
Tachyon: Memory Throughput I/O for Cluster Computing Frameworks

Haoyuan Li1, Ali Ghodsi1, Matei Zaharia1, Eric Baldeschwieler2, Scott Shenker1, Ion Stoica1

1 University of California, Berkeley 2 Hortonworks

Abstract

As ever more big data computations start to be
in-memory, I/O throughput dominates the running
times of many workloads. For distributed storage,
the read throughput can be improved using caching,
however, the write throughput is limited by both disk
and network bandwidth due to data replication for
fault-tolerance. This paper proposes a new file sys-
tem architecture to enable frameworks to both read
and write reliably at memory speed, by avoiding syn-
chronous data replication on writes.

1 Introduction
The past few years have seen tremendous efforts on
both computation and storage layers to make big data
processing faster. Practitioners and researchers have
built a wide array of programming frameworks [10,
18, 11, 8, 17] and storage systems [6, 13, 2] tailored
to different workloads.

A key observation that has been made to speed up
processing is that working sets in most datacenters
are comparatively small, which allows hot data to
be kept in memory [1]. Existing frameworks [18, 5]
store intermediate data in memory within a job, and
storage systems cache input data in memory. While
these systems have greatly sped up jobs, there re-
mains one operation that does not run at memory
speed: that of sharing data across jobs. In particu-
lar, saving a job’s output reliably in order to share it
with other jobs is slow, as data is replicated for fault-
tolerance across the network to disks or SSDs. This
makes current cluster storage systems [6, 13, 2] or-
ders of magnitude slower than writing to memory.

The need for memory-speed data-sharing across
jobs arises from many high-level programming in-
terfaces, such as Pig [12] and FlumeJava [3], which
compile programs into multiple MapReduce jobs

that run sequentially. Further, users naturally want
to combine the many different programming frame-
works (e.g., run a machine learning algorithm on the
result of a SQL query). As more and more of the in-
put data and processing starts to be in-memory, the
cost of inter-job data sharing will further dominate
program’s end-to-end latency in big data workloads.

Both the network and disk throughput limitations
of replication seem fundamental, if one uses replica-
tion to ensure reliability. Nonetheless, in this paper,
we explore the following question: can we achieve
reliable I/O at memory speed for both reads and
writes in a cluster computing environment? We pro-
pose a reliable storage system, Tachyon, that repli-
cates data asynchronously after it is written to mem-
ory, and relies on hints from the application to re-
compute any lost data.

Tachyon performs recomputation by borrowing
the concept of lineage from cluster frameworks, such
as Spark and Nectar [18, 7] (c.f., §5), to track how
files were built. Nonetheless, there are significant
challenges to providing lineage-based recovery for
enabling fast data-sharing across jobs/frameworks.
First, what is a good interface to let diverse job-
s/frameworks specify their lineage to Tachyon, and
to let it rebuild data? Second, in case of recomputa-
tion, how can Tachyon interact with a resource man-
ager to guarantee that the computation will acquire
the needed resources without affecting existing run-
ning high priority jobs? Third, how should replica-
tion order be prioritized to minimize recomputation?

Nevertheless, we argue that the characteristics
(c.f., §2.1) of the datacenter workload make a de-
sign like Tachyon viable. We sketch Tachyon’s de-
sign, and evaluate a prototype implementation that
supports Hadoop and Spark. Our results show that
Tachyon can attain write throughput 300× higher,



and speed up jobs more than 10× over HDFS.
More importantly, we believe that due to the inher-

ent bandwidth limitations of replication, a lineage-
based recovery strategy like Tachyon’s might be the
only way to make cluster storage systems match the
speed of in-memory computations in the future.

2 System Design
This section describes characteristics of the targeted
workload, and challenges to building a memory
throughput storage system. Then, we explain the lin-
eage concept and what metadata Tachyon needs to
capture to form the lineage among files. Based on
this information, we show Tachyon’s architecture.

2.1 Workload Characteristics
Several characteristics of many big data workloads
influence Tachyon’s design:

• Immutable data: Data is immutable since un-
derlying storage systems, such as GFS [6] and
HDFS, support append only write operation.

• Deterministic computation: Many frame-
works [4, 18] already use recomputation for
recovery within a job. This means that the user’s
code is required to be deterministic.

• Program size vs. data size: In big data process-
ing, the same operation is repeatedly applied on
massive data. Therefore, replicating program is
much less expensive than replicating data.

• Whole data set vs. working set: Even though the
whole data set is large, and has to stored on disks,
the working set of many applications can fit in
memory [18, 1].

2.2 Challenges
Tachyon stores the working set of applications in
memory, replicates new data asynchronously after it
is written to memory, and recomputes it based on lin-
eage if it is lost. The targeted workload’s character-
istics enables this design. However, there are three
major challenges in order to make Tachyon practical.

First, Tachyon needs to provide an API to capture
lineage across different jobs and frameworks. Since
jobs may have distinct configurations, or even writ-
ten in different languages, it is challenging to make
the API both generic and simple to use. Further, dis-
tributed programing is hard, it is non-feasible to add

more burden to application programmers.
Second, even assuming Tachyon can capture the

lineage information among various files written by
different jobs, in case of failure, how to launch re-
computation jobs to recompute data efficient is non-
trivial. For example, one lost file may depend on
another lost file. Further, files could have different
priorities based on the jobs that use them.

Third, the time it takes for Tachyon to recover
data. In production environments, SLAs are required
in many cases. How can we reduce the possible data
recovery time, or even further, provide a bound on it?

2.3 Lineage Based Fault-tolerance
Tachyon relies on the lineage relationships among
files to achieve fault-tolerance. Here is an example
to illustrate how lineage based fault tolerance works
from a high level. Suppose there is a program P,
which reads input files from A1 to An, and writes
output files from B1 to Bm. If this lineage informa-
tion is recorded reliably, any file in group B can be
recomputed from its inputs of A when necessary.

Recomputation based recovery requires: input
files are immutable, and programs are deterministic.
As said in Section 2.1, existing frameworks such as
MapReduce [4] already assume the data to be im-
mutable and deterministically recomputable. How-
ever, for some workloads, e.g., machine log aggrega-
tion, Tachyon will not help since the log can not be
re-computed by programs deterministically.

2.4 Recomputation Metadata
In order to achieve a generic lineage based fault-
tolerance, the following information is required:

Input files list (ordered): This is straightforward.
However, there are two non-trivial factors Tachyon
needs to consider. First, input files’ names could
be changed. Therefore, in order to make sure that
the application’s first time execution reads the same
file as the potential future recomputation, each file is
identified by a unique immutable file id (FID). FID is
user visible. Second, recomputation needs to rely on
the order of the input list to make deterministic tasks
replay as the first time run.

Output files list (ordered): This list shares the
same issues and solutions as the input files list.

Binary program for recomputation: Tachyon
launches this program to re-generate files when nec-

2



essary. There are various approaches to implement
a file recomputation program. One naı̈ve way is to
write a specific program for one application. How-
ever, this adds significant burdens for application
programmers, and makes Tachyon unpractical. An-
other solution is to write a single wrapper program
which understands both Tachyon’s lineage informa-
tion and the application’s logic. Though this may not
be doable for all programs, it works for applications
written in a particular framework. Each framework
can implement a wrapper to allow applications writ-
ten in the framework to use Tachyon transparently.
Therefore, no burden will be placed on application
programmers. The basic logic of these wrapper pro-
grams will be explained later in this section.

Program configuration: Tachyon needs to cap-
ture applications’ configurations, which can be dra-
matically different in various jobs and frameworks.
The way we solve it is to have Tachyon forego any
attempt to understand these configurations. Tachyon
simply views them as byte arrays, and leaves the
work to program wrappers to understand. Based
on our experience, it is fairly straightforward for
each framework’s wrapper program to understand it.
For example, in Hadoop, configurations are kept in
HadoopConf, while Spark stores these in SparkEnv.
Therefore, their wrapper programs can just serialize
it into byte array during lineage information submis-
sion, and deserialize it during recomputation.

Dependency type: We use wide and narrow de-
pendencies for efficient recovery(c.f., §2.6). Narrow
dependencies represent programs that do operations,
such as filter, map, and union, where each output file
only requires one input file. Wide dependencies rep-
resent programs that do operations, such as shuffle
and join, where each output file requires more than
one input files. This works similarly to Spark [18].

When a program written in a framework runs, be-
fore it writes files, it provides the aforementioned
information to Tachyon. Then, when the program
writes files, Tachyon recognizes that the lineage con-
tains them. The program therefore can write files
to memory only, and Tachyon relies on the lineage
to achieve fault-tolerance. If any file gets lost, and
needs to be recomputed, Tachyon launches the bi-
nary program, a wrapper under a framework invok-
ing user application’s logic, stored in the correspond-
ing lineage instance, and provides the lineage infor-

mation as well as lost files list to the recomputation
program to re-generate the data.

2.5 Architecture and API
Tachyon uses a master-slave architecture similar to
other cluster file systems, where each worker man-
ages local blocks and shares them with applications
through a RAMFS. Files in Tachyon are organized in
a tree hierarchy, and identified by their paths. In ad-
dition, each file also has a unique immutable global
ID, called FID, as mentioned in Section 2.4. Tachyon
provides an API similar to other distributed file sys-
tems, supporting standard file operations such as cre-
ate, open, read, write, close, and delete files. In addi-
tion, it provides submitDependency method for dif-
ferent frameworks to submit lineage metadata:

submitDependency(
ordered input file list,
ordered output file list,
binary program,
program configuration byte arrays,
dependency type

)

2.6 Scheduling Recomputations
Recomputation requires Tachyon to not only act as
an in-memory file system, but also as a scheduler
that launches tasks to recompute missing files and
does so in a manner that respects files’ dependen-
cies. This task is handled by Tachyon’s workflow
manager, which submits tasks to a cluster resource
manager, such as Mesos [9] or Yarn.

Recomputing a file might require recomputing
other files first, such as when a node fails and loses
multiple files at the same time. While one could have
the programs recursively make callbacks to the work-
flow manager to recompute missing files, this would
have poor performance and also lead to many com-
pute slots being occupied, waiting for other recur-
sively invoked files to be reconstructed. For these
reasons, the workflow manager determines in ad-
vance the order of the files that need to be recom-
puted and schedules them with the cluster manager.

Tachyon supports both proactive and reactive re-
covery models, that is recomputing data as soon as it
is lost, and recomputing missing data only when it is
requested by another job.

To determine the files that need to be recomputed,

3



the workflow manager uses a logical directed acyclic
graph (DAG). Each node in the DAG represents a
file. The children of a parent node in the DAG denote
the files that the parent depends on. That is, for wide
dependencies a node has an edge to all files it was
derived from, whereas for a narrow dependency it
has a single edge to the file that it was derived from.

To build the graph, the workflow manager first
computes all lost permanent files and lost tempo-
rary files which have been requested. Then it does
a breadth-first search (BFS) from nodes representing
files need to be recomputed. The BFS stops when-
ever it encounters a node that is already available in
storage. The nodes visited by BFS must be recom-
puted. The nodes that have no lost children in the
DAG can be recomputed firstly in parallel. The rest
of nodes can be recomputed when all of their chil-
dren become available. The workflow manager calls
the resource manager and executes these tasks to en-
sure the recomputation of all missing data.

2.7 Asynchronous Checkpointing
Tachyon needs to eventually checkpoint files and
store them reliably to prevent infinite recomputa-
tion. Note that unlike traditional checkpointing ap-
proaches, Tachyon’s checkpointing process does not
block the real work’s progress, as it can always fall
back on lineage to recompute missing data. Intu-
itively, Tachyon should continuously checkpoint data
if it has available bandwidth. But Tachyon still needs
to pick an order to checkpoint pending files, as that
can have a tremendous effect on recovery perfor-
mance. We explore different possibilities next.

The naı̈ve solution is to checkpoint files in their
creation order. It is simple to implement, and can
work in simple cases where a set of files is written
once and used many times. However, this solution is
not always efficient. For example, assume a multi-
stage query starts with a set of input files A1 and
derives A2 from A1, A3 from A2, and so on until
it gets to a result An. Based on the naı̈ve solution,
Tachyon checkpoints each of these sequentially from
A2 to An. While checkpointing is asynchronous, it
is progressing slowly in the background, leading to
a large gap between the files currently being check-
pointed and the files that are currently being gen-
erated by the framework. Thus, if a node fails, it
will need to recompute many files, starting from the

0 50 100 150 200 250 300 350

Tachyon 

HDFS 

GB/sec

Figure 1: Raw write performance comparison on Tachyon
and HDFS. Tachyon achieved 310 GB/sec write through-
put on 40 nodes, while HDFS achieved 1 GB/sec.

last checkpointed files. For example, if A2 and A3

are done being checkpointed, while A9 is generated,
then a failure will require recomputing pieces of A4

through A9.
A better solution would be to checkpoint the latest

generated files each time a checkpoint is done being
saved. In the previous example, when A2 is done
being checkpointed, the framework might be gener-
ating A6, allowing A5 being checkpointed. Thus, as
before, if a failure happens during the generation of
A9, only A6 through A9 need to be recomputed. This
also allows the system to provide SLOs on the max-
imum compute time, as the time between two saved
checkpoints is bounded by how long it takes to repli-
cate a set of files to disk.

Finally, the utility of checkpointing depends on
application characteristics. For example, many files
might be short-lived: systems like Hive or Flume-
Java compile a query into multiple MapReduce steps,
which share data through intermediate files, but they
delete these files upon query completion. In this
case, it might be best never to checkpoint these files.

This is still an open question, we are exploring so-
lutions for it and just list some of the issues here.

3 Prototype Evaluation
We implemented a prototype of Tachyon in Java, and
added support for MapReduce and Spark. Letting
these frameworks provide lineage to Tachyon and a
wrapper to recompute lost data on failure required a
300-line patch to each framework.

Experiments ran on a 40 Amazon EC2 nodes clus-
ter with 10Gb Ethernet. Each node has two Intel
Xeon E5-2670 CPUs, 60GB memory, and 4x840GB
disks. We used the latest stable HDFS and Spark.

Raw Write Performance: We ran a Spark pro-
gram to measure Tachyon’s raw write performance
and compared it with HDFS. For each measurement,
we used 7 Spark jobs to launch 28 tasks per node at

4



0 500 1000 1500 2000 2500
Tachyon (no failure) 

Tachyon (with failure) 

HDFS (OS Buffer Cache) 

Seconds

Figure 2: End-to-end latency comparison of the realis-
tic workflow. The workflow ran 2610 seconds on HDFS
(with OS buffer cache) without failure, 154.7 seconds
(17x improvement) on Tachyon without failure, and 190
seconds (14x improvement) on Tachyon with failure. The
recovery time will be less if the cluster is larger, since the
recovery work can be partitioned by more nodes.

the same time, writing 42 GB data to Tachyon/HDFS
on each machine. Figure 1 illustrates the results.

Realistic Workload: We ran a realistic work-
load to measure Tachyon’s performance. The work-
load simulates log processing pipeline used at Con-
viva, where jobs are triggered periodically to do data
cleaning, metric analysis etc. We used grep, count,
and wordcount in Spark to simulate these applica-
tions, and launched these jobs based on the order in
the workload. Each experiment has 1TB input, and
500GB output. We measured the end-to-end latency
of the workflow on Tachyon (with and without node
failure) vs. HDFS with OS buffer cache. To sim-
ulate the real scenario, we started the workload as
soon as all data had been written to the system, in
both Tachyon and HDFS with OS buffer cache tests.
Figure 2 shows the results of these experiments.

4 Discussion and Challenges
We have so far sketched what a cluster storage sys-
tem with first-class support for recomputation may
look like, and how it could perform compared to ex-
isting systems. While the possible performance gains
from such a system are promising, there are also
important questions regarding when recomputation-
based recovery is feasible, and challenges to be
solved in making such a system real.

A design like Tachyon naturally requires three
properties about the workload: a) Application is de-
terministic. b) Lineage information needs to be much
smaller than the data itself (so that storing the lineage
is cheaper). c) Input files are immutable.

Fortunately, as discussed in Section 2.1, the three
requirements do hold in current cluster computing
frameworks. However, there are still significant
research challenges in implementing a deployable
inter-framework data sharing system based on this

concept. These challenges include:

Checkpointing Policies: As discussed in Sec-
tion 2.7, the right checkpointing order depends on
many factors, and we have only begun to list them.
Optimizing this will be important to make sure that
Tachyon can work for arbitrary workloads.

Recomputation Resource Acquisition: One in-
teresting problem that arises in scheduling recompu-
tation is that Tachyon might need to take back re-
sources from applications that are trying to read from
it in order to recompute the data they are trying to
read. For example, if a MapReduce job launches map
tasks on all the CPUs in the cluster to read an unavail-
able dataset, we need to kill some of the tasks to run
recomputations. This is similar to priority inversion
issue in operating systems, especially as jobs with
different priorities may depend on the same files.

Nondeterministic Applications: Frameworks like
MPI that perform asynchronous message-passing
cannot necessarily recompute the same result, so
their outputs still need to be saved synchronously. It
remains to be seen which applications require such
frameworks vs. deterministic ones like MapReduce.

5 Related Work
Existing distributed storage systems, whether they
are filesystems or key-value stores, replicate data on
writes [6, 2, 13]. Even their read throughput can be
improved by caching data in memory or using ex-
plicit caching systems [1], their write throughput is
limited by both network and disk bandwidth.

In the area of lineage-based recovery, Nectar [7] is
an on-disk caching system, which can dynamically
delete old datasets from disk and recompute them
on demand to save space. It supports only programs
expressed in LINQ, however, and does not provide
inter-framework data sharing outside .NET. Further-
more, writes in Nectar are still synchronous, repli-
cated to a traditional file system.

Spark [18] is an in-memory framework, which
also builds on the lineage concept through the ab-
straction of Resilient Distributed Datasets (RDDs).
However, RDDs are stored in the heap of a single
JVM, and cannot be shared across jobs. Further-
more, their dependencies need to be specified using
the set of Scala based parallel operators in Spark’s

5



API. Our key contribution w.r.t this work is propos-
ing to push the lineage concept from framework layer
to storage layer, so it can be used across jobs and
frameworks, and exploring the systems challenges
raised by that (representation of lineage, checkpoint-
ing, and scheduling of recovery work).

Checkpointing has been a rich research area.
Much of the research was on using checkpoints to
minimize the re-execution cost when failures hap-
pen in long running jobs. For instance, much fo-
cus was on optimal checkpoint intervals [16, 15], as
well as reducing the per-checkpoint overhead [14].
Unlike previous work, which uses blocking check-
points, Tachyon does checkpointing asynchronously
in the background. This is because lineage informa-
tion can be used to recompute any missing data.

6 Conclusion
As ever more datacenter workloads start to be in
memory, and write throughput becomes a major bot-
tleneck for applications, we believe that a lineage-
based recovery might be the only way to speed up
cluster storage systems to get memory throughput.
In this paper, we propose Tachyon, a storage sys-
tem based on this design that incorporates lineage.
We show that Tachyon gives promising speedups for
Hadoop and Spark and identify key challenges to
make lineage-based storage in datacenters practical.

References
[1] ANANTHANARAYANAN, G., ET AL. PACMan:

Coordinated Memory Caching for Parallel Jobs. In NSDI
2012.

[2] B. NIGHTINGALE, E., ET AL. Flat Datacenter Storage.
In OSDI 2012.

[3] CHAMBERS, C., ET AL. FlumeJava: easy, efficient
data-parallel pipelines. In PLDI 2010.

[4] DEAN, J., AND GHEMAWAT, S. MapReduce: Simplified
Data Processing on Large Clusters. In OSDI 2004.

[5] ENGLE, C., ET AL. Shark: Fast Data Analysis Using
Coarse-grained Distributed Memory. In SIGMOD 2012.

[6] GHEMAWAT, S., ET AL. The Google File System. In
SOSP 2003.

[7] GUNDA, P. K., ET AL. Nectar: Automatic Management
of Data and Computation in Data Centers. In OSDI 2010.

[8] HALL, A., ET AL. Processing a trillion cells per mouse
click. VLDB.

[9] HINDMAN, B., ET AL. Mesos: A Platform for
Fine-Grained Resource Sharing in the Data Center. In
NSDI 2011.

[10] MALEWICZ, G., ET AL. Pregel: A System for
Large-Scale Graph Processing. In SPAA 2009.

[11] MELNIK, S., ET AL. Dremel: interactive analysis of
web-scale datasets. Proc. VLDB Endow. 3 (2010).

[12] OLSTON, C., ET AL. Pig latin: a not-so-foreign language
for data processing. In SIGMOD ’08, pp. 1099–1110.

[13] OUSTERHOUT, J., ET AL. The case for RAMCloud. In
Communications of the ACM, Volume 54 Issue 7, 2011.

[14] PLANK, J. S., ET AL. Experimental assessment of
workstation failures and their impact on checkpointing
systems. In FTCS, 1997.

[15] VAIDYA, N. H. Impact of Checkpoint Latency on
Overhead Ratio of a Checkpointing Scheme. In IEEE
Trans. Computers 1997.

[16] YOUNG, J. W. A First Order Approximation to the
Optimum Checkpoint Interval. In Commun. ACM 1974.

[17] ZAHARIA, M., ET AL. Discretized Streams:
Fault-Tolerant Streaming Computation at Scale. In SOSP
2013.

[18] ZAHARIA, M., ET AL. Resilient Distributed Datasets: A
Fault-Tolerant Abstraction for In-Memory Cluster
Computing. In NSDI 2012.

6


