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1 Why Quantum Computation?
There are several reasons why we might wish to study quantum computation. Here are a few:

• Moore’s Law

Moore’s Law states that the density of transistors on a chip roughly doubles every eighteen months.
Current estimates say that in about a decade this should be down to single electron transistors. This
is the end of the road for further miniaturization of classical computers based on electronics. Long
before that chip designers will have to contend with quantumphenomena. Quantum computation
provides a method of bypassing the end of Moore’s Law, and also provides a way of utilizing the
inevitable appearance of quantum phenomena.

• Factoring, Discrete log, Pell’s equations, etc..

There are certain problems that quantum computation allowsus to solve more efficiently that any
classical computational method. A few examples are listed above. We may wish to exploit this
feature of quantum computation.

• Cryptography

Quantum computation allows us to do cryptography in a way that doesn’t require assumptions about
factoring primes, etc.. It also allows us to break classicalcryptography schemas. Obviously, if we are
interested in cryptography, we’ll also have to be interested in quantum computation.

Above are the three standard reasons for studying quantum computation. There are other reasons as
well that are perhaps just as compelling.

• Quantum Mechanics is a model of computation

We can study quantum mechanics as a model of computation.

• Quantum Entanglement

In particular, the detailed study of entanglement is the most important point of departure from more tradi-
tional approaches to the subject. For example, quantum computation derives its power from the fact that the
description of the state of an n-particle quantum system grows exponentially in n. This enormous informa-
tion capacity is not easy to access, since any measurement ofthe system only yields n pieces of classical
information. Thus the main challenge in the field of quantum algorithms is to manipulate the exponential
amount of information in the quantum state of the system, andthen extract some crucial pieces via a final
measurement.

Quantum cryptography relies on a fundamental property of quantum measurements: that they inevitably
disturb the state of the measured system. Thus if Alice and Bob wish to communicate secretly, they can
detect the presence of an eavesdropper Eve by using cleverlychosen quantum states and testing them to
check whether they were disturbed during transmission.

...
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2 Young’s double-slit experiment
Let ψ1(x) ∈ C be the amplitude if only slit 1 is open. Then the probability density of measuring a photon at
x is P1(x) = |ψ1(x)|2. Let ψ2(x) be the amplitude if only slit 2 is open.P2(x) = |ψ2(x)|2.

ψ12(x) = 1√
2
ψ1(x)+ 1√

2
ψ2(x) is the amplitude if both slits are open.P12(x) = |ψ1(x)+ ψ2(x)|2. The two

complex numbersψ1(x) andψ2(x) can cancel each other out – destructive interference.

But how can a single particle that went through the first slit know that the other slit is open? In quantum
mechanics, this question is not well-posed. Particles do not have trajectories, but rather take all paths
simultaneously. This is a key to the power of quantum computation.

3 Qubits – Naive introduction
The basic entity of quantum information is a qubit (pronounced “cue-bit”), or a quantum bit. Consider the
electron in a hydrogen atom. It can be in its ground state (i.e. ans orbital) or in an excited state. If this were
a classical system, we could store a bit of information in thestate of the electron: ground = 0, excited = 1.

+
0

1

In general, since the electron is a quantum system, it is in a linear superposition of the ground and excited
state — it is in the ground state (0) with probability amplitude α ∈ C and in the excited state (1) with
probability amplitudeβ ∈ C . It is as though the electron “does not make up its mind” as to which of the 2
classical states it is in. Such a 2-state quantum system is called a qubit, and its state can be written as a unit
(column) vector

(α
β
)

∈ C 2. In Dirac notation, this may be written as:

∣

∣ψ
〉

= α
∣

∣0
〉

+ β
∣

∣1
〉

α ,β ∈C and |α |2 + |β |2 = 1

The Dirac notation has the advantage that the it labels the basis vectors explicitly. This is very convenient
because the notation expresses both that the state of the qubit is a vector, and that it is data (0 or 1) to be
processed. (The{

∣

∣0
〉

,
∣

∣1
〉

} basis is called the standard or computational basis.)

In general a column vector —called a “ket”— is denoted by
∣

∣

〉

and a row vector —called a “bra”— is
denoted by

〈

|.
This linear superposition

∣

∣ψ
〉

= α
∣

∣0
〉

+ β
∣

∣1
〉

is part of the private world of the electron. For us to know
the electron’s state, we must make a measurement. Measuring

∣

∣ψ
〉

in the{
∣

∣0
〉

,
∣

∣1
〉

} basis yields
∣

∣0
〉

with

probability |α |2, and
∣

∣1
〉

with probability |β |2.

One important aspect of the measurement process is that it alters the state of the qubit: the effect of the
measurement is that the new state is exactly the outcome of the measurement. I.e., if the outcome of the
measurement of

∣

∣ψ
〉

= α
∣

∣0
〉

+ β
∣

∣1
〉

yields
∣

∣0
〉

, then following the measurement, the qubit is in state
∣

∣0
〉

.
This implies that you cannot collect any additional information aboutα , β by repeating the measurement.

More generally, we may choose any orthogonal basisv,v⊥ and measure the qubit in it. To do this, we
rewrite our state in that basis:

∣

∣ψ
〉

= α ′∣
∣v

〉

+ β ′∣
∣v⊥

〉

. The outcome isv with probability |α ′|2, and
∣

∣v⊥
〉

with probability |β ′|2. If the outcome of the measurement on
∣

∣ψ
〉

yields
∣

∣v
〉

, then as before, the the qubit is
then in state

∣

∣v
〉

.
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∣

∣0
〉

∣

∣1
〉

∣

∣ +
〉

= 1√
2
(
∣

∣0
〉

+
∣

∣1
〉

)

∣

∣ −
〉

= 1√
2
(
∣

∣0
〉

−
∣

∣1
〉

)

45◦

θ

∣

∣ψ
〉

= cos θ
∣

∣0
〉

+ sin θ
∣

∣1
〉

〈+
|ψ〉

〈−|ψ〉

Figure 1:

3.0.1 Measurement example I.

Q: We measure
∣

∣ψ
〉

= α
∣

∣0
〉

+β
∣

∣1
〉

in the
∣

∣v
〉

,
∣

∣v⊥
〉

basis, where
∣

∣v
〉

= a
∣

∣0
〉

+b
∣

∣1
〉

. What is the probability
of measuring

∣

∣v
〉

?

A: First let’s do the simpler casea = b = 1√
2
, so

∣

∣v
〉

= 1√
2
(
∣

∣0
〉

+
∣

∣1
〉

)≡
∣

∣+
〉

,
∣

∣v⊥
〉

= 1√
2
(
∣

∣0
〉

−
∣

∣1
〉

)≡
∣

∣−
〉

.

See Figure 1. We express
∣

∣ψ
〉

in the
∣

∣+
〉

,
∣

∣−
〉

basis:

∣

∣ψ
〉

= α
∣

∣0
〉

+ β
∣

∣1
〉

= α 1√
2
(
∣

∣+
〉

+
∣

∣−
〉

)+ β 1√
2
(
∣

∣+
〉

−
∣

∣−
〉

)

= 1√
2

(

(α + β )
∣

∣+
〉

+(α −β )
∣

∣−
〉)

.

Therefore the probability of measuring
∣

∣+
〉

is | 1√
2
(α + β )|2 = |α + β |2/2. The probability of measuring

∣

∣−
〉

is |α + β |2/2. We will do the general case in §??.

4 Two qubits:
Now let us examine the case of two qubits. Consider the two electrons in two hydrogen atoms:

+
0

1

+
0

1

Since each electron can be in either of the ground or excited state, classically the two electrons are in one of
four states – 00, 01, 10, or 11 – and represent 2 bits of classical information. Quantum mechanically, they
are in a superposition of those four states:

∣

∣ψ
〉

= α00
∣

∣00
〉

+ α01
∣

∣01
〉

+ α10
∣

∣10
〉

+ α11
∣

∣11
〉

,
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where∑i j|αi j|2 = 1. Again, this is just Dirac notation for the unit vector inC 4:









α00

α01

α10

α11









whereαi j ∈C , ∑ |αi j|2 = 1.

Measurement:

If the two electrons (qubits) are in state
∣

∣ψ
〉

and we measure them, then the probability that the first qubit
is in statei, and the second qubit is in statej is P(i, j) = |αi j|2. Following the measurement, the state of the
two qubits is

∣

∣ψ ′〉 =
∣

∣i j
〉

. What happens if we measure just the first qubit? What is the probability that the
first qubit is 0? In that case, the outcome is the same as if we had measured both qubits: Pr{1st bit = 0} =
|α00|2 + |α01|2. The new state of the two qubit system now consists of those terms in the superposition that
are consistent with the outcome of the measurement – but normalized to be a unit vector:

∣

∣φ
〉

=
α00

∣

∣00
〉

+ α01
∣

∣01
〉

√

|α00|2 + |α01|2

.

A more formal way of describing this partial measurement is that the state vector is projected onto the
subspace spanned by

∣

∣00
〉

and
∣

∣01
〉

with probability equal to the square of the norm of the projection, or
onto the orthogonal subspace spanned by

∣

∣10
〉

and
∣

∣11
〉

with the remaining probability. In each case, the
new state is given by the (normalized) projection onto the respective subspace.

5 Entanglement
Consider the state of a two qubit system given by

∣

∣ψ
〉

= 1√
2

∣

∣00
〉

+ 1√
2

∣

∣11
〉

. Notice that this state cannot be

represented as(α0
∣

∣0
〉

+ α1
∣

∣1
〉

)⊗ (β0
∣

∣0
〉

+ β1
∣

∣1
〉

) for any complex numbersα0, α1, β0 or β1. We cannot
analyze the state of each individual qubit in this sytem, because the states of the two qubits are entangled. If
we take a measurement on the first qubit, then the state of the other qubit is determined by the outcome of
the measurement. With probability12 we see

∣

∣0
〉

as the outcome of the measurement, and in this case, we
know that the state of the system must be

∣

∣00
〉

.

Entangled states provide one method of showing that the outcomes of quantum mechanics cannot be ex-
plained by any thory of ”‘hidden variables”’.

5.1 EPR Paradox:
In 1935, Einstein, Podolsky and Rosen (EPR) wrote a paper ”Can quantum mechanics be complete?” [Phys.
Rev. 47, 777, Available online via PROLA:http://prola.aps.org/abstract/PR/v47/i10/p777_1]

For example, consider coin-flipping. We can model coin-flipping as a random process giving heads 50% of
the time, and tails 50% of the time. This model is perfectly predictive, but incomplete. With a more accurate
experimental setup, we could determine precisely the rangeof initial parameters for which the coin ends up
heads, and the range for which it ends up tails.

For Bell state, when you measure first qubit, the second qubitis determined. However, if two qubits are far
apart, then the second qubit must have had a determined statein some time interval before measurement,
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since the speed of light is finite. Moreover this holds in any basis. This appears analogous to the coin
flipping example. EPR therefore suggested that there is a more complete theory where “God does not throw
dice.”

What would such a theory look like? Here is the most extravagant framework. . . When the entangled state
is created, the two particles each make up a (very long!) listof all possible experiments that they might be
subjected to, and decide how they will behave under each suchexperiment. When the two particles separate
and can no longer communicate, they consult their respective lists to coordinate their actions.

But in 1964, almost three decades later, Bell showed that properties of EPR states were not merely fodder
for a philosophical discussion, but had verifiable consequences: local hidden variables are not the answer.

5.2 Bell’s Inequality

Bell’s inequality states: There does not exist any local hidden variable theory consistent with these outcomes
of quantum physics.

Consider the following communication protocol in the classical world: Alice (A) and Bob (B) are two
parties who share a common stringS. They receive independent, random bitsXA,XB, and try to output bits
a,b respectively, such thatXA∧XB = a⊕b. (The notationx∧ y takes the AND of two binary variablesx and
y, i.e., is one ifx = y = 1 and zero otherwise.x⊕ y ≡ x+ y mod 2, the XOR.)

In the quantum mechanical analogue of this protocol,A andB share the EPR pair
∣

∣Ψ−〉

. As before, they
receive bitsXA,XB, and try to output bitsa,b respectively, such thatXA ∧XB = a⊕b.

If the odd behavior of
∣

∣Ψ−〉

can be explained using some hidden variable theory, then thetwo protocols
give above should be equivalent.

However, Alice and Bob’s best protocol for the classical game, as you will prove in the homework, is to
output a = 0 andb = 0, respectively. Thena ⊕ b = 0, so as long as the inputs(XA,XB) 6= (1,1), they
are successful:a⊕ b = 0 = XA ∧XB. If XA = XB = 1, then they fail. Therefore they are successful with
probability exactly 3/4.

We will show that the quantum mechanical system can do better. Specifically, if Alice and Bob share an
EPR pair, we will describe a protocol for which the probability Pr{XA∧XB = a⊕b} is greater than 3/4.

We can setup the following protocol:

• if XA = 0, then Alice measures in the standard basis, and outputs theresult.

• if XA = 1, then Alice rotates byπ/8, then measures, and outputs the result.

• if XB = 0, then Bob measures in the standard basis, and outputs the complement of the result.

• if XB = 1, then Bob rotates by−π/8, then measures, and outputs the complement of the result.

Now we calculate Pr{a⊕b 6= XA ∧XB}. (Recall that if measurement in the standard basis yields
∣

∣0
〉

with
probability 1, then if a state is rotated byθ , measurement yields

∣

∣0
〉

with probability cos2 (θ).) There are
four cases:

Pr{a⊕b 6= XA ∧XB} = ∑
XA,XB

1
4 Pr{a⊕b 6= XA ∧XB XA,XB}
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Now we claim

Pr{a⊕b 6= XA ∧XB XA = 0,XB = 0} = 0

Pr{a⊕b 6= XA ∧XB XA = 0,XB = 1} = sin2(π/8)

Pr{a⊕b 6= XA ∧XB XA = 1,XB = 0} = sin2(π/8)

Pr{a⊕b 6= XA ∧XB XA = 1,XB = 1} = sin2(π/4) = 1/2 .

Indeed, for the first case,XA = XB = 0 (soXA ∧XB = 0), Alice and Bob each measure in the computational
basis, without any rotation. If Alice measuresa = 0, then Bob’s measurement is the opposite, and Bob
outputs the complement,b = 0. Thereforea⊕ b = 0 = XA ∧XB, a success. Similarly if Alice measures
a = 1, they are always successful.

In the second case,XA = 0, XB = 1 (XA ∧XB = 0). If Alice measuresa = 0, then the new state of the system
is

∣

∣01
〉

; Bob’s qubit is in the state
∣

∣1
〉

. In the rotated basis, Bob measures a 1 (and outputs its complement,
0) with probability cos2(π/8). The probability offailure is therefore 1−cos2(π/8) = sin2(π/8). Similarly
if Alice measuresa = 1. The third case,XA = 1, XB = 0 is symmetrical.

In the final case,XA = XB = 1 (soXA ∧XB = 1), Alice and Bob are measuring in bases rotated 45 degrees
from each other, so their measurements are independent. Theprobability of failure is 1/2.

Averaging over the four cases, we find

Pr{a⊕b 6= XA ∧XB} = 1/4
(

2sin2(π/8)+1/2
)

= 1/4(1−cos(2∗π/8)+1/2)

= 1/4
(

3/2−
√

2/2
)

≈ 1/8(3−1.4)

= 1.6/8 = .2 .

The probability of success with this protocal is therefore around .8, better than any protocol could achieve
in the classical, hidden variable model.

Exercise: Consider the GHZ (Greenberger-Horne-Zeilinger) state, of3 qubits:

1
2

(∣

∣000
〉

−
∣

∣011
〉

−
∣

∣101
〉

−
∣

∣110
〉)

Suppose three parties, A, B and C with experimentsXA,XB,XC respectively, with the constraintXA ⊕XB ⊕
XC = 0. Outputa,b,c s.t. XA ∨XB∨XC = a⊕b⊕ c. Show that this can be done with certainty. Hint: you’ll
need the Hadamard matrix,

H =
1√
2

(

1 1
1 −1

)

which takes
∣

∣0
〉

→ 1√
2

(∣

∣0
〉

+
∣

∣1
〉)

∣

∣1
〉

→ 1√
2

(∣

∣0
〉

−
∣

∣1
〉)
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