nature

physics

ARTICLES

PUBLISHED ONLINE: 1JUNE 2015 | DOI: 10.1038/NPHYS3345

A polynomial time algorithm for the ground state
of one-dimensional gapped local Hamiltonians

Zeph Landau', Umesh Vazirani' and Thomas Vidick®*

The density matrix renormalization group method has been extensively used to study the ground state of 1D many-body
systems since its introduction two decades ago. In spite of its wide use, this heuristic method is known to fail in certain cases
and no certifiably correct implementation is known, leaving researchers faced with an ever-growing toolbox of heuristics, none
of which is guaranteed to succeed. Here we develop a polynomial time algorithm that provably finds the ground state of any
1D quantum system described by a gapped local Hamiltonian with constant ground-state energy. The algorithm is based on
a framework that combines recently discovered structural features of gapped 1D systems with an efficient construction of a
class of operators called approximate ground-state projections (AGSPs). The combination of these tools yields a method that
is guaranteed to succeed in all 1D gapped systems. An AGSP-centric approach may help guide the search for algorithms for
more general quantum systems, including for the central challenge of 2D systems, where even heuristic methods have had

more limited success.

systems, such as those involved in high-temperature

superconductivity' or the fractional quantum Hall
effect”’, is the sheer number of parameters required to give a
complete description of their quantum state. The dimension of the
Hilbert space required to accommodate all such states increases
exponentially with the number of particles, and systems with more
than a few dozen particles already present an insurmountable
challenge for numerical simulation through exact diagonalization.
A simple counting argument reveals that states that can be obtained
as the equilibrium state of a nearest-neighbour Hamiltonian on
a low-dimensional lattice can occupy only a tiny (polynomial)
fraction of this exponential space, and the resulting manifold
has been called the ‘physically relevant corner of Hilbert space™.
This observation by itself is of limited practical use as it does not
provide a workable description of the relevant quantum states. An
important program thus remains to be carried out to provide an
effective map of the physical corner of Hilbert space. First, devise
compact methods to represent the relevant states that also allow
efficient computation of expectation values of local observables.
Second, show that the compact description can itself be efficiently
computed from the Hamiltonian.

In this work we address the second part of this challenge: we
provide the first algorithmic method that is both efficient and
provably correct for finding compact representations of a large
class of many-body systems. The first part of the challenge has
been very successfully addressed in recent years by the use of
tensor networks and their low-dimensional specializations such as
matrix-product states’ (MPSs; see Fig. 1) in one dimension, and
projected-entangled pair states® (PEPSs) in two dimensions. These
impressive successes are directly related to the phenomenon of
entanglement; indeed, a tensor network representation necessarily
implies that the associated quantum state has small entanglement
rank. Justification for this assumption comes from a sweeping
conjecture in condensed-matter physics, called the area law, which
asserts that gapped Hamiltonians have limited entanglement in their

Q fundamental obstacle for the study of quantum many-body

ground states’”. More precisely, it asserts that for any subset S of
particles, the entanglement entropy between S and S is bounded
by the surface area of S rather than the trivial bound of the
volume of S. A seminal result of Hastings® rigorously established
the area law for one-dimensional (1D) gapped Hamiltonians. As
a consequence he proved that the ground state of such systems is
accurately described by polynomial-size MPSs. Finite-temperature
Gibbs states in any dimension are also known to satisfy an area
law’, and have recently been shown to admit a polynomial-size PEPS
representation'® (which implies, but is not implied by ref. 11, an area
law for the mutual information). The area law for ground states of
gapped Hamiltonians in more than one dimension remains a major
open problem.

The second part of the challenge has seen very few rigorous
results. There is essentially a single method used to search for
MPS representations, the density matrix renormalization group'
(DMRG), which has been very successful in practice in its original
setting of 1D systems at zero temperature'>. Much effort has
been devoted to extending the method to, for example, systems
in two dimensions"” or systems out of equilibrium'®, but many
challenges remain'”'. In some cases, including certain instances of
1D gapped systems, however, one will find that the method gets
stuck in local optimum. It has also been demonstrated that a widely
used variant of DMRG, which implements a two-site optimization
procedure, must in the worst case solve NP-hard computational
problems" to completely solve the local optimization problem. This
implies that for such variants efficiency inevitably comes at the
cost of performing ungrounded approximations. To avoid these
pitfalls DMRG researchers have developed an increasing range of
practical heuristics®. Unfortunately, making the right choice of
parameters (such as discretization error, number of sweeps, bond
dimension, initial state) and heuristic inevitably requires some a
priori knowledge, or atleast intuition, on the physical system—a task
that DMRG is arguably designed to solve in the first place. Moreover,
in the absence of guarantees one can never be sure that the solution
returned is a good approximation to the optimum.
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Figure 1| Entanglement and MPSs. A bipartite state |v) € Ha ® Hp has a
unique decomposition |v) :Z]B:1 Ajlaj)|by), with {la;)} (respectively {|b)})
being a family of orthonormal vectors of H 4 (respectively Hg). The
entanglement rank (also called the Schmidt rank) of |v) is the number of
terms, B, in the decomposition, and the entanglement entropy is

Szzjka Iog(1/kj.2). An MPS representation of a state of n qudits is
specified by a sequence of tensors As,...,A,, where A1 € cdxch,

AieCB-1 x C4 x CB for 1<i<n, and A, € CB+1 @ C?. The bond dimension B;
corresponds to the entanglement rank across the (i,i+1) cut.

Our work addresses these drawbacks by providing an efficient
algorithm that in all cases is guaranteed to return an MPS
representation for a very good approximation to the ground state
of any gapped 1D system. Our algorithm makes a single pass over
the chain and provably constructs a polynomial-size representation
for a very close (inverse-polynomial) approximation to the ground
state; and it is guaranteed to never get stuck. Letting N be the length
of the chain, ¢ the gap of the Hamiltonian and § the desired accuracy,
the algorithm runs in time N““poly(N/§), where c(e)=2°"9
is an exponent that increases with the gap but is constant for
constant spectral gap. (See Methods for a description of the precise
dependence.)

To avoid the local minima that have plagued DMRG, we
introduce a new procedure that improves any approximation to the
ground state by acting with an operator, called approximate ground-
state projection (AGSP), that is derived from the Hamiltonian.
AGSPs were introduced recently in the context of analysing the
ground-state entanglement of 1D systems®'. For the algorithm, a
new type of AGSP, called a sampling AGSP, is constructed out of the
local Hamiltonian describing the quantum system. The AGSP has
no analogue in DMRG and is the major new ingredient that allows
our algorithm to systematically avoid the pitfalls faced by DMRG,
including the latter’s difficulties in avoiding local minima.

To better appreciate the approach taken by our algorithm, it
is useful to draw an analogy. Think of the Hilbert space as a
vast lake that is lightly frozen—the rare solidly frozen stretches
corresponding to those states that have a succinct MPS description.
The goal of the algorithm is to pull a sled to a distant island,
representing the actual ground state, during a blizzard. Success
requires navigating a route that at all times keeps the sled on solidly
frozen ice. The low visibility forces the algorithm to map its route
one step at a time. At any iteration, the algorithm restricts its
exploration to a polynomial dimensional subspace of the Hilbert
space, represented by a set of MPSs describing a basis for the space. It
remains on solid ice by keeping the size of these MPS representations
bounded through bond trimming. The dimension of the Hilbert
space that must be explored in each iteration is kept in check by
appealing to a crucial property of 1D systems called decoupling.
The trickiest part is navigation. Unavoidable errors in navigation at
each step can add up to throw the algorithm totally off course in the
exponentially large Hilbert space. The AGSP plays the central role
of navigator, guiding the search and keeping the navigation errors
under control.

Hamiltonian complexity

Inspiration for our results comes from a productive line of work
that has brought the perspective of complexity theory to bear
on problems inspired by condensed-matter physics. The area was
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initiated by Kitaev’s seminal result* showing that the problem
of computing ground states of local Hamiltonians is, in general,
QMA-hard. QMA is the quantum analogue of the class NP, and
it is believed to contain problems that are strictly harder than
NP-complete problems such as 3SAT. A proof of QMA-hardness
provides strong evidence not only that the classical description
of ground states of local Hamiltonians must be hard to find,
but also that no useful small-size description even exists. Further
extensions to 2D lattices®, 1D Hamiltonians* and even translation-
invariant systems® show that in the absence of any further condition
on the Hamiltonian none of these systems is amenable to a
systematic analysis.

These complexity-theoretic results directly clash with the
practical successes described above and suggest a search for
the structural features that delineate the separation between
Hamiltonians whose ground states can efficiently be found, and
those for which the problem is hard. Although it is tempting to
conjecture that the existence of an area law should be a sufficient
condition, this possibility is ruled out by examples of 1D systems
in which the ground state satisfies an area law with only a
logarithmic correction but for which computing any approximating
MPS is as hard as integer factoring®, which is widely believed to
require exponential time: the computational intractability of integer
factoring is a standard assumption underlying much of modern
cryptography including the RSA crypto system.

Recent work by Arad et al.”” showed that the gap condition rules
out such examples. They gave an exponential improvement over
Hastings™ area law bound, and in the process also established that
ground states of gapped 1D Hamiltonians have additional structure:
they can be well approximated by an MPS whose bond dimension
has a sub-linear dependence on n. Combined with the exponential-
time dynamic programming-based algorithm*** this led to a sub-
exponential algorithm for gapped 1D systems. In this work we
demonstrate that the gap condition can actually be used to construct
a provably efficient (polynomial time) algorithm.

The algorithm

The problem of finding an (approximation to the) ground state can
be expressed as a convex optimization problem: mintr(Ho') subject
to tr(o) =1, 0 >0, where o is an n-qubit density matrix describing
the state. As the dimension of o scales exponentially in n, solving this
convex program generically requires exponential time. The driving
idea behind our algorithm is to progressively construct, in a single
left— right pass, a basis for a subspace of polynomial dimension
of the whole space guaranteed to contain a suitable approximation
to the ground state |I"). This contrasts strongly with the usual
approach, taken by DMRG, of performing multiple passes of local
optimization with no guarantee of the quality of the approximation
reached after any number of passes.

The subspace constructed at the ith step is specified by a small
spanning set of states on the first i qudits, each specified by an MPS
of fixed polynomial size. Such a set S is called an (7,8)-viable set for
[T} if there exists a state |¢) € (C*)®" such that |(¢|T")|>1—§ and
such that the reduced density of |¢) on the first i qudits is supported
on Span(S). Here, |¢) is called a witness for S, and § the error of S.
Two other important parameters associated with a viable set S are
its cardinality s, and the maximum bond dimension B for the MPS
representations of the elements of S.

The algorithm iteratively constructs a sequence of polynomial-
size (i,8)-viable sets Sy, ..., S;,...,S,, for suitably small §, from left
to right, extending by one qudit in each iteration. The construction
of Sy = {1} is trivial. Moreover, given S, the ground state can be
efficiently found by solving the convex program outlined above,
where the optimization is over all o supported on the span of S,.
It remains to show how S;_, can be extended to S; while maintaining
reasonable bounds on the parameters of these viable sets. This is
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Figure 2 | Boundary contraction associated with a left-half MPS on the
first i qudits with an open bond.

performed in a sequence of four steps: extension, size and bond
trimming, and error reduction.

The first step, extension, is simple: it replaces S, by the
set S obtained by extending states in S, by taking their
tensor product with a basis of states for the space of the ith
qudit: S{”:={|s)®|j):|s) €Si.1,1<j<d}. This step results in a
multiplicative factor d increase in the cardinality of the viable set.
Although this may not seem like a large increase, left unchecked
it would result in an exponential factor d" over the # iterations. In
the blizzard analogy, this increase in cardinality corresponds to the
accumulating snow that progressively weighs down the sled. The
next step corresponds to shovelling off some of the accumulated
snow from the sled.

The goal of the second step, size trimming, is to reduce the
cardinality of S{" to create a smaller set S{”. To achieve this we
rely on the notion of boundary contraction of a state, which
captures information representing how the components of the state
associated with the left and right halves of the chain are combined
together (see Fig. 2). Subject to a fixed boundary contraction, the
problem of finding a state of minimal energy can be decoupled into
two disjoint problems—to the left and to the right of the cut.

If we knew the correct boundary contraction, associated with the
ground state |I), it would suffice to include in S;” any state in s
that has that boundary contraction and has minimal energy among
all such states. As the correct boundary contraction is unknown we
need to include the above for every possible boundary contraction,
taken from a suitably discretized e-net. This approach, already taken
in the exponential-time algorithm®?**, encounters a major difficulty:
the size of the e-net is necessarily exponential in the dimension
of the bond across sites i and i+ 1, and the 1D area law® only
guarantees a polynomial bond dimension for inverse-polynomial
approximations to |I").

To overcome this difficulty we appeal to a stronger structural
property that follows from existing proofs of the 1D area law**’: for
any given cut and constant 7 there exists a state having a constant
bond dimension

B, =exp(O((1/n)log’ dlog(1/n)))

across that cut (and polynomial across all others) that is an 7-
approximation to the ground state |I"). This implies that, for the pur-
pose of obtaining a constant approximation, it suffices to consider
a polynomial-size net over the space of boundary contractions with
constant bond dimension B. Letting N be such a net (we give an
explicit construction in the Supplementary Information), for each
X e N, we find a state supported on Span{S"} ® C* of minimum
energy among those states whose boundary contraction is close to
X. This can be done efficiently by solving an appropriate convex
program (see Methods for a complete description of the procedure).

Asaresult, both the bond dimension B of MPS representations in
S and the approximation error § have increased: with our choice
of parameters § is now a constant, § =1/12. In the blizzard analogy,
this respectively corresponds to the sled now being on thinner ice
(increased B) and it being pushed off course (bigger §). The goal of
the remaining two steps is to reset these parameters.
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In the third step, bond trimming, the algorithm trims each of the
bonds 1,...,i— 1 of every |u) € S{” to some fixed polynomial by
iteratively keeping only the components associated with the largest
Schmidt coefficients across each bond. Keeping a sufficiently large
polynomial number of coefficients does not affect the approxima-
tion error § by too much. The resulting set S;” is a (i, 1/2)-viable set
whose cardinality and maximal bond dimension are both bounded
by fixed polynomials. With the sled back on solid ice, we turn to the
most challenging task: controlling navigation error.

At this stage, the viable set S contains the left Schmidt vectors
of a §-approximation |) to the ground state |I"), with § =1/2. To
complete the fourth step it remains to improve the approximation
to inverse polynomial. For this the key idea is to use a well-designed
operator K, the AGSP. This AGSP is the main workhorse of the
algorithm. It has two important properties.

First, for any vector |y) such that [(I'[1/)| > 1/2 it holds that
KT|K|¥)| =1 —1/poly(n). Second, the application of K to any
MPS with bond dimension B can be performed efficiently and
results in an MPS with bond dimension at most p(n)B, where
p(n) is a fixed polynomial, depending only on the inverse gap
e~' of H and the local dimension d. We give a new efficient
construction of an AGSP, the sampling AGSP, that satisfies both
conditions. The construction is described in the Methods; it is
based on a randomized sampling procedure applied to the term-by-
term expansion of the (appropriately scaled) operator (Id — H /n)".
We will apply the AGSP to each state in S;”. Doing so requires
some care, as a priori K acts on the whole chain, but states in S.”
are only defined on the first i qudits. For this we decompose K
across the (5,i+1) cut as a sum K =3 A; ® B; over polynomially
many terms, such that furthermore each A, which acts on the
first i qudits, has polynomial Schmidt rank across every cut.
Using this decomposition the set SW= {Ajls) 1 1s) € S} can be
efficiently computed and shown to be a (i, = 1/poly(n)) viable
set. This completes the fourth and last step of the ith iteration of
the algorithm.

Concluding remarks

The running time of our algorithm, although polynomial in
the system size, is hardly practical as the exponent of this
polynomial given by our analysis is very large. An important
path for further research consists of improving this exponent and
devising a practically efficient method that provides the same
theoretical guarantees. In this respect it would be worthwhile to
explore whether some of the new components introduced in our
algorithm—such as the use of the sampling AGSP or the notion of
viable sets—could be folded into existing heuristic algorithms, such
as DMRG, to improve their success rate on difficult instances. For
instance, the use of the sampling AGSP suggests a direct method to
improve the quality and convergence speed of DMRG by randomly
applying terms from the Hamiltonian to the solutions constructed
at each step. At a high level this amounts to applying an efficient,
approximate variant of time evolution, for short times, to the partial
solutions, and suggests an efficient composite between DMRG and
the iTEBD algorithm™.

The most promising direction for further research is the
application of the ideas introduced here to the study of higher-
dimensional systems. In particular the use of the sampling AGSP as
a major driving force in our algorithm coupled with the recent use
of different AGSPs to prove an improved area law for 1D systems®
firmly establishes the AGSP as a powerful new tool. This suggests
a new approach, with AGSPs playing the central role, to obtaining
algorithms for 2D systems, where despite great recent progress**>'~*
the methods have enjoyed limited success as compared with their
1D counterparts.

In more than one dimension the formalism of MPSs has been
fruitfully generalized to PEPSs (refs 40,41), which are conjectured
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to capture the physics of quantum gapped phases®. States that have
PEPS representations satisfy an area law by definition, and a parent
Hamiltonian can be associated with any PEPS (ref. 43). This puts
us in the same situation as in one dimension, under the a priori
assumption that an area law holds. A substantial difference between
PEPSs and MPSs, however, is that the former do not seem to allow
the efficient computation of local observables. This opens up a
number of challenges for which the algorithmic ideas introduced
in this work may prove helpful—for example, the 2D situation can
naturally be mapped to a 1D problem by applying the transfer matrix
formalism to represent a 2D network as the result of successive
compositions, along the vertical axis, of a horizontal 1D matrix-
product operator*.

Methods

Methods and any associated references are available in the online
version of the paper.
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Methods

Throughout, we consider a Hamiltonian H =3~ H; acting on # d-dimensional
qudits, indexed 1,...,n from left to right. Here H; acts on qudits {i,i+ 1} and
satisfies 0 < H; <Id. We assume that there is a constant gap & :=¢&, — &, between the
energy &, of the ground state |I") and the energy ¢, of the first excited state.

The canonical basis of C* is denoted by {|1),...,|d)}. We write A for the
Hilbert space (C*)®" corresponding to the # qudits and H,;; for the Hilbert space
of the subset of qudits with indices in [i,]; we also write H; for H;;. For any
density matrix p acting on H, tr;;; o will denote the tracing out of the qudits with
indices in [7,j].

Vectors in (C?)®" will be represented as matrix-product states (MPSs), which
can be specified as a sequence of tensors A,, ..., A,, where A, € C? x C1,
A;€CPi1 x C? x CPi for 1 <i<mn,and A, € C’1 ® C?. We will refer to B; as the
bond dimension across cut (i,i+1).

The constant ¢, := (¢/169)* will play a particular role in our analysis. We note
that it satisfies the following inequalities:
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We show the following.
Theorem. Let H be an n-qudit 1D local Hamiltonian with minimal energy &,
ground state |I"), gap €, and § > 0. There is an algorithm that runs in time
n @09 poly(n/8), where c(d, €y, €) =200 4/9 1 O(g, /&), and with probability at
least 1 —1/poly(n) returns an MPS representing a state W) such that
(WT) =1-3.

Algorithm description and analysis. We recall the definition of a viable set.
Definition. Given § >0 and an integer i, 1 <i<n,aset SC (C*H® is said to be
(i,8)-viable for |T") if there exists a state |¢) € (C?)®" such that |(¢|I")|>1—8 and
such that the reduced density of |¢) on the first i qudits is supported on Span(S);
we shall call such a state |¢) a witness for S and § the error of S.

We will further say that the set S is (i,s,b,8)-viable for |I") if |S| <s and each
v €S can be described by an MPS with maximum bond dimension at most b.

In the ith iteration our algorithm constructs a (i,s, b, ¢, /n)-viable set, where ¢, is
a constant depending only on ¢ that satisfies (1). The four steps in each iteration
are designed to update the four parameters of the viable set. As we will show, these
updates always satisfy the condition that the parameters s and b are each bounded
by some fixed polynomial in 7 of degree independent of the iteration i.

The initialization step i=0 is trivial, as the set {1} is a (0, 8)-viable set for any
§>0,b>0and s> 1. Let 1 <i<n be an integer, and S,_, the (i—1,s,b,c./n)-viable
set obtained at the end of the (i — 1)st iteration of the algorithm, where s and b are
both polynomial in 7. In the following we describe how each of the four steps of the
algorithm can be performed efficiently, and track the changes in the parameters of
the viable set.

Extension. The first step in the ith iteration involves extending the set §;_; to an
(i,ds, b, c, /n)-viable set Sf” as follows.

Algorithm step 1: extension
Let S, , bea (i—1,s,b,c./n)-viable set.
L. Return S := {[s)[j): |s) €Sy, 1<j<d}.

The computation of Sf” from S;_, can clearly be done efficiently: MPS
representations for vectors in the latter are constructed as the concatenation of an
MPS for a vector in the former with an independent tensor corresponding to the
additional basis state |j). We refer to the Supplementary Methods for a formal proof.

Lemma 1. 8" is an (i, ds, b, ¢, /n)-viable set.

Size and bond trimming. Given 1 <i <n, we write #, for the space H;,; and Hp
for the space H;;1,). We also let H,=H,+---+H,, and Hr=H;;, +---+H,_;, so
that the total Hamiltonian H = H; + H; 4 Hy, where H; is the only term acting
across the (i,i+1) cut.

Definition. Given a state of Schmidt rank B and Schmidt decomposition across the
(i,i+1) cut given by |v) ZJ, ila;)1b;), let U, : C* — H, be the partial isometry
specified by U, |j) =b;). By abuse of notation we also write U for I ® U when
acting on H ) for k<i+1.
o Define the left state of |v) to be Is(v) :=U|v) Z
o Define the boundary contraction of v as

jlaj)|j) e H, ®C*

Then cont(v) is a density matrix supported on H; ® C%.

We will make use of a n-net over the unit ball of boundary contractions for the
trace norm, for n=c,/(2n). Such a net can be efficiently constructed by discretizing
a region of C® ® C? containing its unit ball, leading to a net N"= N/, of size
|N'|= (Bd /n)*®»"  For each X € N, by solving a suitable convex program we find
a state on H; ® C*: of minimum energy among those states whose boundary
contraction (reduced density matrix on H; ® C%«) is close to X. The new viable set
is then the union over all elements of A of the left Schmidt vectors, on H,;, of these

states. Unfortunately, the dimension of this convex program scales with the
dimension of H;, which is exponential in #, and to solve it efficiently we must
restrict the optimization to states supported on a subspace S of
polynomial dimension.

Algorithm steps 2 and 3: size trimming and bond trimming

Let S be the (i,ds, b, c. /n)-viable set constructed as a result of the extension

step.

2. For each X e \V, solve the following size trimming convex program, whose
variable is a density matrix o supported on the space Span{S\"} ® C? C

H @CH: i1
min Z tr(H;0) (2)
j=1
such that ”tr[l ..... (U)_X|‘1§?;
tr(c)=1,0>0
Let |u) =37, |u;)|j) be the leading eigenvector of the solution ¢ to this

program, and let S be the set containing the union of all {lu;)},
obtained for each net element X.

3. Trim each of the bonds 1,...,i—1 of each |u) € 512) to p,(n), where p,(n)
is a polynomial defined in Claim 3 below. Include the MPS representation
of all resulting vectors in S;”.

We note that because the set S!"’ contains vectors specified using
polynomial-size MPSs, for any X a polynomial-size representation for the optimal
solution o to the convex program (2) can be computed efficiently. We refer to the
Supplementary Methods for more detail.

The following two lemmas state the properties of the sets S and S For
proofs we refer to the Supplementary Methods.

Lemma 2. If S\ is a (i,ds, b, (c. /n))-viable set then S is a
(i,p1 (n), dsb, (1/12))-viable set with p, (n) = B, (4[B,. dn/c. ]+ 1)1,

The key property used to bound the error incurred in the trimming step is that
the state being trimmed is close to a state with low Schmidt rank, as follows from
the strong form of the area law. Let 7 (1) be a polynomial such that there exists a
vector |v) with Schmidt rank r(n) such that |(v|T")| > 1 — 1/48 (as is shown to exist
in Lemma 5 from the Supplementary Methods).

Lemma 3. The set S!” produced at the end of step 3 of the algorithm is a
(i,p1(n), p,(n),1/2)-viable set, where p,(n) :=48nr (n).

Error Reduction. The final step of the algorithm consists of reducing the error of
the viable set, transforming the (i, p, (1), p,(n), (1/2))-viable set produced as a result
of the previous step to a (i, p(n)p; (n), p(n)p,(n), (c./n))-viable set, where p(n) is a
fixed polynomial.

Algorithm step 4: error reduction

Let S be the set constructed as a result of the size and bond trimming steps

described in the previous section.

4. Randomly select a sampling AGSP K (defined below) with m and [ as in
Corollary 1. Decompose K as K =3, A; ®B;. Return 5/ :={A]s) :|s) € §;”'}.

That this step can be carried out in polynomial time follows from the properties
of K as detailed below.

Lemma 4. For any choice of polynomial g(n), there exists a polynomial p(n) such
that Step 4. described above maps any given (i,s, b, (1/2))-viable set S into an
(i,p(n)s,p(n)b,c. /q(n))-viable set §' with success probability 1 —1/x°.

The sampling AGSP. Our starting point is an operator A that approximates the
projection onto the ground state I, defined as

A:=<1—1% <1*§>)

The operator K is then formed from a polynomial sample of the exponentially
many terms obtained by expanding the mth power in the definition of A. Using a
matrix-valued Chernoff bound, this polynomial sample can be shown to provide a
close approximation to A with high probability (see Proposition 1). We now
proceed with the details.

First note that A is positive semidefinite, has operator norm 1 and satisfies
A|I")=|T"). Furthermore, for any polynomial q(n), fixing
m=0((1/e)nlog(q(n)/c.)) we have that for any |['*) orthogonal to the ground
state |I') and such that |||T+)|| =1,

1
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—e/n\" P Lnlog 42) c.
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—H,), C:=1/(1—¢,/n). For any integer m, expand

A=Cm% Z Py, ﬁpx, (3)
j=1

T=(iy eenimn ) E{ L)

Write P;:=(1

with P, :=
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Definition. Define a sampling AGSP operator K :=C"(1/£) Ele Py, to be the
average of £ terms P;, chosen uniformly at random from all terms in the
expansion (3) of A.

We note that we may not be given &, and therefore cannot specify the constant
C explicitly. However, we observe that any multiple of K will suffice for use within
the algorithm; only the resulting vectors need to be normalized. The proof of the
following is based on a variant of the Matrix-valued Chernoff bound.
Proposition 1. For any polynomial g(n), there exists m=O((1/¢)nlog(q(n)/c.))
and £ =n®/* (where the implied constants may depend on the degree of q(n))
such that with probability at least 1 —1/n° the sampling AGSP operator K
defined above has the following properties: 1. |[K — Al < (1/g(n)), 2. Every
projection P; appears no more than « log(n) times in any term P; of K for some
k=0(g,/¢).

Proof of main theorem

With the four steps (extension, size trimming, bond trimming, and error
reduction) of the algorithm established, the proof of our main theorem follows
without difficulty.

Proof of main theorem. Lemmas 1-4 together show that the succession of
the four steps of the algorithm detailed in the previous sections transforms any
viable set S;_, with parameters (i — 1, p(n)p, (n), p(n)p,(n),c. /n) into a viable
set S; with parameters (i, p(n)p; (n),p(n)p,(n),c./n), where p, p; and p, are all
fixed polynomials independent of i. Moreover, this transformation can be
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executed in probabilistic polynomial time, with a success probability at least
1—(1/n%).

Starting from the set {1}, which is trivially a (0,c, /n)-viable set, and proceeding
inductively we efficiently construct an (n, p(n)p, (n), p(n)p,(n),c. /n)-viable set,
with success probability at least 1 — (1/n%). From this viable set we show how to
obtain an inverse-polynomial approximation to the ground state.

For this we first observe that the error reduction step in the final iteration can
be modified to produce a (n,p'(n)p, (n),p' (n)p,(n),c. /(np(n)))-viable set S, for any
fixed polynomial p(n) of our choice; for this it suffices to set g(n) = np(n) instead of
q(n)=n in this step. Note that given the index i=n, the condition that S is
(n,c. /(np(n))-viable simply means that there is a ¢, /(np(n)) approximation to the
ground state supported on S. Such an approximation has energy at most
&+ (1/p(n)), and can be found by solving the convex program

n—1

min Z tr(H; o)
j=1
tr(c)=1,0>0

which is analogous to (2) but for the omission of the constraint on the boundary
contraction. By Lemma 10 from the Supplementary Methods, the leading
eigenvector |u) of an optimal solution o satisfies [(u|I")|>1—1/p(n), as
required. Moreover, o and |u) can be computed efficiently, as detailed in

the Supplementary Methods.
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