
U.C. Berkeley — CS270: Algorithms Lecture 15
Professor Satish Rao Scribe: Anupam

Last revised

Lecture 15

1 Streaming Algorithms: Frequent Items

Recall the streaming setting where we have a data stream x1, x2, · · · , xn with xi ∈ [m],
the available memory is O(logc n). Today we will see algorithms for finding frequent items
in a stream. We first present a deterministic algorithm that approximates frequencies for
the top k items. We then introduce more efficient randomized algorithms that can handle
insertions as well as deletions.

1.1 Deterministic algorithm

The following algorithm estimates item frequencies fj within an additive error of n/k using
with O(k log n) memory,

1. Maintain set S of k counters, initialize to 0. For each element xi in stream:

2. If xi ∈ S increment the counter for xi.

3. If xi 6∈ S add xi to S if space is available, else decrement all counters in S.

An item in S whose count falls to 0 can be removed, the space requirement for storing
k counters is k log n and the update time per item is O(k). The algorithm estimates the
count of an item as the value of its counter or zero if it has no counter.

Claim 1
The frequency estimate nj produced by the algorithm satisfies fj − n/k ≤ nj ≤ fj .

Proof: Clearly, nj is less than the true frequency fj . Differences between fj and the value
of the estimate are caused by one of the two scenarios: (i) The item j 6∈ S, each counter in
S gets decremented, this is the case when xj occurs in the stream but the counter for j is
not incremented. (ii) The counter for j gets decremented due to an element j′ that is not
contained in S.

Both scenarios result in k counters getting decremented hence they can occur at most
n/k times, showing that nj ≥ fj − n/k. 2

1.2 Count min sketch

The turnstile model allows both additions and deletions of items in the stream. The stream
consists of pairs (i, ci), where the i ∈ [m] is an item and ci is the number of items to be
added or deleted. The count of an item can not be negative at any stage, the frequency fj
of item j is fj =

∑
cj .

The following algorithm estimates frequencies of all items up to an additive error of
ε|f |1 with probability 1− δ, the `1 norm |f |1 is the number of items present in the data set.
The two parameters k and t in the algorithm are chosen to be (2ε , log(1/δ)).

Notes for Lecture 15: Scribe: Anupam 2

1. Maintain t arrays A[i] each having k counters, hash function hi : U → [k] drawn from
a 2-wise independent family H is associated to array A[i].

2. For element (j, cj) in the stream, update counters as follows:

A[i, hi(j)]← A[i, hi(j)] + cj ∀i ∈ [t]

3. The frequency estimate for item j is mini∈[t]A[i, h(j)].

The output estimate is always more than the true value of fj as the count of all the items
in the stream is non negative.

1.2.1 Analysis

To bound the error in the estimate for fj we need to analyze the excessX where A[1, h1(j)] =
fj +X. The excess X can be expressed as a sum of random variables X =

∑
i Yi where the

indicator random variable Yi = fi if h1(j) = h1(i) and 0 otherwise. As h1 ∈ H is chosen
uniformly at random from a 2-wise independent hash function family, E[Yi] = fi/k.

E[X] =
|f |1
k

=
ε|f |1

2

Applying Markov’s inequality, we have

Pr[X > ε|f |1] ≤
1

2

The probability that all the excesses at A[i, hi(xj] are greater than ε|f |1 is at most 1/2t ≤ δ
as t was chosen to be log(1/δ). The algorithm estimates the frequency of item xj up to an
additive error ε|f |1 with probability 1− δ.

The memory required for the algorithm is the sum of the space for the array and the
hash functions, O(kt log n+ t logm) = O(1ε log(1/δ) log n). The update time per item in the
stream is O(log 1

δ).

1.3 Count Sketch

We present another sketch algorithm with error in terms of the `2 norm |f |2 =
√∑

j f
2
j .

The relation between the `1 and `2 norms is 1√
n
|f |1 ≤ |f |2 ≤ |f |1, the `2 norm is less than

the `1 norm so the guarantee for this algorithm is better than that for the previous one.

1. Maintain t arrays A[i] each having k counters, hash functions gi : U → {−1, 1} and
hi : U → [k] drawn uniformly at random from a 2-wise independent families are
associated to array A[i].

2. For element (j, cj) in the stream, update counters as follows:

A[i, hi(j)]← A[i, hi(j)] + gi(j)cj ∀i ∈ [t]

3. The frequency estimate for item j is the median over the t arrays of gi(xj)A[i, h(j)].

Notes for Lecture 15: Scribe: Anupam 3

1.3.1 Analysis

Again, the entry A[1, h1(j)] = g1(j)fj +X, we examine the contribution X from the other
items by writing X =

∑
i Yi where the indicator variable Yi is ±fi if h1(i) = h1(j) and 0

otherwise. Note that E[Yj] = 0, so the expected value of g1(j)A[1, h(j)] is fj .
The random variables Yi are pairwise independent as h1 is a 2-wise independent hash

function, so the variance of X can be expressed as,

Var(X) =
∑
i∈[m]

Var(Yi) =
∑
i∈[m]

f2i
k

=
|f |22
k

We will use Chebyshev’s inequality to bound the deviation of X from its expected value,

Pr[|X − µ| > ∆] ≤ V ar(X)

∆2

The mean µ = fj and the variance is
|f |22
k , choosing δ = ε|f |2 and k = 4/ε2 we have,

Pr[|X − µ| > ε|f |2] ≤
1

ε2k
≤ 1

4

For t = θ(log(1/δ)), the probability that the median value deviates from µ by more than
ε|f |2 is less than δ by a Chernoff bound. That is, the probability that there are fewer than
t/2 success in a series of t tosses of a coin with success probability 3/4 is smaller than δ for
t = O(log(1/δ)).

Arguing as in the count min sketch the space required is O(1
ε2

log 1
δ log n) and the update

time per item is O(log 1
δ).

1.4 Remarks

The count sketch approximates fj within ε|f |2 but requires Õ(1
ε2

) space, while the count min

sketch approximates fj within ε|f |1 and requires Õ(1ε) space. The approximation provided
by the sketch algorithms is meaningful only for items that occur with high frequency.

