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Abstrat

We provide positive and negative results onerning the \standard

method" of identifying a hidden subgroup of a nonabelian group using a

quantum omputer.

1 Introdution

1.1 Overview

The hidden subgroup problem is at present the keystone problem in quantum

omputation. We are given a funtion f : G ! S, with the property that f is

onstant on osets of an unknown subgroup H � G, and distint on distint

osets. Here f is given as an orale or as an eÆient lassial program, and S

is an arbitrary set. The problem is to determine the hidden subgroup H .

The diÆulty of the task depends on the type of group G. The abelian ase

an be e�etively omputed with a quantum omputer by repetition of oset

state preparation and Fourier sampling | the \standard method" developed by

Simon [13℄ and Shor [12℄. In partiular this method is the heart of Shor's solution

of the disrete logarithm and fatoring problems. In [7℄ Kitaev formulated the

\abelian stabilizer" problem, whih he solved by his somewhat di�erent \phase

estimation" tehnique. Stabilizer problems are a speial ase of hidden subgroup

problems, but inlude the key examples.

The status of the nonabelian hidden subgroup problem is one of the most

fundamental open problems in quantum algorithms. In partiular, the graph au-

tomorphism and isomorphism problems may be formulated as hidden subgroup

�
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problems over the symmetri group S

n

(see [8℄). It is natural to generalize

the standard method for the abelian hidden subgroup problem to nonabelian

groups. Fourier transforms over nonabelian groups are de�ned in terms of the

irreduible omplex representations of the group. There are eÆient quantum

iruits for omputing these transforms for some groups of interest suh as the

symmetri group (see for example [1, 3, 9℄). However, sine the dimension

of these irreduible representations is in general greater than one, the Fourier

transform is not unique, and is de�ned only up to a unitary hange of basis for

eah irreduible. The Fourier sampling step in the standard method now yields

the name of an irreduible representation �, together with the indies i; j of the

entry within that irreduible. The main question, then, is whether the statistis

of a sample from the Fourier transform of a oset state reveal suÆient infor-

mation about the hidden subgroup, to allow for eÆient reonstrution. One

would hope that this approah is robust, in the sense that the answer to this

question should not depend on the arbritary hoie of basis within eah irre-

duible. Our main result is that with respet to a random hoie of basis, the

Fourier sampling statistis reveal, in general, an exponentially small amount of

information about the hidden subgroup. It is still possible that a lever hoie

of basis within eah irreduible an solve the hidden subgroup problem.

Given how algebraially arbitrary this basis hoie is, this seems somewhat

unlikely. Ideally, one might hope to go beyond the standard method, whih is

the basis of almost all exponential speedups of quantum algorithms over their

lassial ounterparts. A reent exeption to this rule is [14℄.

Our lower bound on the runtime of the standard method, for subgroups of

a group G, depends upon two parameters: the size of the hidden subgroup H

(naturally the problem beomes easy if H is very large), and (G), the number

of onjugay lasses in G. We give a lower bound showing that approximately

�

p

jGj

jHj

p

(G)

�

1=3

rounds of Fourier sampling are required before the standard

method an identify H .

For the speial ase of hidden subgroups of order 2 in S

n

, this yields a

lower bound of approximately (k!)

1=6

repetitions of Fourier sampling in order

to determine the orret non-identity element of H , where k is the number of

transpositions in this element. Hallgren, Russell and Ta-Shma [6℄ independently

obtained a similar bound for the weak form of the standard method, where only

the name of the irreduible representation � is measured, and the indies i; j

are ignored.

On the positive side, Hallgren, Russell and Ta-Shma [6℄ showed that the weak

form of the standard method for abelian groups eÆiently �nds hidden normal

subgroups in nonabelian groups. We onsider a measure of nonabelianness of

a group G | the size of M(G), the intersetion of all normalizer subgroups.

We say that the group is almost abelian if the index of M(G) in G is small,

and we show that there is a polynomial time algorithm (no longer just Fourier

sampling one) for the HSP for any almost abelian group. The new lass of

groups for whih there is an eÆient quantum algorithm for the HSP inludes
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the partiular example of the semidiret produt C

3

oC

m

for large m (here C

k

is the yli group with k elements).

Some other interesting previous work on the positive side onerns query

omplexity. Ettinger, H�yer and Knill [5℄ show that for any group there exists

a sequene of polynomially many queries, from whih, with exponentially many

measurements, we an reonstrut the hidden subgroup. For the speial ase of

the dihedral group D

n

Ettinger and H�yer [4℄ showed how to obtain suÆient

statistial information about the hidden subgroup using polynomially many

queries and polynomially many measurements; leaving open the question of

whether there is an eÆient reonstrution algorithm using that data. The

dihedral group is interesting beause by some measures it is not far from abelian,

for instane none of its irreps have dimension greater than 2; on the other hand

by our measure de�ned above, it is highly nonabelian, sine jM(D

n

)j � 2.

1.2 The Fourier transform and the standard method for

hidden subgroup omputation

We �rst reall some basi group representation theory [11℄. Given a group G,

a matrix representation is a group homomorphism �: G ! GL(d

�

; C ), where

GL(d; C ) is the group of invertible d�d omplex matries. A �nite group G has

a �nite list of inequivalent irreduible representations f�g, whih we heneforth

all its irreps. Without loss of generality we may assume the irreps are unitary.

The sum of the squares of irrep dimensions

P

�

d

2

�

equals jGj, the order of the

group.

To every group element g we assoiate a omplex vetor of dimension jGj,

indexed by triples �; i; j where � is an irrep and 1 � i; j � d

�

indiate an entry

of the matrix �. The vetor assoiated with g has value

p

d

�

�

ij

(g)

p

jGj

in the �; i; j

entry.

The Fourier transform over G is the extension of this mapping by linear-

ity to the vetor spae C

G

of omplex linear ombinations of group elements.

This linear mapping (whose matrix we will denote F ) is unitary; this fat is a

onsequene of the orthogonality relations for group representations.

The trivial representation is the 1-dimensional homomorphism whih as-

signs to every group element the number 1. For a subset S of G, de�ne

jSi =

1

p

jSj

P

g2S

jgi and �(S) = �(jSi) =

1

p

jSj

P

g2S

�(g). The orthogonal-

ity relations imply that �(G) is

p

jGj when � is the trivial representation, and a

zero matrix otherwise. (As mentioned above, the Fourier transform has a salar

fator

p

d

�

=jGj, so this orresponds to the fat that the Fourier transform of

the unit norm uniform superposition on G, is 1 on the trivial representation and

0 elsewhere.)

C

G

has an additional struture beyond its vetor spae struture: it is also an

algebra over C , using the produt whih is the extension of the group produt by

linearity. This struture is preserved by the Fourier transform, simply beause

eah irrep is a group homomorphism. This is what is often known, for abelian
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groups (where eah irrep is 1-dimensional), as the \onvolution-multipliation"

property of the Fourier transform.

In the \standard method" for the hidden subgroup problem we begin by

forming the uniform superposition over a random oset gH of the hidden sub-

group H : in other words, we form

1

the uniform distribution over vetors jgHi.

First suppose that we know g (or at least gH), then we have the pure superposi-

tion jgHi. We then apply the Fourier transform to this superposition, obtaining

the vetor

1

p

jGjjH j

X

�;i;j

p

d

�

X

h2H

�

ij

(gh) j�; i; ji :

This gives rise to the probability distribution

P

gH

(j�; i; ji) =

d

�

jGjjH j

�

�

�

�

�

X

h2H

�

ij

(gh)

�

�

�

�

�

2

=

d

�

jGj

j�(gH)

ij

j

2

:

Sine we atually do not know g, and g is distributed uniformly, we sample �; i; j

with the probability

P

H

(j�; i; ji) =

1

jGj

X

g2G

P

gH

(j�; i; ji):

The suess of this method depends on how muh statistial information

about H is present in this distribution. In partiular: do a polynomial number

of samples suÆe to identify H with high probability? In the following �

�

(g)

denotes the harater of � at g, whih is simply the trae of �(g).

Lemma 1 �(H) =

1

p

jHj

P

h2H

�(h) is

p

jH j times a projetion matrix, and

rank(�(H)) =

1

jHj

P

h2H

�

�

(h).

Proof: Restrited to H , � deomposes into the diret sum of several irreps

�

1

; :::; �

k

. �(H) is the diret sum of �

i

(H); as disussed above �

i

(H) is

p

jH j if

�

i

is the trivial representation of H , and zero otherwise. 2

A ertain amount of information about H is given just by sampling �, and

ignoring the matrix indies i and j. We refer to this as the \weak form" of

the standard method. In the normal ase this more limited information is al-

ready enough, and in fat no further information is available in the indies.

For general subgroups further information is present in the indies, and in the

\strong form" of the method, these are sampled as well; we will disuss this issue

1

To form this mixture of superpositions, we �rst form the uniform-amplitudes superposition

1

p

jGj

P

g2G

jg; 0i, and then ompute f , obtaining the superposition

1

p

jGj

P

g2G

jg; f(g)i.

We then measure f(g), whih determines the oset gH. The result is the superposition

1

p

jHj

P

h2H

jghi for a uniformly random g.

By not using f(g) to a�et the subsequent omputation, we are disarding some potentially

useful information. No proposal exists, however, for taking advantage of this information.
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below. First we show that, when we Fourier sample the unit norm uniform su-

perposition on gH , (i.e. sample from the probability distribution de�ned by the

Fourier transform of this superposition), the probability P

gH

(j�i) of sampling �

is independent of g.

Lemma 2

2

The probability of measuring � is the same for the uniform super-

position on the oset gH (or Hg), as for the superposition on H.

Proof: �(gH) = �(g)�(H) and �(g) is unitary. 2

Corollary 3 P

gH

(j�i) = P

H

(j�i) =

d

�

jGj

P

h2H

�

�

(h) =

jHjd

�

jGj

rank(�(H)).

Corollary 4 The probability of sampling � is the same for the subgroup H as

it is for a onjugate subgroup g

�1

Hg.

2 Normal H

Hallgren, Russell, and Ta-Shma [6℄ showed that the weak form of the stan-

dard method quikly obtains enough information to identify hidden normal

subgroups. This setion briey desribes how.

Reall that in the standard method we sample from the Fourier transform

of the uniform superposition over a random oset gH of the hidden subgroup

H . In the weak form of this method, we just sample the name of the irreduible

� that results from this transform, and let N =

T

�

ker(�) for a sequene of

O(log jGj) suh samples.

Theorem 5 [6℄ The intersetion of ker(�) from O(log jGj) repetitions of Fourier

sampling is with high probability equal to the largest normal subgroup of the hid-

den subgroup.

We �rst show that when we restrit attention to normal subgroups, all the

information about H is present in the label of the sampled irrep. By lemma 2,

the probability of sampling � is independent of the partiular oset gH : so we

will examine the uniform superposition on H .

Lemma 6 If H is a normal subgroup of G and � is an irrep of G, �(H) is a

nonnegative salar multiple of the identity I, nonzero if and only if H � ker(�).

Proof: Let �

1

; :::; �

k

be the deomposition of � for H . We laim that if �

1

is

trivial, so are all the rest.

Let W be the spae � ats on. Let V be the 1-dimensional subspae of W

whih �

1

ats on. Sine � is irreduible over G, the elements g of G arry V

to a set of subspaes spanning W . Sine H = gHg

�1

for every g, eah of the

images gV is invariant for H . 2

2

For methods that measure � but disard i and j, Lemma 2 implies that there is no loss

in disarding f(g) as well. In partiular we may disard f(g) when G is ommutative.
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To prove theorem 5, it suÆes to show that if N is the urrent intersetion

of the kernels, but N 6� H , then with probability at most 1=2, the next Fourier

sampling will yield an irrep � suh that N � ker(�). This probability is given

by:

X

�:N�ker(�)

d

�

jH jrank(�(H))

jGj

Observe that sine N is normal in G, Fourier sampling the superposition

jNHi (where NH is the set of ordered produts of elements of N and H) yields

only irreps whose kernels ontain N . Again sine N is normal in G, NH is a

group, so we an write

1 =

X

�:N�ker(�)

d

�

jNH jrank(�(NH))

jGj

:

Next observe that �(NH) = �(N)�(H), whih is a nonzero salar multiple of

�(H) for any � whose kernel ontainsN . Hene when we Fourier sample from the

superposition jHi, the probability of obtaining an irrep � whose kernel ontains

N is

X

�:N�ker(�)

d

�

jH jrank(�(H))

jGj

=

=

X

�:N�ker(�)

d

�

jH jrank(�(NH))

jGj

�

1

2

X

�:N�ker(�)

d

�

jNH jrank(�(NH))

jGj

=

1

2

:

2

3 \Almost Abelian" Groups

3.1 Algorithm

The ase of normal subgroups was one way of extending the standard method

beyond the abelian ase. Another extension is to onsider the ase in whih the

intersetion of the normalizers of all subgroups of G, is large. We will all this

intersetion M(G). (Thus M(G) =

T

H

N(H) where the intersetion ranges

over subgroups H of G.) For abelian groups, of ourse, M(G) = G. In order

for our algorithm to run in polynomial time (in n = log jGj), [G : M(G)℄ should

be exp(O(log

1=2

n)).

The basi method to identify the unknown H for \almost abelian" G begins

again with the observation that M(G) � N(H) � G.
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Lemma 7 M(G) is normal in G.

Proof: Let g 2 M(G) and a 2 G. We wish to show that aga

�1

2 N(H) 8H .

Fix H , then for any h 2 H ,

(aga

�1

)h(aga

�1

)

�1

= aga

�1

hag

�1

a

�1

:

Now a

�1

ha 2 a

�1

Ha, and sine g 2 M(G) � N(a

�1

Ha), it follows that

ga

�1

hag

�1

2 a

�1

Ha. But then, as desired,

aga

�1

hag

�1

a

�1

2 H:

2

The algorithm to determine H is this: for eah subgroup J of G ontaining

M(G), run the normal-subgroups algorithm on J and determine (with high

probability) its hidden subgroup H

J

. Then output the union of the H

J

.

Theorem 8 With high probability H =

S

J

H

J

, and, if [G :M(G)℄ 2 exp(O(log

1=2

n)),

the algorithm runs in polynomial time.

Proof: AlthoughN(H) is unknown,N(H)=M(G) is a subgroup ofG=M(G),

and the algorithm examines all possibilities. A group of order a has at most

2

lg

2

a

subgroups. Thus a bound of exp(O(log

1=2

n)) on [G : M(G)℄ guarantees

that we only need onsider polynomially many subgroups.

All of the hidden subgroups of the various J are subgroups of H ; at least

one of them is equal to H . The guarantees for the normal hidden subgroup

algorithm ensure that there is only a small probability that any H

J

produed

by the algorithm di�ers from the hidden subgroup of J .

3.2 Example: extensions of groups

One way to onstrut an almost abelian group is by extending one abelian group

A by another B. We say G is an extension of A by B if A is normal in G and

G=A ' B.

Here we'll onsider the speial ase when G is the semidiret produt of A

by B, written G = A o B. In other words, A is a normal subgroup of G, B is

isomorphi to a subgroup of G, AB = G and A \ B = f1g. The representation

theory of G = AoB is well understood in terms of that of A and B.

To de�ne the semidiret produt, we need a homomorphism � : B ! Aut(A).

Then the group struture of G = AB is de�ned by the identity

bab

�1

= (�(b))(a):

(Sine onstrution of G from A and B requires spei�ation of �, one an

more arefully write G = A o

�

B. This is unneessary when A and B are

spei�ed as partiular subgroups of a given G.)

We remark that � need not be injetive or surjetive. In fat, it will be

onvenient for us to have ker(�) be large, beause ker(�) � Z(G) � M(G) so

this provides us with a large M(G). (Here Z(G) denotes the enter of G.)
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A basi example of a semidiret produt is the dihedral group D

n

= hx; y j

x

2

= y

n

= 1;xyx

�1

= y

�1

i = C

n

o C

2

(where C

n

denotes a yli group of

order n). The homomorphism � sends the nontrivial element x 2 C

2

to the map

y 7! y

�1

, beause xyx

�1

= y

�1

.

In the ontext of \almost abelian" groups we are interested in the following

example: G = C

3

oC

m

where m is a power of two. Let a be a generator for the

C

3

subgroup, and b a generator for the C

m

subgroup. We have bab

�1

= a

2

.

Let ! be a primitive 3'rd root of unity and � a primitive m'th root of unity.

G has m one-dimensional representations. These orrespond to the trivial

harater of C

3

. Eah is indexed by 0 � k < m, and sends (a

i

; b

j

) to �

kj

.

G has m=2 two-dimensional representations. These orrespond to the har-

ater � of C

3

for whih �(a) = !. The m=2 representations, indexed by

0 � k < m=2, are

�

k

(a) =

�

! 0

0 !

2

�

�

k

(b) =

�

0 �

k

�

k

0

�

:

It is easy to modify the standard quantum Fourier transform iruits to om-

pute the Fourier transform for G. Given a group element (a

i

; b

j

), represented

as the pair ji; ji, begin with a Fourier transform over the group C

3

on the �rst

index, i. Conditional on the new value of the �rst index, i

0

, being 0, perform a

quantum Fourier transform over the group C

m

on j: this yields the superposi-

tion on the one-dimensional irreps. Conditional on i

0

being 1 or 2, separate j

into its low-order bit j

0

and the high order bits j

h

. Perform a quantum Fourier

transform over the group C

m=2

on j

h

. The result of the last transform indexes

the irrep, while i

0

and j

0

index the entry within the irrep.

4 General H

Up to now we have foussed on the extent to whih information about H an

be deteted from the measuring just the name of the irrep, �. Of ourse we an

atually measure more, namely the row i and olumn j within �. It is possi-

ble that this ontributes substantially to our power. (In partiular, onjugate

subgroups give rise to idential distributions on irreps and so annot be told

apart without measuring the matrix indies within the irreps.) In this setion,

we establish limits on what further information an be obtained from the row

and olumn labels.

4.1 Rows provide no information

In this setion we show that there is no point in measuring the row i. (Whether

row or olumn depends on whether the group ats on the left or right. Here we

suppose the group ats on the left.) This is beause, onditional on measuring �

8



and j, the distribution on i is independent of H (atually it's always uniform);

we now show how this is due to the fat that in the standard method we average

over random osets gH .

For a partiular oset gH , the probability of sampling the entry i; j of � is

proportional to the norm squared of �(gH)

ij

. Thus the probability of sampling

entry i; j is the norm squared of the jGj-dimensional vetor (�(gH)

ij

)

g2G

with

entries indexed by g. Sine �(gH) = �(g)�(H), this vetor is a linear om-

bination of the jGj-dimensional vetors (�(g)

ik

)

g2G

, with oeÆients �(H)

kj

.

By the orthogonality relations, the d

�

vetors (�(g)

ik

)

g2G

are orthonormal, and

therefore the norm squared of the jGj-dimensional vetor (�(gH)

ij

)

g2G

is equal

to the norm squared of the j-th olumn of �(H), and independent of i.

If we keep trak of the leading onstants, this argument shows:

Theorem 9 P

H

(j�; i; ji) =

1

jGj

j�(H)

j

j

2

2

.

4.2 Random basis

The Fourier transform is uniquely de�ned only up to a hange of basis within

eah irrep; for abelian groups all irreps are one-dimensional so there is no am-

biguity in the de�nition of the transform, but for nonabelian groups there is an

arbitrary hoie of basis to be made within eah irrep. How muh statistial

information is available by measuring the matrix entries i; j, in addition to the

irrep �, may in general be basis dependent. In this setion, we show that if we

hoose a random basis for eah irrep, then the additional information available

is negligible, provided that the subgroup H is suÆiently small and the group

G is suÆiently nonabelian.

Given an irrep � in a partiular basis, the probability of sampling the j-th

olumn of � is

d

�

jGj

j�(H)

j

j

2

2

(where �(H)

j

is the j-th olumn of �(H)). Thanks

to the previous setion, the row index i is uniformly random and therefore

an be ignored. Suppose we now hoose a di�erent basis for �, whih we do by

replaing � by the isomorphi irrep A

�1

�A for a unitary A. Then the probability

of measuring the j-th olumn in this modi�ed irrep is

d

�

jGj

j�(H)A

j

j

2

2

.

What we onsider here is the e�et of hoosing A from the Haar distribution

in the unitary group. The expeted value of the probability of measuring the

j-th olumn is the same for all j, sine eah A

j

is uniformly distributed on the

unit sphere. So the averaged distribution on olumns is P

H

= P

H

(j�; ji) =

R

P

H

(

�

�

A

�1

�A; j

�

)dA =

1

d

�

P

H

(j�i).

Let � =

p

jGj

jHj

p

(G)

where (G) is the number of onjugay lasses in G. This

parameter reets the apparent diÆulty of the hidden subgroup problem that

is due to the small size of H and the degree of nonabelianness of G.

Theorem 10 Let " =

�

1

�

54

2�

p

3

ln

4jGj

Æ

�

1=3

. Then with probability at least 1� Æ

(over the hoie of random basis for the Fourier transform),

�

�

P

H

� P

H

�

�

1

� ".
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This theorem invites the question, whether it an be strengthened to show

(under suitable guarantees that H is small and G is fairly nonabelian) that,

no matter what bases are hosen for eah irrep, Fourier sampling does not

signi�antly distinguish H from a uniformly random onjugate subgroup.

Proof: Our task is to show the following for suÆiently large �. If, in

eah irrep, A is hosen from the Haar measure on the unitary group, then,

for � sampled from the distribution P

H

(j�i), almost ertainly the probability

d

�

jGj

j�(H)A

j

j

2

2

of measuring the j-th olumn is lose to its expetation

1

d

�

P

H

(j�i).

This amounts to bounding the L

1

distane between the vetors P

H

and P

H

. We

onsider separately irreps � aording to whether rank(�(H)) is higher or lower

than the threshold T = "�=3.

Case I. For the high rank ase, we show that with probability at least 1 �

Æ, for all � and all j, j�(H)A

j

j

2

2

deviates from its expetation by at most a

2"=3 fration. (Sine we are onerned here only with frational error we have

suppressed the leading sale fator of the projetion

1

p

jHj

�(H).)

What we are onsidering is the following proess: a unit vetor is hosen

uniformly in C

d

�

, then projeted onto a �xed subspae of dimension t > T ; by

appropriate hange of basis we an without loss of generality suppose that the

subspae is spanned by the �rst t basis vetors of C

d

�

. Let s be the probability

that the squared length of the projeted vetor di�ers from its expetation t=d

�

by a fration greater than than 2"=3. Sine we will apply a union bound over all

� and j, it suÆes to show that s � Æ=jGj. To begin with, note that, due to the

isometri orrespondene between the unit spheres in C

d

�

and R

2d

�

, the problem

is equivalent to the same problem in real spaes of twie the dimensions, namely

projetion of the unit sphere in R

2d

�

onto a 2t-dimensional subspae. Let M

denote the projetion matrix; in the appropriate basis it is diagonal, with 2t 1's

on the diagonal.

We analyze the uniform sampling from the unit sphere indiretly, approxi-

mating it by the proess of sampling a vetor v from the spherially symmetri,

2d

�

-dimensional unit variane Gaussian distribution. Let the projetion of v

be v

0

= Mv. (Note that v

0

is distributed aording to a 2t-dimensional Gaus-

sian distribution of variane t=d

�

.) Then

v

0

jvj

2

has the same distribution as

1

p

jHj

�(H)A

j

(with the understanding that pairs of real oordinates in the �rst

vetor form individual omplex oordinates in the seond). The probability s

that

�

�

�

v

0

jvj

2

�

�

�

2

deviates from its expetation by fration 2"=3 is bounded by the

sum of the probabilities that jvj

2

and jv

0

j

2

deviate from their expetations by

fration "=3.

We use the following large deviation bound: if a

1

; :::; a

�

are independent

Gaussian random variables eah with unit standard deviation, then

P (j

1

�

X

(a

2

i

� 1)j > ") < 2[(1 + ")

1=2

e

�"=2

℄

�

:

10



For " � 2, (1 + ")

1=2

e

�"=2

� exp(�"

2

2�

p

3

4

), and therefore

P (j

1

�

X

(a

2

i

� 1)j > ") < 2 exp(��"

2

2�

p

3

4

):

Sine this bound is dereasing in � , and we are applying it with � = 2t > 2T ,

we onlude that

s < 4 exp(�2T ("=3)

2

2�

p

3

4

) = 4 exp(��"

3

2�

p

3

54

):

In order to ensure that s � Æ=jGj it suÆes therefore that

�"

3

�

54

2�

p

3

ln

4jGj

Æ

as assumed. Therefore the L

1

distane between P

H

and P

H

due to high rank

irreps is at most 2"=3.

Case II. In the ase that the rank of � is low, rank(�(H)) � T , we an no

longer obtain a strong onentration bound on the probability of sampling eah

olumn. Instead we will show that Fourier sampling piks suh an irrep with

probability p

T

� "=3.

Let K =

P

�

d

�

. We upper bound K by applying the Cauhy-Shwartz

inequality to the two vetors (1)

�

and (d

�

)

�

. The norm squared of the �rst

vetor is simply (G), the number of irreps of G. Now

K � (

X

�

1)

1=2

(

X

�

d

2

�

)

1=2

= (G)

1=2

jGj

1=2

:

By Corollary 3, P

H

(j�i) =

jHjd

�

jGj

rank(�(H)). So

p

T

=

X

�: rank(�(H))�T

P

H

(j�i)

�

jH jT

jGj

X

�: rank(�(H))�T

d

�

�

jH jT

jGj

X

�

d

�

=

jH jTK

jGj

whih from the preeding argument is bounded above by

jHjT

p

(G)

p

jGj

= T=�.

Sine we hose T = "�=3, this gives p

T

� "=3. 2

Corollary 11 With probability at least 1� Æ (over the hoie of random basis

for the Fourier transform), 
((

�

log(jGj=Æ)

)

1=3

) repetitions of Fourier sampling

are required in order to ahieve onstant bias in distinguishing any two (a priori

equally probable) onjugate subgroups H and H

0

.

11



Proof: The Hellinger distane D

H

(~p; ~q) =

P

(p

1=2

� q

1=2

)

2

between two distri-

butions ~p and ~q is additive aross independent samples, and obeys the inequal-

ities

j~p� ~qj

2

1

=4 � D

H

(~p; ~q) � j~p� ~qj

1

:

2

As an example onsider the symmetri group G = S

n

; we know that (G) =

exp(�(

p

n)). If jH j � jGj

1=2�

for a �xed  > 0 then we need exponentially

many samples to gain useful information from j.

4.3 Distinguishing jHj = 2 from jHj = 1

The graph automorphism problem redues, via polynomial time redutions [8℄,

to determining the size of the automorphism group in the speial ase where

that is known to be either 1 or 2. So, although the weak form of the standard

method annot distinguish onjugate subgroups, one may still hope that it is

useful for the graph automorphism problem.

In this setion we show, however, that the weak form of the method is not

useful for this task. Taken in onjuntion with the previous setion, this means

that even the strong form of the method, implemented with random bases,

annot solve the graph automorphism problem eÆiently.

Consider the problem of distinguishing H = fe; sg from H

0

= feg. Let C(s)

be the onjugay lass of s.

Theorem 12 The L

1

distane between the distributions on irreps due to Fourier

sampling from jHi and jH

0

i, is at most 1=

p

jC(s)j.

The equation P

H

(j�i) =

d

�

jGj

P

h2H

�

�

(h) implies that for H

0

, � is sampled with

probability d

2

�

=jGj; while forH , � is sampled with probability d

�

(d

�

+�

�

(s))=jGj.

So the L

1

distane between the distributions is

1

jGj

P

�

d

�

j�

�

(s)j.

We upper bound this using the Cauhy-Shwartz inequality and the following

equalities:

1.

P

�

d

2

�

= jGj.

2. jZ(s)j � jC(s)j = jGj.

3.

P

�

(�

�

(s))

2

= jZ(s)j.

Here Z(s) is the entralizer of s.

(1) is basi. (2) follows by onsidering the ation of G on itself by onju-

gation, sine under this ation Z(s) is the stabilizer of s and C(s) is the orbit

of s. (3), whih generalizes (1), holds for the following reason. Reall that the

unitary harater table of G has onjugay lasses labeling olumns, irreps la-

beling rows, and the (�; s) entry is

q

jC(s)j

jGj

�

�

(s). Now sine eah olumn is unit

norm,

1 =

X

�

jC(s)j

jGj

(�

�

(s))

2

:

12



With (2) this shows (3). Now we an apply Cauhy-Shwartz.

�

�

jF jHi j

2

� jF jH

0

i j

2

�

�

1

=

1

jGj

X

�

d

�

j�

�

(s)j

�

1

jGj

[

X

�

d

2

�

℄

1=2

[

X

�

(�

�

(s))

2

℄

1=2

= (

jZ(s)j

jGj

)

1=2

= jC(s)j

�1=2

:

2

There are examples in whih it is hallenging to ompute s even though the

onjugay lass C(s) is known. Observe that in suh ases this quantum algo-

rithm has at most a quadrati advantage over the simple probabilisti strategy

of heking whether f(s

0

) = f(e) for a random onjugate s

0

.

We apply Theorem 12 in the ase that s is an involution in G = S

n

, i.e. s is

a produt of some k disjoint transpositions. In this ase jC(s)j =

n!

2

k

k!(n�2k)!

; as

a onvenient lower bound on this quantity, ount only those onjugates whih

transpose odd elements with even elements, of whih there are

�

dn=2e

k

��

bn=2

k

�

k! �

k!. So the L

1

distane between the distributions on irreps is at most (k!)

�1=2

.

In the graph automorphism appliation k an be proportional to n, in whih

ase this is exponentially small. A similar bound was independently obtained

by Hallgren, Russell and Ta-Shma [6℄.

Finally we ombine this bound with Theorem 10. Note that � =

p

n!

2�2

�(

p

n)

2

exp(

1

2

n lnn�O(n)), so:

Corollary 13 If we apply the standard method, using a random basis, to the

graph automorphism problem, then with probability at least 1�Æ the L

1

distane

between the Fourier sampling distribution given that the automorphism group

is trivial, and the Fourier sampling distribution given that the automorphism

group is of size 2 and ontains an involution with k transpositions, is at most

exp(�

1

6

n lnn+O(n)) log

1

3

1

Æ

+ (k!)

�1=2

.

Just as in Corollary 11, the upper bound on L

1

distane implies a lower

bound on the number of samples whih must be olleted in order to distinguish

the hypotheses reliably.
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