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Classical command of quantum systems
Ben W. Reichardt1, Falk Unger2 & Umesh Vazirani3

Quantum computation and cryptography both involve scenarios in which a user interacts with an imperfectlymodelled
or ‘untrusted’ system. It is therefore of fundamental and practical interest to devise tests that reveal whether the system
is behaving as instructed. In 1969, Clauser,Horne, Shimony andHolt proposed an experimental test that canbepassed by
a quantum-mechanical system but not by a system restricted to classical physics. Here we extend this test to enable the
characterization of a large quantum system. We describe a scheme that can be used to determine the initial state and to
classically command the system to evolve according to desired dynamics. The bipartite system is treated as two black
boxes,with no assumptions about their innerworkings except that they obey quantumphysics. The schemeworks even
if the system is explicitly designed to undermine it; any misbehaviour is detected. Among its applications, our scheme
makes it possible to test whether a claimed quantum computer is truly quantum. It also advances towards a goal of
quantum cryptography: namely, the use of ‘untrusted’ devices to establish a shared randomkey, with security based on
the validity of quantum physics.

Do the laws of quantum mechanics place any limits on how well a
classical experimentalist can characterize the state and dynamics of a
large quantum system? As a thought experiment, consider that we are
presented with a quantum system, together with instructions on how
to control its evolution from a claimed initial state. Our goal is to
determine if the system was indeed initialized as claimed, and if its
state evolves as instructed.
More formally, we model the quantum system as a black box, with

(for example) buttons and light bulbs to allow for classical interactions
in binary. Using this limited interface, we wish to characterize the
initial state of the system. We also wish to verify that on command—
by pressing a suitable sequence of buttons—the system applies a chosen
local Hamiltonian, or equivalently a sequence of local quantum gates,
and outputs desired measurement results.
A positive answer to this fundamental question would have im-

portant consequences. First, as the power of quantum mechanics is
harnessed at larger scales—with the advent of quantum computers—
it will be useful to evaluate whether a quantum device in fact carries
out the claimed dynamics1,2. Second, the goal of quantum cryp-
tography is to create cryptographic systems with security premised
on basic laws of physics. Although this seemed to have been achieved
with quantum key distribution (QKD) and its security proofs3–5,
attackers have repeatedly breached the security of QKD experiments
by exploiting imperfect implementations of the quantum devices6–8.
Rather than relying on ad hoc countermeasures, Mayers and Yao’s
vision9 of device-independent (DI) QKD, hinted at earlier in ref. 10,
relaxes all modelling assumptions about the devices, and even allows
for them to have been constructed by an adversary. It instead ima-
gines giving the devices tests that cannot be passed unless they carry
out the QKD protocol securely. The challenge at the heart of this
vision is for an experimentalist to force untrusted quantum devices
to act according to certain specifications. DIQKD has not been
shown to be possible; the security proofs, first given in ref. 11, have
required the unrealistic assumption that the devices have no me-
mory between trials, or that each party has many, strictly isolated
devices12–20. A scheme for characterizing and commanding a black-
box quantum device would provide a novel approach to achieving
DIQKD.

The existence of a general scheme for commanding an adversarial
quantum device appears singularly implausible. For example, in an
adversarial setting, experiments cannot be repeated exactly to gather
statistics, because a system with memory could deliberately deceive
the experimentalist. More fundamentally, as macroscopic, classical
entities, our access to a quantum system is extremely limited and
indirect, and the measurements we apply collapse the quantum state.
Furthermore, whereas the dimension of the underlying Hilbert space
scales exponentially with the number of particles or can be infinite,
the information accessible via measurement grows only linearly21.
Indeed, as formulated it is impossible to command a single black-
box system. Quite simply, it is impossible to distinguish between a
quantum system that evolves as desired and a device that merely
simulates the desired evolution using a classical computer.
In this Article, we consider a closely related scenario. Suppose we

are instead given two devices, each modelled as a black box as above
and prevented from communicating with the other. In this setting,
with no further assumptions, we show how to command the devices
classically. That is, there is a strategy for pushing the buttons such that
the answering light bulb flashes will satisfy a prescribed test only if the
two devices started in a particular initial quantum state, to which they
applied a desired sequence of quantum gates. Moreover, the scheme is
theoretically efficient, in the sense that the total effort, measured by
the number of button pushes, scales as a polynomial function of the
size of the desired quantum circuit. A DIQKD scheme follows,
although it is far from practical.

Detailed overview
Rigidity of the CHSH test for quantumness
The starting point for our protocol is the famousBell experiment22, and
its subsequent ‘distillation’ by Clauser, Horne, Shimony and Holt23

(CHSH). Conceptually modelled as a game (Fig. 1), it provides a test
for ‘quantumness’, that is, a way for an experimentalist, whomwe shall
call Eve, to demonstrate the entanglement of two space-like separated
devices, Alice and Bob. According to a Bell inequality, classical devices
can win the game with probability at most 3/4. In contrast, quantum
devices can win with probability v*5 cos2(p/8)< 85.4%, which is
optimal by Tsirelson’s inequality24.
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We prove a robust converse to Tsirelson’s inequality, namely a
rigidity property of the CHSH game: nearly saturating Tsirelson’s
bound locks into place the devices’ shared state and measurement
operators. More precisely, if the devices win with probability v*2 e,
then they must share a state that is within a distance O

ffiffi
e

p
ð Þ of an

Einstein–Podolsky–Rosen (EPR) state, possibly in tensor product with
an additional ancilla state. Moreover, their joint measurement strategy
is necessarily O

ffiffi
e

p
ð Þ-close to the ideal strategy from Fig. 1 (that is,

applying Alice’s actual measurement operator to the shared state gets
within distanceO

ffiffi
e

p
ð Þ of the result of applying her ideal measurement

operator to the EPR state tensored with the ancilla; and similarly for
Bob). Because each device can locate its qubit (quantum bit) share of
the EPR state arbitrarily within its Hilbert space, these statements hold
only up to local isometries.
A converse to Tsirelson’s inequality for the CHSH game has been

shown previously in the exact case25,26. Robustness is important for
applications, however, because the success probability of a system can
never be known exactly. A robust, e. 0, converse statement has been
shown for the game used in the original DIQKD proposal27. Recently,
robustness has independently been shown for the CHSH game28,29.

Scalable test for quantumness
We scale up the CHSH test for quantumness to allow us to identify
many qubits’ worth of entanglement. Consider a protocol in which
Eve plays a long sequence of n CHSH games with Alice and Bob, and
tests whether they win close to the optimal fraction v* of the games.
Our main technical result, a multi-game rigidity theorem, establishes
that if the devices pass Eve’s test with high probability, then at the
beginning of a randomly chosen long subsequence of nx games, for
some constant x, Alice and Bob must share nx EPR states in tensor
product, which theymeasure one at a time using the single-game ideal
CHSH operators of Fig. 1. The jth game is played using the jth EPR
state, different games being entirely independent. This is a step
towards the general vision outlined above, because it characterizes
the initial state ofmany qubits and allows Eve to command the devices
to perform certain single-qubit operations. Of course, we cannot hope
to characterize the devices’ strategies exactly, but only for a suitable
notion of approximation.
The difficulty in proving this theorem is that although individual

games are typically rigid, the states close to EPR states used in different
games could overlap significantly. Furthermore,Alice andBob’s strategy
for playing each game—including, for example, the locations of the near
EPR states—could depend on the previous games’ outcomes. Themulti-
game rigidity theorem rules out such wayward behaviour.

Verified quantum dynamics
The multi-game rigidity theorem gives strong control over the
devices’ measurement operators for different games. As described

below, combining the CHSH game protocol with protocols for state
and process tomography, and for computation by teleportation30,
gives a method for realizing arbitrary dynamics in quantum systems
without making assumptions about their internal structure or opera-
tions. The dynamics are realized as the joint evolution of two isolated
quantum systems, Alice and Bob, mediated by a classical experimen-
talist, Eve.
The problem of controlling computationally powerful but un-

trusted resources lies at the foundation of computer science. In the
complexity class NP, for example, a polynomial-time routine—the
‘verifier’—is allowed one round of interaction with an arbitrarily
powerful, but malicious, ‘prover’. We show that the same verifier
can exploit the power of quantummechanical provers31. In particular,
(1) a classical verifier can efficiently simulate a quantum computer by
interacting with two untrusted, polynomial-time quantum provers
that share entanglement but cannot communicate between them-
selves. This delegated computation scheme is also ‘blind’, meaning
that each prover learns nothing more about the computation than its
length. Furthermore, (2) a classical verifier is as powerful as a quantum
verifier in any interactions with multiple quantum provers (formally,
the complexity classes QMIP and MIP* are equal).
Previous work introducing this problem has considered a ‘semi-

quantum’ verifier, who manipulates a constant number of qubits
while interacting with a prover1,2,32,33. Our work is also inspired by a
proposal34 that QMIP should equalMIP*. Although our protocol also
uses computation by teleportation, it has a very different form, based
on the multi-game rigidity theorem.

Product structure from repeated games
A strategy S for playing n sequential CHSH games specifies the initial
joint state of Alice (A) and Bob (B) as well as their measurement
operators for every possible situation. That is, for Dg {A, B} and
each j5 1, …, n, S specifies the measurement operators used by
device D in game (j, hDj{1), where h

D
j{1 is a transcript of the device’s

input and output bits for the first j – 1 games. A strategy S induces a
distribution on game transcripts. For two strategies to be ‘close’, the
corresponding distributions on game transcripts should be close in
total variation distance and, for almost all transcripts (drawn from
either distribution), the resulting quantum states should be close in a
suitable norm. We combine these conditions into one by defining for
any strategy a block-diagonal density matrix that stores both the
classical transcript and the resulting quantum state:

rj~ +
hj{1

Pr hj{1
" #

rj hj{1
$ %

ð1Þ

Here hj{1~ hAj{1, h
B
j{1

& '
is the full transcript for the first j – 1 games

and rj(hj–1) is the state at the beginning of game j conditioned on hj–1.
Two strategies S and ~S are close if the associated rj and ~rj are close in
trace distance (jj…jjtr), for every j.
Assume that for every j and almost all hj–1, the devices’ conditional

joint strategy at the beginning of game j is ‘e-structured’, meaning that
the devices win with probability at least v*2 e. Our key theorem
establishes that up to local basis changes, the devices’ initial state must
be close to n EPR states, possibly in tensor product with an irrelevant
extra state, and that their total strategy S must be close to an ideal
strategy Ŝ that plays game j using the jth EPR state. Because the
structure assumption can be established by standard statistical mar-
tingale arguments on poly(n) sequential CHSH games, this implies
the multi-game rigidity theorem.
The main challenge is to ‘locate’ the ideal strategy Ŝ within Alice

and Bob’s Hilbert space, that is, to find an isometry on each of their
spaces under which their states and measurement operators are close
to ideal. However, a priori, we do not know whether S calls for the
devices to measure actual qubits in each step, or, even if so, whether
the qubits form EPR states, qubits for different games overlap each

Alice Bob

Eve

A

X Y

B

AB = X⊕Y ?

Figure 1 | Test for quantumness. In a CHSH experiment, or ‘game’, the
experimentalist Eve sends random bits A and B to the devices Alice and Bob,
respectively, who respond with bits X and Y. The devices ‘win’ if AB~X+Y .
Quantum devices can win with probability v*5 cos2(p/8) if they follow an
ideal CHSH strategy: on a shared EPR state Qj i~ 00j iz 11j ið Þ

( ffiffiffi
2

p
, Bob

measures the Pauli operator sz if B5 0 or sx if B5 1, and Alice measures
szz {1ð ÞAsx

& '. ffiffiffi
2

p
.
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other or the locations of the qubits depend on the outcomes of pre-
vious games.
A good place to start is the construction in the single-game rigidity

theorem that locates the qubits. Consider an e-structured strategy,
consisting of some shared mixed state inHA6HB, and two-outcome
projective measurements for each of Eve’s possible questions.
Truncate the devices’ Hilbert spaces to finitelymany dimensions, then
decompose each space by Jordan’s lemma35 into the direct sumof two-
dimensional spaces invariant under the projections. Within each such
two-dimensional subspace, adjust the projections so the angle between
themmatches that of the ideal strategy. This defines a {j0æ, j1æ} basis for
each subspace. Aligning the subspaces according to this basis allows
each Hilbert space HD to be decomposed as the tensor product of a
qubit and the remainder. See Supplementary Information and ref. 36
for proof details.
Formultiple CHSH games, the given strategyS can be transformed

into a nearby ideal strategy Ŝ in a three-step sequence.
Step 1. Replace each device’s measurement operators by the ideal
operators known to exist from the CHSH rigidity theorem (for a
single game). In the resulting strategy ~S, each device D plays every
game (j, hDj{1) using the ideal CHSH game operators on some qubit,
up to a local change in basis. However, the basis change can depend
arbitrarily on hDj{1, and the qubits for different values of j need not be
in tensor product.
Step 2. In a ‘multi-qubit ideal strategy’, !S, the qubits used in each game
can still depend on the local transcripts but must at least lie in tensor
product with the qubits from previous games. This imposes a tensor-
product subsystem structure that previous DIQKD proofs have
assumed. The tensor-product structure is constructed beginning with
a trivial transformation on ~S: to each device, add n ancilla qubits each
in state j0æ. Next, after a qubit has beenmeasured, say as jajæ in game j,
swap it with the jth ancilla qubit, and then rotate this fresh qubit from
j0æ to jajæ and continue playing games j1 1, …, n. This defines a
unitary change of basis that places the outcomes for games 1 to j in
the first j ancilla qubits, and leaves the state in the original Hilbert
space unchanged. At the end of the n games, undo the basis change:
swap back the ancilla qubits and undo their rotations. Because qubits
are set aside after being measured, the qubits for later games are
automatically in tensor product with those for earlier games; the
resulting strategy !S is multi-qubit ideal.
Step 3. We replace !S with an ideal strategy Ŝ, in which Alice and Bob
each play using a fixed set of n qubits. Fix a transcript ĥn, chosen at
random. For the first time, change the devices’ initial state: replace r1
with r̂1, a state having n EPR states in the locations determined
by ĥn in !S. In Ŝ, the devices play using these EPR states, regardless
of the actual transcript. This Ŝ is the desired ideal strategy.

Ideal strategy Ŝ is close to S
It remains to be shown that the transformation’s three steps incur a
small error: Ŝ is close toS. Amajor theme in the analysis is to leverage
the known tensor-product structure betweenHA andHB to extract a
tensor-product structure within each of HA and HB.
Step 1: S< ~S. Although elementary, explaining this step is useful for
establishing some notation. Let r1 be the devices’ initial shared state,
possibly entangled with the environment. Let EA

j and E
B
j be the super-

operators that implement Alice and Bob’s respective strategies for
game j, let EAB

j ~EA
j 6EB

j and let EAB
j,k~EAB

k # # # EAB
j for j# k; thus,

the state rj of equation (1) equals EAB
1,j{1 r1ð Þ. For Dg {A, B}, let ~ED

j
be the super-operator in which the actual measurement operators in
ED
j are replaced with the ideal operators that follow from the CHSH

rigidity theorem. Strategy ~S is given by r1, ~EA
j

n o
and ~EB

j

n o
. If

Pr[game j is e-structured]$ 1 – d, then EAB
j rj

& '
{ ~EAB

j rj

& ')))
)))
tr
ƒ

2dzO
ffiffip$ %
. (This expression combines bounds on the probability

of the bad event and theO
ffiffi
e

p
ð Þ error from the good event.) To achieve

the goal, namely showing that EAB
1,n r1ð Þ< ~EAB

1,n r1ð Þ in trace distance,
work backwards from game n to game 1 fixing each game’s measure-
ment operators one at a time, accumulating an error of n 2dzO

ffiffi
e

p
ð Þð Þ.

Step 2: ~S< !S. The key to showing that !S is close to ~S is the fact
that operations on one half of an EPR state can equivalently be
performed on the other half, because for any 23 2 matrix M,
M6Ið Þ 00j iz 11j ið Þ~ I6MTð Þ 00j iz 11j ið Þ. This means that the
outcome of an e-structured CHSH game would be nearly unchanged
if Bob were hypothetically to perform Alice’s measurement before his
own. Once Alice’s measurement operators for games j1 1 to n are
moved over to Bob’s side, they cannot affect the qubit jajæ from game j
on her side. Therefore, undoing the original change of basis restores
the ancilla qubits nearly to their initial state j0næ, and ~S< !S.
In more detail, define a unitary super-operator V j that rotates the

jth ancilla qubit to jajæ, depending on Alice’s transcript hAj . Define a
unitary super-operator T j to apply V j and swap the jth ancilla qubit
with the qubit Alice uses in game j (depending on hAj{1). Alice’s multi-
qubit ideal strategy is given by

!EA
j ~T {1

1,j{1 1C2n6 ~EA
j

& '
T 1,j{1 ð2Þ

We aim to show that the strategy given by r1, !EA
j

n o
and ~EB

j

n o
is

close to ~S up to the fixed isometry that adds j0næÆ0nj to the state, that is,
that 0nj i 0nh j6 ~EAB

1,n r1ð Þ< !EA
1,n 0nj i 0nh j6 ~EB

1,n r1ð Þ
& '

. Define a super-
operator ~FAB

j , in which Alice’s measurements are made on Bob’s
Hilbert space HB, on the qubit determined by Bob’s transcript hBj{1.
Because most games are e-structured, it follows from the CHSH
rigidity theorem that ~FAB

jz1,k ~rjz1

& '
< ~EAB

jz1,k ~rjz1

& '
~~rkz1 for j# k.

Because ~FAB
jz1,k acts on HB, it does not affect Alice’s qubit jajæ from

game j at all, and so this qubit must stay near jajæ in ~rkz1 as well;
that is, the trace of the reduced density matrix against the projection
jajæÆajj stays close to one. Because this holds for every j, T {1

1,n indeed

returns the ancillas almost to their initial state j0næ. The ~EB
j

n o
are

symmetrically adjusted to !EB
j

n o
.

Step 3: !S<Ŝ. In !S, Alice and Bob play according to a strategy in which
every game uses a qubit in tensor product with the previous games’
qubits. However, the qubit’s location can depend on previous games’
outcomes. We wish to argue that Alice and Bob must play using a
single set of n qubits, fixed in advance independent of the transcript.
Intuitively, if the location of Alice’s jth qubit depended on hAj{1,

then because the devices cannot communicate with each other, Bob
could not know which of his qubits to measure. However, Alice and
Bob’s transcripts are significantly correlated, and we must show that
they cannot use these correlations to coordinate dynamically the loca-
tions of their qubits.
For a toy example that illustrates the issue, consider two devices

who play the first n – 1 games honestly and which at the beginning of
the last game share two EPR states, Qj i62. Say that for certain func-
tions f and g, Alice uses EPR state f hAn{1

$ %
[ 0, 1f g in game n, and Bob

uses EPR state g hBn{1

$ %
[ 0, 1f g. For game n to be structured, they

need f hAn{1

$ %
~g hBn{1

$ %
so that they measure the same EPR state.

Now Alice and Bob’s local transcripts are each uniformly random,
separately, but corresponding bits have a constant correlation. To
coordinate non-trivially, the best they can do is to set f and g both
to themajority function37. Even then, though, Pr f hAn{1

$ %
=g hBn{1

$ %" #

would be too large. By considering the influences of each input bit on f
and g, we can argue that the functions must be nearly constant. Thus,
one of the two EPR states is used almost always.
This example gives an essentially classical cheating strategy. The

actual devices may be significantly more sophisticated. In particular,
small amounts of cheating in earlier gamesmight enable an avalanche
of more and more blatant cheating in later games, drastically chang-
ing the underlying quantum state. If, for example, Alice knowingly
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manages to swap her halves of the two last EPR states along some
transcripts hAn{1, then she can use completely different strategies for
the last gamewithout having to coordinate with Bob.We control such
errors, as in the arguments sketched above, by replacing Alice’s super-
operator with one acting on Bob’s side; locality then isolates the effects
of errors. More formal arguments are deferred to the Supplementary
Information.

Scheme for verified quantum dynamics
Our scheme for verifiedquantumdynamics is based on the idea of com-
putation by teleportation, which reduces computation to preparing
certain resource states and applying Bell measurements30 (Fig. 2f).
Say that Eve wants to simulate a quantum circuit C, over the gate set
{H,G, CNOT}, whereH is theHadamard gate,G~exp {ipsy=8

$ %
and

CNOT is the controlled NOT. Eve asks Bob to prepare for Alice many
copies of 0j i6 I6Hð Þ Qj i6 I6Gð Þ Qj i6CNOT2,4 Qj i6 Qj ið Þ, where
Qj i~ 00j iz 11j ið Þ=

ffiffiffi
2

p
. He can do so by applying one-, two- and

four-qubit measurements to his halves of the shared EPR states and
reporting the results to Eve. If he plays honestly, Alice’s shares of the
EPR states collapse into the desired resource states, up to simple correc-
tions. Each resource state corresponds to a basic operation in C. Eve
wires theseupby repeatedly directingAlice tomake aBellmeasurement
connecting the output of one operation to the input of the next opera-
tion in C. After each G gate, an H correction might be required.
Of course, Alice and Bob might not follow directions. To enforce

honest play, Eve runs this protocol only a small fraction of the time,
and otherwise chooses uniformly between three alternative protocols
sketched in Fig. 2. Let m5 jCjO(1) and n5mO(1).
Protocol 1. In the ‘state tomography’ protocol, Eve chooses K uni-
formly from {1,…, n/m}. She referees K – 1 blocks ofmCHSH games.
Then, in the Kth block of m games, Eve asks Bob to prepare the
resource states, in a random order, while continuing to play CHSH
games with Alice. Eve rejects if the tomography statistics are incon-
sistent; for each multi-qubit Pauli operator, the number of measure-
ment outcomes reported by Alice should be close to its expected value
for honest play. We prove that if Alice plays honestly and Eve accepts
with high probability, then onmost randomly chosen small subsets of
the resource state positions, Alice’s reduced state before her measure-
ments is close to the correct tensor product of resource states.

Protocol 2. In the ‘process tomography’ protocol, Eve again choosesK
uniformly from {1, …, n/m} and referees K – 1 blocks of m CHSH
games. In the Kth block of m games, Eve asks Alice to make Bell
measurements on random pairs of qubits, while continuing to play
CHSH games with Bob. If Alice’s reported result for any pair of qubits
is inconsistent with Bob’s outcomes, Eve rejects. Then, if Bob plays
honestly and Eve accepts with high probability, Alice must also have
applied the Bell measurements honestly.
Protocol 3. In this protocol, Eve simply referees n sequential CHSH
games with both devices and rejects if they do not win at least (1 –
e)v*n games.
From Bob’s perspective, the process tomography and computation

protocols are indistinguishable, as are the state tomography and
CHSH game protocols. From Alice’s perspective, the state tomo-
graphy and computation protocols are indistinguishable, as are the
process tomography and CHSH game protocols. The devices must
behave identically in indistinguishable protocols. The multi-game
rigidity theorem therefore provides the base for a chain of implica-
tions which implies that if Eve accepts with high probability, then the
devices must implement C honestly.
Four main technical problems obstruct these claims. First, in the

state tomography protocol, if Bob is dishonest then Alice gets an
arbitrarym-qubit state, and there is no reason why it should split into
a tensor product of repeated, constant-qubit states. Nonetheless, we
argue using martingales that if the counts of Alice’s different mea-
surement outcomes roughly match their expectations with high pro-
bability, then for most reported measurement outcomes from Bob
and for most subsystems j, Alice’s conditional state reduced to her
jth subsystem is close to what it should be.
Second, saturating Tsirelson’s inequality for the CHSH game

implies only that Alice is honestly making Pauli sx and sz measure-
ments on her half of an EPR state. Tomography also requires sy mea-
surements. To sidestep this issue, we generalize a theory of ref. 38 and
prove that there is a large class of states, including the necessary
resource states, that are all robustly determined by only sx and sz
measurements.
A third and bigger problem, though, is that we want to characterize

the operations that each device applies to the shared EPR states, and
not just the states that these operations create on the other device’s
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Figure 2 | Sub-protocols for verified quantum dynamics. To delegate a
quantum computation, Eve runs a random one of four sub-protocols with
Alice (top row, a–d) andBob (bottom row, a–d). a, PlayingmanyCHSHgames
ensures that the devices play honestly, measuring in each game an EPR state
|Q æ on two qubits (red dots). b, c, This lets Eve apply state (b) or process
(c) tomography to characterize more complicated multi-qubit operations.

d, e, By adaptively combining these operations (d), Eve directs a quantum
circuitC (e). The operations along the zig-zagging logical path of the first qubit
of C are in d highlighted using the same colours as in e. f, Each gate of C is
implemented through teleportation; in this simpler example, H is applied by a
Bell measurement on half of the resource state I6Hð Þ Qj i.
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side. The distinction is the same as that between process and state
tomography. Essentially, the problem is that the correct states could
be generated by incorrect processes. Moreover, as for sequential
CHSH games, Bob’s strategy in early tomography rounds might be
sufficiently dishonest as to allow him in later rounds to apply com-
pletely dishonest operators. A key observation to avoid this problem
is that it is enough to certify the states prepared by one device and
the processes applied by the other. Then, because a broad class of
states can be certified, for applications it suffices to certify a much
smaller set of operations. We restrict consideration to Pauli stabilizer
measurements39. For Pauli operators in the stabilizer of a state, the
measurement outcome is deterministic. Therefore, if Alice reports the
wrong stabilizer syndrome in even a single round, Eve can reject. Our
process certification analysis is similar to the arguments used in step 2
of the proof of the multi-game rigidity theorem.We argue that Alice’s
earlier measurements cannot usually overly disturb the qubits inten-
ded for use in later measurements, by moving Alice’s measurement
super-operators over onto Bob’s halves of the EPR states.
Finally, the verifier’s questions in the state and process tomography

protocols are non-adaptive, whereas in computation by teleportation
the questions must be chosen adaptively on the basis of previous
responses. This is an attack vector in some related protocols36.
However, we argue that the devices can learn nothing from the adap-
tive questions. This follows because computation by teleportation can
be implemented exactly equivalently either by choosing Bob’s state
preparation questions non-adaptively and Alice’s process questions
adaptively, or vice versa.
Theproof thatQMIP5MIP* follows along similar lines. Beginwith

a k-prover protocolwith a quantumverifier.Wemay assume that there
are two rounds of quantummessages from the provers, one before and
one after the verifier broadcasts a random bit40. To convert to a pro-
tocol with a classical verifier, Eve, add two new provers, Alice and Bob.
Eve teleports the original k provers’messages toAlice, and directsAlice
and Bob together to apply the quantum verifier’s acceptance predicate.

Discussion
By characterizing the device strategies that can win many successive
CHSH games, we have shown how a fully classical party can direct
the actions of two untrusted quantum devices. The simplest case is
DIQKD, free of the independence assumptions needed in previous
analyses. Following the pattern established in refs 9, 10, the QKD
devices begin with shared entanglement and the two experimentalists
act together as ‘Eve’. They gather statistics as in the verified computation
protocol to certify the devices’ shared state andmeasurement operators,
and extract secret key material from a random block of games. Two
major challenges are to improve the efficiency of the scheme, to get a
constant key rate instead of inverse-polynomial in n, and to tolerate a
constant noise rate. More generally, the CHSH multi-game rigidity
theorem may be viewed as a quantum analogue of classical multi-
linearity tests,which are central to the theoryof probabilistically check-
able proofs; by simple local tests, it guarantees the existence of a special
type of large quantum state.
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