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| Why Quantum Computation?

There are several reasons why we might wish to study quantmmpatation. Here are a few:

e Moore’s Law

Moore’s Law states that the density of transistors on a abifgily doubles every eighteen months.
Current estimates say that in about a decade this shouldviae tosingle electron transistors. This
is the end of the road for further miniaturization of classicomputers based on electronics. Long
before that chip designers will have to contend with quanplmanomena. Quantum computation
provides a method of bypassing the end of Moore’s Law, anal jpisvides a way of utilizing the
inevitable appearance of quantum phenomena.

 Factoring, Discrete log, Pell's equations, etc..

There are certain problems that quantum computation allssv solve more efficiently that any
classical computational method. A few examples are listeav@ We may wish to exploit this
feature of quantum computation.

» Cryptography
Quantum computation allows us to do cryptography in a waydbasn't require assumptions about

factoring primes, etc.. It also allows us to break classcgbtography schemas. Obviously, if we are
interested in cryptography, we’ll also have to be intedtequantum computation.

Above are the three standard reasons for studying quantampudation. There are other reasons as
well that are perhaps just as compelling.

* Quantum Mechanics is a model of computation
We can study quantum mechanics as a model of computation.

* Quantum Entanglement

In particular, the detailed study of entanglement is thetrimoportant point of departure from more tradi-
tional approaches to the subject. For example, quantum atatiign derives its power from the fact that the
description of the state of an n-particle quantum systerwgexponentially in n. This enormous informa-
tion capacity is not easy to access, since any measuremém sfystem only yields n pieces of classical
information. Thus the main challenge in the field of quantugodthms is to manipulate the exponential
amount of information in the quantum state of the system,thad extract some crucial pieces via a final
measurement.

Quantum cryptography relies on a fundamental property ahtjum measurements: that they inevitably

disturb the state of the measured system. Thus if Alice aral\Bish to communicate secretly, they can

detect the presence of an eavesdropper Eve by using clesimben quantum states and testing them to
check whether they were disturbed during transmission.
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2 Young,s double-slit experiment

Let g1 (X) € € be the amplitude if only slit 1 is open. Then the probabiligngity of measuring a photon at
xis Py(X) = |1 (X)|2. Let gr(x) be the amplitude if only slit 2 is ope,(x) = |W2(X)[2.

P12(X) = %L/Jl(x) + %L]Jg(x) is the amplitude if both slits are opeR;2(x) = |1 (X) + Yo (X)|[2. The two
complex numberg (x) and i (x) can cancel each other out — destructive interference.

But how can a single particle that went through the first slibw that the other slit is open? In quantum
mechanics, this question is not well-posed. Particles dohawe trajectories, but rather take all paths
simultaneously. This is a key to the power of quantum contfmurta

3 Qubits — Naive introduction

The basic entity of quantum information is a qubit (pronadtcue-bit”), or a quantum bit. Consider the
electron in a hydrogen atom. It can be in its ground statedne orbital) or in an excited state. If this were
a classical system, we could store a bit of information instag¢e of the electron: ground = 0, excited = 1.
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In general, since the electron is a quantum system, it is iime@fd superposition of the ground and excited
state — it is in the ground state (0) with probability ampliéur € ¥” and in the excited state (1) with
probability amplitude3 € %'. Itis as though the electron “does not make up its mind” ash@vof the 2
classical states it is in. Such a 2-state quantum systeniésl@qubit, and its state can be written as a unit
(column) vector( 3) € ™. In Dirac notation, this may be written as:

@) =al0) +B|1) a,fe? and |afP+|BfP=1

The Dirac notation has the advantage that the it labels this bactors explicitly. This is very convenient
because the notation expresses both that the state of titedsjalvector, and that it is data (0 or 1) to be
processed. (Th¢|0),|1) } basis is called the standard or computational basis.)

In general a column vector —called a “ket’— is denoted|byand a row vector —called a “bra™— is
denoted by |.

This linear superpositiofyy) = a|0) + B|1) is part of the private world of the electron. For us to know
the electron’s state, we must make a measurement. Measyrinm the {|0), |1) } basis yields0) with

probability |a| %, and|1) with probability | 8] %.
One important aspect of the measurement process is thaeis éhe state of the qubit: the effect of the
measurement is that the new state is exactly the outcomesahétasurement. I.e., if the outcome of the

measurement o) = a|0) + B|1) yields |0), then following the measurement, the qubit is in st@e
This implies that you cannot collect any additional infotioa abouta, 3 by repeating the measurement.

More generally, we may choose any orthogonal basis and measure the qubit in it. To do this, we
rewrite our state in that basi$y) = a’|v) + B’|v+). The outcome i with probability la’|?, and |v+)
with probability |3’| 2. If the outcome of the measurement ) yields |v), then as before, the the qubit is
then in statgv) .
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3.0.1 Measurement examplel.

Q: We measuréy) = a|0) +B|1) inthe|v),|v*) basis, wher¢v) =a|0) +b|1). What is the probability
of measuringv) ?

A: Firstlet's do the simpler case= b= =, so|v) = 5(|0) +|1)) =[+), [v") = 5(|0) —[1)) = | -).

2 V2
See Figuréll. We expresg) inthe|+),|—) basis:

) = al0)+p[1)
= ab(+) =) +BH(+) ~[-))
= L((@+B)+)+@-p)|-)) .

Therefore the probability of measuriig- ) is |%(a + B)|? = |a + BJ?/2. The probability of measuring
| ) is |+ B|?/2. We will do the general case P8

4 Two qubits:

Now let us examine the case of two qubits. Consider the twaireles in two hydrogen atoms:
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Since each electron can be in either of the ground or excitdd, slassically the two electrons are in one of
four states — 00, 01, 10, or 11 — and represent 2 bits of chlgsimrmation. Quantum mechanically, they
are in a superposition of those four states:

|L/J> = oroo\OO> + 001‘01> + 010‘10> + 011‘11> ,
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wherey;j|ai; |> = 1. Again, this is just Dirac notation for the unit vector4f:

Qoo
Qo1
aio
a1

whereaijj €4, 5 |aij|*> = 1.
M easurement:

If the two electrons (qubits) are in stdt¢> and we measure them, then the probability that the first qubit
is in statei, and the second qubit is in statés P(i, j) = |aij 2. Following the measurement, the state of the
two qubits is|y’) = |ij). What happens if we measure just the first qubit? What is thlatility that the
first qubit is 0? In that case, the outcome is the same as if @erfgasured both qubits: Pist bit = 0} =

|aroo| 2+ | 01| 2. The new state of the two qubit system now consists of thasesten the superposition that
are consistent with the outcome of the measurement — butatiazed to be a unit vector:

gy — 0l00) + (o)

\/ |otoo| 2+ | 001

A more formal way of describing this partial measurementhest the state vector is projected onto the
subspace spanned m0> and \01> with probability equal to the square of the norm of the privget or
onto the orthogonal subspace spanneqllﬁy and \11> with the remaining probability. In each case, the
new state is given by the (normalized) projection onto tlspeetive subspace.

3] Entanglement

Consider the state of a two qubit system giver|¢ry = ~5|00) + —5[11). Notice that this state cannot be

represented a@x|0) + a1|1)) ® (Bo|0) + B1|1)) for any complex numbersy, a1, Bo or 1. We cannot
analyze the state of each individual qubit in this sytemabee the states of the two qubits are entangled. If
we take a measurement on the first qubit, then the state otliee gubit is determined by the outcome of
the measurement. With probabilifywe se€|0) as the outcome of the measurement, and in this case, we
know that the state of the system must|6) .

Entangled states provide one method of showing that theomés of quantum mechanics cannot be ex-

plained by any thory of "hidden variables™.

5.1 EPR Paradox:

In 1935, Einstein, Podolsky and Rosen (EPR) wrote a papet ¢Dantum mechanics be complete?” [Phys.
Rev. 47, 777, Available online via PROLAt t p: // prol a. aps. org/ abstract/ PR/ v47/1 10/ p777 1]

For example, consider coin-flipping. We can model coin-fligpas a random process giving heads 50% of
the time, and tails 50% of the time. This model is perfectlgdictive, but incomplete. With a more accurate
experimental setup, we could determine precisely the rahggtial parameters for which the coin ends up

heads, and the range for which it ends up tails.

For Bell state, when you measure first qubit, the second gubitermined. However, if two qubits are far
apart, then the second qubit must have had a determinedirstsdene time interval before measurement,
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since the speed of light is finite. Moreover this holds in aagib. This appears analogous to the coin
flipping example. EPR therefore suggested that there is a nwnplete theory where “God does not throw
dice.”

What would such a theory look like? Here is the most extravaffamework. . . When the entangled state
is created, the two particles each make up a (very long!ofisll possible experiments that they might be
subjected to, and decide how they will behave under eachesymriment. When the two particles separate
and can no longer communicate, they consult their resgelisits to coordinate their actions.

But in 1964, almost three decades later, Bell showed thatepties of EPR states were not merely fodder
for a philosophical discussion, but had verifiable conseqges: local hidden variables are not the answer.

5.2 Bell’s Inequality

Bell's inequality states: There does not exist any locatlardvariable theory consistent with these outcomes
of quantum physics.

Consider the following communication protocol in the cleassworld: Alice (A) and Bob B) are two

parties who share a common striBgThey receive independent, random s Xg, and try to output bits
a, b respectively, such tha¢a A Xg = a® b. (The notatiorx A y takes the AND of two binary variablesand

y, i.e.,is one iix=y =1 and zero otherwisx®y = x+y mod 2, the XOR.)

In the quantum mechanical analogue of this protoédchnd B share the EPR paiH’*>. As before, they
receive bitsXa, Xg, and try to output bits, b respectively, such thaga A Xg = a@ b.

If the odd behavior oﬂLIJ*> can be explained using some hidden variable theory, theiwihgrotocols
give above should be equivalent.

However, Alice and Bob’s best protocol for the classical gaas you will prove in the homework, is to
outputa = 0 andb = 0O, respectively. Them® b = 0, so as long as the inputXa, Xs) # (1,1), they
are successfula®b = 0= XaAXg. If Xa = Xg = 1, then they fail. Therefore they are successful with
probability exactly 34.

We will show that the quantum mechanical system can do beBpecifically, if Alice and Bob share an
EPR pair, we will describe a protocol for which the probapiPr{Xa A Xg = a® b} is greater than 3/4.

We can setup the following protocol:

if Xa = 0, then Alice measures in the standard basis, and outputeshé.

if Xa = 1, then Alice rotates byr/8, then measures, and outputs the result.

if Xg = 0, then Bob measures in the standard basis, and outputsnimaraent of the result.

if Xg =1, then Bob rotates by 17/8, then measures, and outputs the complement of the result.

Now we calculate Pfa® b # Xa A Xg}. (Recall that if measurement in the standard basis yim;dSNith
probability 1, then if a state is rotated Iy measurement yield®) with probability co$ (6).) There are
four cases:

Priadb#XaAXg} = Z(%Pr{a@b;éXAAXBIXA,XB}
Xa, X8
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Now we claim

Priadb#XaAXg|Xa=0,Xg=0} = O

Pr{iadb#XaAXg|Xa=0,Xg =1} = sir?(71/8)

Pr{iadb#XaAXg|Xa=1,Xg =0} = sir?(71/8)

Priadb#XaAXg|Xa=1Xg =1} = sin’(m/4)=1/2 .
Indeed, for the first cas&Xa = Xg = 0 (s0Xa A Xg = 0), Alice and Bob each measure in the computational
basis, without any rotation. If Alice measuras= 0, then Bob’s measurement is the opposite, and Bob

outputs the complemenly = 0. Thereforea® b = 0= Xa A Xg, a success. Similarly if Alice measures
a=1, they are always successful.

In the second cas&a = 0, Xg = 1 (Xa A Xg = 0). If Alice measures = 0, then the new state of the system
is |01) ; Bob's qubit is in the statél) . In the rotated basis, Bob measures a 1 (and outputs its eomept,

0) with probability cod(71/8). The probability offailure is therefore 1- cos’(71/8) = sin?(71/8). Similarly

if Alice measuresa = 1. The third caseXa = 1, Xg = 0 is symmetrical.

In the final caseXa = Xg = 1 (soXa A Xg = 1), Alice and Bob are measuring in bases rotated 45 degrees
from each other, so their measurements are independenprdbability of failure is ¥2.

Averaging over the four cases, we find

Priadb#XaAXg} = 1/4(2sirf(m/8)+1/2)
= 1/4(1—cog2x1/8)+1/2)
— 1/4(3/2— x/§/2>
1/8(3—1.4)
1.6/8=.2 .
The probability of success with this protocal is therefareuad .8, better than any protocol could achieve
in the classical, hidden variable model.
Exercise: Consider the GHZ (Greenberger-Horne-Zeilinger) stat@, gdibits:

1
> (|000) —|011) — |101) — [110))
Suppose three parties, A, B and C with experimefts<g, Xc respectively, with the constraitta & Xg ®

Xc = 0. Outputa,b,c s.t. Xa V Xg V Xc = ac® b& ¢. Show that this can be done with certainty. Hint: you'll
need the Hadamard matrix,

1
=1 )
which takes
0~ 5 (10 +11)

1~ 250 ~11)

N
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