TelegraphCQ: Continuous dataflow processing for an
uncertain world. In CIDR, 2003.

[7] M. Cherniack, H. Balakrishnan, M. Balazinska,
D. Carney, U. Cetintemel, Y. Xing, and S. B. Zdonik.
Scalable distributed stream processing. In CIDR, 2003.

[8] T. Condie, N. Conway, P. Alvaro, and J. M. Hellerstein.
MapReduce online. NSDI, 2010.

[9] J. Dean and S. Ghemawat. MapReduce: Simplified data
processing on large clusters. In OSDI, 2004.

[10] M. Franklin, S. Krishnamurthy, N. Conway, A. Li,
A. Russakovsky, and N. Thombre. Continuous analytics:
Rethinking query processing in a network-effect world.
CIDR, 2009.

[11] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google
File System. In Proceedings of SOSP ’03, 2003.

[12] J. Hammerbacher. Who is using flume in production?

http://www.quora.com/Flume/Who-is-using-Flume-in-
production/answer/Jeff-Hammerbacher.

[13] B. He, M. Yang, Z. Guo, R. Chen, B. Su, W. Lin, and
L. Zhou. Comet: batched stream processing for data
intensive distributed computing. In SoCC ’10.

[14] Mobile Millennium Project.
http://traffic.berkeley.edu.

[15] T. Hunter, T. Moldovan, M. Zaharia, S. Merzgui, J. Ma,
M. J. Franklin, P. Abbeel, and A. M. Bayen. Scaling the
Mobile Millennium system in the cloud. In SOCC ’11,
2011.

[16] J.-H. Hwang, M. Balazinska, A. Rasin, U. Cetintemel,
M. Stonebraker, and S. Zdonik. High-availability
algorithms for distributed stream processing. In ICDE,
2005.

[17] J. hyon Hwang, Y. Xing, and S. Zdonik. A cooperative,
self-configuring high-availability solution for stream
processing. In ICDE, 2007.

[18] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly.
Dryad: distributed data-parallel programs from
sequential building blocks. In EuroSys 07, 2007.

[19] S. Krishnamurthy, M. Franklin, J. Davis, D. Farina,
P. Golovko, A. Li, and N. Thombre. Continuous
analytics over discontinuous streams. In SIGMOD, 2010.

[20] S. Loesing, M. Hentschel, T. Kraska, and D. Kossmann.
Stormy: an elastic and highly available streaming service
in the cloud. In EDBT/ICDT DANAC Workshop, 2012.

[21] D. Logothetis, C. Olston, B. Reed, K. C. Webb, and
K. Yocum. Stateful bulk processing for incremental
analytics. SoCC, 2010.

[22] D. Logothetis, C. Trezzo, K. C. Webb, and K. Yocum.
In-situ MapReduce for log processing. In USENIX ATC,
2011.

[23] N. Marz. Trident: a high-level abstraction for realtime
computation.
http://engineering.twitter.com/2012/08/trident-high-
level-abstraction-for.html.

[24] F. McSherry, D. G. Murray, R. Isaacs, and M. Isard.
Differential dataflow. In Conference on Innovative Data
Systems Research (CIDR), 2013.

[25] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari. S4:
Distributed stream computing platform. In Intl.
Workshop on Knowledge Discovery Using Cloud and
Distributed Computing Platforms (KDCloud), 2010.

[26] NTP FAQ. http://www.ntp.org/ntpfaq/NTP-s-
algo.htm#Q-ACCURATE-CLOCK.

[27] D. Ongaro, S. M. Rumble, R. Stutsman, J. K.
Ousterhout, and M. Rosenblum. Fast crash recovery in
RAMCloud. In SOSP, 2011.

[28] D. Peng and F. Dabek. Large-scale incremental
processing using distributed transactions and
notifications. In OSDI 2010.

[29] M. Shah, J. Hellerstein, and E. Brewer. Highly available,
fault-tolerant, parallel dataflows. SIGMOD, 2004.

[30] Z. Shao. Real-time analytics at facebook. XLDB 2011,
http://www-conf.slac.stanford.edu/xldb2011/talks/
xldb2011 tue 0940 facebookrealtimeanalytics.pdf.

[31] U. Srivastava and J. Widom. Flexible time management
in data stream systems. In PODS, 2004.

13

[32] Storm. https://github.com/nathanmarz/storm/wiki.
[33] Guaranteed message processing (Storm wiki).

https://github.com/nathanmarz/storm/wiki/Guaranteeing-
message-processing.

[34] K. Thomas, C. Grier, J. Ma, V. Paxson, and D. Song.
Design and evaluation of a real-time URL spam filtering
service. In IEEE Symposium on Security and Privacy,
2011.

[35] Y. Yu, M. Isard, D. Fetterly, M. Budiu, Ú. Erlingsson,
P. K. Gunda, and J. Currey. DryadLINQ: A system for
general-purpose distributed data-parallel computing
using a high-level language. In OSDI ’08, 2008.

[36] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,
M. McCauley, M. Franklin, S. Shenker, and I. Stoica.
Resilient distributed datasets: A fault-tolerant abstraction
for in-memory cluster computing. In NSDI, 2012.

14

