
--- 

Efficient and Secure Pseudo-Random Number Generation. 

(Extended Abstract) 

Umesh V. Vazirani * 

University of California, Berkeley. 

Abstract :  Cryptographically secure pseudo- 
random number generators known so far suffer 
from the handicap of being inefficient; the most 
efficient ones can generate only one bit on each 
modular multiplication (n2 steps). Hum, Blum 
and Shub ask the open problem of outputting 
even two bits securely. We state a simple condi- 
tion, the XORCondition. and show that any gen- 
erator satisfying this condition can output l o g n  
bits on each multiplication. We also show that 
the l o g n  least significant bits of RSA, Rabin’s 
Scheme, and the z2 mod N generator satisfy 
boolean predicates of these bits are secure. 
Furthermore, we strengthen the security of the 
z2 mod N generator, which being a Trapdoor 
Generator, has several applications, by proving 
it as hard as Factoring. 

1. Introduction. 

Recently, there has been a lot of interest in 
provably “good“ pseudo-random number gen- 
erators [ lo ,  4, 14, 31. These cryptographically 
secure generators are “good“ in the sense that 
they pass all probabilistic polynomial time sta- 
tistical tests. However, despite these nice pro- 
perties, the secure generators known so far 
suffer from the handicap of being inefficient; 
the most efficient of these take n2 steps (one 
modular multiplication, n being the length of 
the seed) to generate one bit. Pseudo-random 
number generators that are currently used in 
practice output n bits per multiplication (n2 
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steps). An important open problem was t o  out- 
put even two bits on each multiplication in a 
cryptographically secure way. This problem was 
stated by Blum, E l m  & Shub [3] in the context 
of their s2 mod N generator. They further ask: 
how many bits can be output per multiplica- 
tion, maintaining cryptographic security? 

In this paper we state a simple condition, 
the XORCondit ion and show that any generator 
satisfying this condition can output l o g n  bits 
on each multiplication. We show that the XOR- 
Condition is satisfied by the logn least 
significant bits of the s2-mod N generator. The 
security of the s2 mod N generator was based 
on Quadratic Residuosity [ 3 ] .  This generator is 
an example of a Trapdoor Generator  [13], and 
its trapdoor properties have been used in pro- 
tocol design. We strengthen the security of this 
generator by proving it as hard as factoring. 
We also prove the XOR-Condition for logn least 
significant bits of RSA/Rabin Schemes. Our 
proofs are based on recent developments in 
RSA/Rabin Scheme bit security. We present a 
history of these recent developments in the 
next paragraph. More recently, by a different 
proof Alexi, Chor, Goldreich & Schnorr [ 11 also 
proved the simultaneous security of logn least 
significant bits of RSA/Rabin Schemes. Previ- 
ously, Long & Wigderson [7] showed how t o  
extract l o g n  bits a t  each stage from the gen- 
erator of Blum and Micali [4]; however, this gain 
in efficiency is not enough to compensate for 
the extra time taken by this generator ( 0(n3) 
steps for each stage). 
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The RSA-bit security problem has not only 
yielded several valuable proof techniques, but 
its two year history is also revealing in how 
mathematical progress is made - with succes- 
sive partial solutions, simplifications and 
changes in point of view. 

The first result on RSA bit security was 
proved by Goldwasser, Micali & Tong [6]. They 
proved that any oracle for RSA least significant 
bit (an efficent procedure which computes the 
least significant bit of the plaintext message 
when input the ciphertext) could be efficiently 
used to decrypt RSA messages, thus showing 
that RSA least significant bit is hard to com- 
pute unless RSA is easy to decrypt. However, 

1 the oracle was allowed to err  on only __ logN 
fraction of the inputs. 

The next breakthrough came with the 
"binary gcd method" of Ben-Or, Chor & Shamir 
[ Z ] ,  which has been fundamental to all future 
developments. This procedure to decrypt RSA, 
probes the oracle at pairs of points, to deter- 
mine the least significant bits of small mes- 
sages. Each pair of probes is correct with pro- 
bability 1 / 2 + ~ ,  provided the oracle is correct 
on 3 / 4 + ~  fraction of inputs, where E is any 
positive constant. They also showed that with 
more accurate oracles (7 /  8+e correct) for 
other RSA bits they could decrypt RSA. 

A t  this stage i t  was not clear if even 3 /4  
security could be proved for the least 
significant bit. This question was resolved by 
Vazirani & Vazirani [12]. They showed that by 
g u e s s i n g  the least significant bits of loglogN 
random small messages (which can be done in 
polynomial time by considering all loglogN pos- 
sibilities), they could randomize the oracle 
probes thereby decrypting with a less-than-3 /4  
oracle. They also give a method for extending 
the proof of security to IoglogN least significant 
bits and the xor's of all non-empty subsets of 
these bits. Goldreich [6] analyzed their com- 
binatorial problem exactly and showed that 
less-than-3/4 could be interpreted as ,725 + E .  

In the next major development, Schnorr & 
Alexi used the strong Chernoff bound along with 
guessing least significant bits of loglogN ran- 
dom messages to obtain a decryption pro- 
cedure that used a single  oracle p r o b e  for com- 
puting the least significant bit of small mes- 
sages. Thus they proved 1/ 2+s security for any 
constant E .  However, this security was still not 
good enough for using RSA for direct pseudo- 
random number generation - 1/ 2+ 1/ nt secu- 
rity was needed. 

By guessing 1oglog.N most significant bits of 
only two random numbers, Chor & Goldreich [5] 
showed how to generate l o g f l p a i r w i s e  i n d e p e n -  
d e n t  n u m b e r s ,  whose least significant bits were 
known. Thus they could ask the oracle logN 
pairwise independent questions Then using the 
Chebychev inequality, they show that a 
I/ Z+ I/nt oracle wi l l  suffice. 

2. Extracting Two Bits from the z2 mod 
N Generator: 

The zz mod N g,enerator [3]  is the following: 
On input N ,  x o  (where N is the product of two 
distinct primes eac:h congruent to 3 mod 4, and 
20 is a quadratic residue mod N), it outputs 
bob,b2 ... where hi =pari ty(z i )  and 
xi+l = xi2 m o d  N .  Its security was based on 
Quadratic Residuosity. 

A variant of this generator outputs 
bi = l o c a t i o n ( x t ) ,  where l o c a t i o n f x )  = 0 if 
z < ( N - 1 ) / 2 ,  1 if z 2 ( N - - 1 ) / 2 .  The crypto- 
graphic security of this generator was also 
based on Quadratic Residuosity [3]. However, 
the generator which extracts parity as wel l  as 
location at each stage may not be cryptograph- 
ically secure, because revealing p a r i t y  (zi) may 
make locat ion  (xi) predictable. Blum, Blum and 
Shub conjecture that this generator is also 
cryptographically secure, and ask the open 
problem: how many bits can be extracted at 
each stage, maintaining cryptographic secu- 
rity? 

In this section we will prove their conjec- 
ture. In section 3 we will answer the open prob- 
lem by giving a simple condition, the XOR- 
Condition. We will prove that l o g n  bits 
(n = IN I ) can be extracted at  each stage from 
any generator satisfying this condition. We will 
also prove that the zz mod N generator as well 
as the generators based on RSA and Rabin's 
scheme satisfy this condition. 

The following theorem will also give an 
intuitive idea for the general results of section 
3, for which we will need to introduce some new 
definitions. 

The 2-Bit z2 mod N generator on input 
N ,  xo  ( N  and zo as before), outputs a o b o a l b l  ... 
where =pari ty(xi) ,  and bi = l oca t ion (x i ) ,  
zi+l = xi2 m o d  N. 
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Theorem 1: The '?-Bit x2 mod N generator is 
cryptographically secure. 

Proof: Su.ppose the 2-Bit x 2  mod N generator 
is predictable to the left. There are two cases: 

Case 1: I t  is predictable a t  an odd position, i.e. 
th.ere is a probabilistic polynomial time pro- 
cedure, P, which predicts b - ,  ' with probability 
1 /2  + E ,  given aoboalbl ...,. Now we can use P 
to obtain location(z-,): given any zo, simply 
generate the sequence aoboa,bl ... , and use P 
to obtain b - ,  = location ( x - ~ ) .  Contradiction, 
since location is secure under the Quadratic 
Residuosity Assumption [ 3 ] .  

Case 2 I t  is predictable a t  an even position, i.e. 
there is a probabilistic polynomial time pro- 
cedure, P, which predicts a-l with probability 
1/2 + E ,  given b-laoboa,bl ... . Given xo, we 
can generate aoboa,bl , but not k1. Notice 
that P can be arbitrarilly bad a t  predicting a-l 
if i t  is not provided with the correct bit b-l. So 
instead we will use P to obtain two procedures, 
Pl  and P2, such that either P I  has an 5- 
advantage in guessing parity(x-l)  or P, has an 
-advantage in guessing 2 
parity(z-,)  ZOT location(x-l). 

Let  U be the bit output by P on input 
Oaoboalb, , and w be the bit output on 
laoboalbl . If U = 'U, PI outputs U ,  else i t  out- 
puts the flip of a fair coin. On the other hand, 
P2 outputs the flip of a fair coin if U = w ,  else it 
outputs U (in this case, 
U = (0 ZOT U )  = (1 xor v)). Notice the following 
facts: 

2 

€ 

1) On each input, xo, exactly one of the two 
procedures, P I  and Pz uses the output of P, 
and the other one flips a coin. 

2) Whenever P gives the correct answer, so 
does the procedure using its output, the other 
procedure, of course, fiips a coin 

S o  the total number of correct answers out- 
put by bot,h procedures is the number of 

is the unique square root of xo (mod N), 
which is a quadratic residue. a-l =parity(x-l)  
and b - ,  = locatiDn(z-l). 

correct answers output by P plus the number 
of correct answers output by the coin-flips The 
fraction of total correct answers is 
(I/ 2 + c) + I/ 2 = (1 + c)  So a t  least one of 
the two procedures must be correct on 
1/ 2 + E /  2 fraction of inputs In Theorem 3, we 
will show that parity(z- ')  ZOT l ~ c a t i o n ( z - ~ )  is 
also secure, thus contradicting the existence of 
P I  and P, and therefore P 

3. The XOR-Condition & Relative Secu- 
rity of Bits. 

The difficulty in outputting two bits b , ( z )  
and b 2 ( x )  at each stage (and the corresponding 
core of the above proof) lies in showing that 
there is no procedure that has any advantage 
in outputting bit b , ( z ) ,  even though it is given 
bl(x)  for free, i.e. in showing the relative secu- 
rity of b,, given b,. In general, in order to out- 
put k bits securely at  each stage from a 
pseudo-random number generator, the main 
fact to be proved is that for all i < k ,  there is 
no procedure that outputs bit b i+l (x )  given bits 
b l (x) ,  . . . , b t ( z ) .  In this section we shall prove 
that the XOR-Condition suffices to prove the 
relative security of these bits. 

Blum & Micali [e] give sufficient conditions 
for using a one-way function and a boolean 
predicate for cryptographically secure pseudo- 
random number generation. In the past the 
security of boolean predicates (bits) has been 
proved by assuming the intractability of the 
underlying one-way function (e.g. in proving the 
security of RSA least significant bits). There 
are several forms for these intractability 
assumptions (in terms of curcuit complexity, or 
Turing machine complexity, etc.). To make our 
theorems cleaner and independent of the 
nature of the intractability assumption, we 
shall in fact define the boolean predicate to be 
secure i f  the problern of inverting the 
underlying one-way function can be reduced in 
probabilistic polynomial time to the problem of 
computing the boolean predicate with a non- 
trivial advantage. We will require the reduction 
to be done uniformly (i.e. by the same Turing 
machine, for all N). As  a result, any reasonable 
intractability assumption for the underlying 
one-way function will translate into a similar 
security for the boolean predicate. Since this 
reduction process is the only known, technique 
for proving bit security, the proposed 
simplification does not sacrifice generality for 
all practical purposes. 
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First, we define formally the underlying one- 
way function: 
let N be a set of positive integers, the p a r a m e -  
f e r  v a l u e s ,  and for each N E N, let n = IN1 and 
XN C [O,lIn be the d o m a i n .  We will assume 
that a random element of XN can be generated. 
E N :  X N  -> XN is the one-way function with 
parameter N. 
b :  (N,x) -> l O , l ]  is a boolean predica te  com- 
putable in prob. poly. time. 
Definition: Oracle Ob,N has an 1/2 + E advan- 
tage in computing the boolean predicate b, if 
for 1/2 + E fraction of domain elements x E XN, 
Ob,N outputs b(x) on input EN(x). 
Definition: Boolean predicates b l , .  . . , bk(n) are 
inversion secure if for each t > 0 there is a Las 
Vegas Algorithm T that runs in prob. poly. time: 

where Obi,N is a 1 /2  + l/nt advantage oracle 
for bi with respect t o  N. 
Definition: Oracle UN has a 1 / 2  + 2: advantage 
for boolean predicate b, relative to bl, . . . ,bl .- l  if 
for. a t  least 1 /2  + c fraction of x F X N ,  

The behavior of ON is unspecified, and may be 
arbitrarily bad, if any of the 1-1 bits is 
incorrectly input. 
Definition: b, is secure relative to b if 
for each t > 0, there is a Las Vegas algorithm T 
which runs in polynomial time: 

where 0, is a 1/2 + l /nt  advantage oracle for 
b, relative to b ,,.. ., bl-,. 

[ i , E N ( ” ) ]  = x. ob, .N 

0, [ E N  (2 ) 1 (Z ) , . . . I b ~ T i  (Z ) ] = b, (2 ) . 

. . , bl 

T o N I E N ( Z ) ]  = x 

Notice that T can use the oracle effectively 
only if i t  can guess correctly each of 
b , ( z )  ” .  bL- , ( z ) .  But in our case, these 
boolean predicates are already inversion 
secure. For this reason, proving relative secu- 
rity (i.e. the existence of T) is considerably 
more difficult than proving simple bit security. 
We now give the XORCondition, and show (in 
Theorem 2) how i t  yields a proof of relative bit 
security from simple bit security. 

The XOR-hndition: Bookm predicates 
b l  bk satisfy the XOR-Condition if the XOR 
of each on-empty subset of these predicates is 
inversion secure 

Proof: Suppose th,& ON is a 1/2 + l/nt advan- 
tage oracle for bi relative to b l , .  . .  .,bi-,. Let T 
be the efficient procedure in the definition of 
the XOR-Condition for b,,..,,bk(n). Then T’ is an 
efficient Las Vegas algorithm which uses the 
oracle 0, to invert .EN (see explaination at the 
end of the procedure). 

T’: On input N, i, E(x); 
o‘N <- Coristruct-Orjacle[ ON, i-1, 1/nt ] ;  
R u n  T with 01-acle 0 to invert E N .  

end; 

Construct-Oracle: On input ON,  j, E ;  

If j = 0 then return ON 

Else, let U = O N I E ’ ( Z ) ,  b l , . .  ., b j - l ,  11 
v =  
Oracle O , [ E ( z ) , b ,  ,..., b jV1]  = 

0, [E(“ 1, b 1 ,  . . . I b j  - 1901 ; 

U if u = v ,  
the  f l i p  oaf a f a i r  c a i n  o therwise  

v if u f v ,  

i 
Oracle 0 2 [ E ( z ) , b l  ,..., bj-l] = 

f l a p  o f  a f a i r  c o i n  otherwise’ 
Sample the two oracles on 8c2Logn ran- 
dom elements of X N ,  to determine the 
fraction of correct answers given by each. 
If 01 gives atleast 112 + a / 4  fraction 
correct answers then 
return(Construct-Oracle[ 0,, j-1, c/ 41). 
Else return(Construct-Oracle[ a,, j-1, 
E /  41). 

end. 

T’ first calls the recursive procedure 
Construct-Oracle. By a proof similar to that of 
Theorem 1 either there is an oracle having 
1/ 2+ 1/ 2nt -advantage for bi relative to 
b ,  . . . b+,+ or Ibere is an oracle having 
1/ 2 + I /  2nt-advantage for bi-l XOR bi rela- 
tive to b ,  . . bi-,. Moreover, sampling the 
two oracles a polynomial (8nZ t logn)  nurnber of 
times, Construct-Oracle can determine with 
hlgh probability (.I- 1/ 2 l o g n )  which of the two 
oracles has the advantage. Continuing this pro- 
cedure i-1 times, Construct-Oracle will obtain, 
with probability 3. 1/2, a I/ 2 + l/nt’c- 
advantage oracle for the XOR of some subset of 
b ,  . ’ .  bi. ’I” can now use this oracle to  invert 
E N .  

Theorem: Let k(n) = O(logn) Let b,,  I bk n)  
be boolean predicates which satisfy the XU&- 
condition Then for every 1 < kfn), b, is secure 
relative to b 1, ,btd1 
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4. Proving the XOR-Condition, and 
Improving the Security of the x2-mod N 
Genera tor .  

In this section we state the theorems on the 
XOR-Condition, and briefly sketch the main 
ideas of their proofs Detailed proofs will follow 
in the final paper. 

Theorem 3: The parity function of the x2-mod N 
generator is as hard as factoring, i.e. for any t 
> 0, an oracle which has a 1/2 + nt advantage 
in guessing pa?-ity(x) on input x2 m-od N can be 
used to fqctor N. Here x is the unique square 
root of x2 mod N which is a quadratic residue. 

By modifying the algorithm of [l], we show 
how to use the parity oracle to extract square 
roots mod N efficiently The main difficulty is 
that the parity oracle gives the least sigruficant 
bit of the square root which is a quadratic resi- 
due. Thus on query x2 mod N, if x is a quadratic 
residue mod N, the oracle will give Isb(x). Else, 
it gives the complement. In some sense the ora- 
cle gives the Isb(x) encrypted within the hard 
function - quadratac residuosity. How can the 
oracle's answers be interpreted correctly? The 
key idea is that a parity oracle w t h  a small 
advantage can be used to  implement a resi- 
duosity oracle which is correct with 
overwhelming probability [3]. T h s  residuosity 
oracle may be used to '*decrypt" the answers of 
the parity oracle. 

This proves that the location function is 
also as hard as factoring since a 1/2 + l /nt  
oracle for location can be converted to a 
I/ 2 + 1/ nt oracle for parity. 

parity(x) = O iff location(x/2) = 0. 

Thearem 4: The function parity '*.or location of 
the z2-mod N generator is as hard as factoring. 

We simply note that in the decryption algo- 
rithm [ 11, we already know the location of the 
numbers we query about. So the oracle for par- 
i t y  xor Location is in effect giving us parity, 
which is sufficient for decryption. 

Thearem 5: For each non-empty subset S, of 
the loglogN least significant bits, of the z2-mod 
N generator: obtaining a 1/ 2 f l /nz  advantage 
in guessing the XOR of these bits is as hard as 
factoring. 

The idea presented in [ 121 will suffice along 
with the decryption algorithm [ 11. Let the most 
significant bit being considered in S be the kth 
bit, k 5 LoglogN. Instead of running the gcd 
algorithm on "small messages" in the interval 
[ - z N , s N ] ,  we will choose the small messages in 
the interval [-EN/ 2k-1, E N /  Z k - l ] .  Now, for any 
x in this smaller interval, lsb(x)= 1 iff XORZk-Ix 
=1 because the k-1 least significant bits of Zk-' 
are all 0's.  So ,  in order to obtain the lsb of a 
number in the interval [ - E N /  Zk- ' ,  E N /  Z k P 1 ] ,  
we simply multiply i t  by Z k - l ,  and run the 
modified algorithm of Theorem 3. In a similar 
manner, we can prove the XOR-Condition for 
RSA and Rabin Scheme also: 

S 

Theorem 6: For each non-empty subset S, of 
the loglogN least significant bits, of RSMRabin 
Schemes: obtaining a 1/ 2 i- 1/ nt advantage in 
guessing the XOR of these bits is as hard as 
decrypting RSA/f actoring. 

5. Going Beyond l o g n  Bits. 

How many bits can we hope to extract 
securely on each multiplication? We first make 
two simple observations Certainly not. all R. 

bits Because then all boolean predicates of z 
will be secure even though E ( s )  I S  given But, 
for example for , we know that 
Jacobi Symbol(x) = Jucobi  Symbol (E(x) ) ,  
which is efficiently computable Secondly, 
notice that in all the proofs, logn can be 
replaced by cEogn, for any constant c . 

In proving bit security, we limited the 
reductions (algorithms to decrypt the one-way 
funclton, using oracle for the bit) to be proba- 
bilistic polynomial time. If the computational 
complexity of the underlying one-way function 
is much more than a polynomial, then there is 
no reason to put this restriction For example, 
if the intractability asssumption on the under- 
lying one-way function states that its computa- 
tional complexity is o(nLogn), then the reduc- 
tion can be allowed O ( n L O p )  time. In this case 
our proofs can be modified to show that log% 
least significant bits satisfy the XOR-Condition 
mth l &  t 1/nlaW security for the bits and 
their XORs These log2n bits can be output by a 
pseudo-random number generator, by a simple 
modification of the proof of Theorem 2 In gen- 
eral, if the the assumption on the complexlty of 
the underlying one-way function is o(f(n)), then 
our proofs extend to showing that log(ffn)) bits 
can be securely output at each stage. For 
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example, presently the fastest factoring algo- 
rithm runs in time 0(2-) [I. So, if we 
assume f (n) = 2 6 ,  we can securely extract 
6 bits on each multiplication. 
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