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We consider a new model for the testing of untrusted quantum devices, consisting of a single polynomial

time bounded quantum device interacting with a classical polynomial time verifier. In this model, we

propose solutions to two tasks—a protocol for efficient classical verification that the untrusted device is

“truly quantum” and a protocol for producing certifiable randomness from a single untrusted quantum

device. Our solution relies on the existence of a new cryptographic primitive for constraining the power

of an untrusted quantum device: post-quantum secure trapdoor claw-free functions that must satisfy an

adaptive hardcore bit property. We show how to construct this primitive based on the hardness of the

learning with errors (LWE) problem.
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1 INTRODUCTION

The testing of quantum devices, besides being a pressing practical challenge, touches on founda-
tional questions in quantum computational complexity. The classical verifier of such a device is
necessarily at a disadvantage due to the exponential power of quantum systems, and the laws of
quantum mechanics severely limit the amount of information that can be accessed in principle.
Nevertheless, a sequence of results has shown that it is possible to verify the correctness of un-
trusted quantum devices (also referred to as provers) in a variety of settings, including certifiable
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random number generation, quantum key distribution, and quantum computation. These results
have been established in two models: In the first, the classical verifier is augmented with the abil-
ity to prepare a sequence of quantum states on small numbers of qubits and transmits them to
the quantum device [3, 4, 12, 18], and in the second, the classical verifier interacts with two non-
communicating quantum devices that share entanglement [16, 38, 44].

In this article, we consider a new model, in which a purely classical verifier interacts with a
single, polynomial time bounded quantum machine. The restriction to an efficient quantum device
allows the verifier to leverage post-quantum cryptography, i.e., cryptographic primitives that can
be implemented efficiently on a classical computer but that cannot be broken by any efficient
quantum computer.

In this model, we propose solutions to two basic tasks: how to efficiently verify that an untrusted
device is “truly” quantum, and how to generate certifiably random strings from a single untrusted
quantum device. The first task is also referred to as “quantum supremacy,” and existing protocols
for this [1, 2, 7, 9, 10] rely on exponential time classical verification using a classical supercom-
puter. By contrast, our qubit certification test below provides a proof of quantumness that can be
verified by a classical verifier in polynomial time. There has also been considerable research into
certifiable random number expansion from quantum devices [6, 16, 31, 35, 43], including experi-
mental demonstrations [8, 35]. However, all prior works have focused on the setting where there
are multiple quantum devices that share entanglement and where the randomness certification
relies on the violation of a Bell inequality.

The core of the difficulty in interacting with untrusted quantum devices lies in enforcing a
qubit structure in the device’s operations, i.e., that the quantum device actually holds qubits and is
performing measurements on them to respond to the verifier’s queries. In the two previous models
of testing quantum devices, this issue was handled in two different ways. For slightly quantum
verifiers, the verifier could simply send qubits to the prover, encoded in such a way that the prover
was forced to work with only those qubits. In the model of two entangled quantum devices, Bell
inequality violations were used to prove that the two devices must share Bell states and measure
them in theX and Z basis as requested. Our work relies on post-quantum cryptography to enforce
qubits. Roughly, our qubit certification protocol enables the quantum device (the prover) to create
a qubit in the state 1√

2
|0〉+ (−1)b 1√

2
|1〉, where the bit b is computationally hidden from the prover.

With knowledge of the trapdoor for the post-quantum cryptosystem, the classical verifier can
compute b and use it to verify that the prover actually holds the above state, thereby gaining
leverage over the quantum prover.

Our certifiable randomness protocol uses the qubit certification protocol as a subroutine and
provides an information-theoretic guarantee about the random string output by the untrusted
quantum device. The guarantee is stronger than computational pseudorandomness, which is eas-
ily achievable under standard cryptographic assumptions, since the verifier starts with a short
uniformly random seed. It is illuminating to understand how an information-theoretic guarantee
could even be connected to the the computational assumptions about the device. We imagine that
there is an adversary with unbounded computing power and an unboundedly large quantum reg-
ister E, which may be entangled with the quantum device register D. The guarantee can now be
expressed as saying that the unbounded adversary, who is allowed to design the quantum device
and to perform an arbitrary measurement on the register E, cannot distinguish the output of the
protocol from a uniform sequence of bits, provided the device is unable to break the post-quantum
cryptography during the execution of the protocol.

A qubit certification test. The specific cryptographic primitive we rely on is a post-quantum
secure trapdoor claw-free (in short, TCF) family of function pairs f0, f1 : {0, 1}n → {0, 1}m , the
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Fig. 1. The quantum certification protocol.

post-quantum analogue of a notion introduced by Goldwasser, Micali, and Rivest in the context
of digital signatures [22]. A TCF pair is a pair of functions that are injective, with the same image,
and satisfy the following property. With knowledge of a secret trapdoor it is possible to efficiently
(classically) compute the two preimages x0 and x1 of a given y (f0 (x0) = f1 (x1) = y), but without
the trapdoor, there is no efficient quantum algorithm that can compute such a triple (x0,x1,y),
referred to as a claw, for any y.

While the quantum device cannot compute a claw, nevertheless it can simultaneously hold an
image y as well as a superposition

1
√

2
( |0〉|x0〉 + |1〉|x1〉) (1)

over the two preimages of y, simply by evaluating f on a uniform superposition over all inputs
and measuring the image y. If the quantum device were to measure the above state in the standard
basis, then it would obtain a random preimage, x0 or x1. This is not particularly interesting, since
a classical machine could sample from the same distribution by first sampling a random bit b and
string x and then computing y = fb (x ). To take advantage of the fact that the preimages x0,x1

are stored in superposition, the quantum device can instead perform a Fourier (Hadamard) basis
measurement on all but the first qubit of the state, yielding a string d ∈ {0, 1}n . At this point, we
are back to the state mentioned earlier; the quantum device currently holds, for c = d · (x0 ⊕ x1),

1
√

2
( |0〉 + (−1)c |1〉). (2)

A Fourier measurement of the single qubit state above will yield the bit c .
This Fourier measurement is the aspect that separates quantum and classical devices; intuitively,

the output (d, c ) should be hard to reproduce in the classical setting, as it is dependent on both
elements x0 and x1 in the superposition and the claw-free property implies that it is computation-
ally intractable to hold both x0 and x1 simultaneously. This suggests the qubit certification test,
between a classical verifier and a quantum prover, written in Figure 1.

The quantum prover can successfully answer either challenge in the qubit certification protocol
by measuring the state in Equation (1) in the standard or Hadamard basis. By contrast, we would
like to argue that no classical algorithm can succeed at this task. This is counter-intuitive, as ul-
timately our proof must rely on the security of the TCF, which applies equally to classical and
quantum attacks. The crux of the proof is that classical computations can be rewound, while quan-
tum measurements cannot be: If a classical device can pass either challenge, then the device can be
rewound to hold both a valid equation and a preimage, and we will show that knowledge of both is
sufficient to break the TCF. Since quantum measurements cannot be rewound this argument does
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not apply to quantum machines; if a quantum machine passes the preimage test, it cannot then
be used to pass an equation test (and vice versa), since the measurement would cause its state to
collapse.

Showing that knowledge of both a preimage and an equation is sufficient to break the TCF
presents a new challenge. Specifically, we wish to claim that no efficient (classical or quantum)
algorithm can produce both a preimage xb , as well as an n-string d and a bit c such that c =
d · (x0 ⊕ x1) (even with probability 1/2 + ϵ). This may be thought of as a hardcore bit property for
the TCF, for the bit of the n-bit string (x0⊕x1) specified by d . The difficulty is that the specification
of the hardcore bit d can be chosen by the quantum device after it gets to see the particular TCF
chosen by the verifier, as well as the image y. In this sense, what is required is establishing that
the TCF has a kind of “adaptive hardcore bit property.” We describe this property next.

The adaptive hardcore bit property. The adaptive hardcore bit described above is a crucial ingredi-
ent in classically testing quantum computers, yet it has not been studied in classical cryptography.
Luckily, it turns out that it can be built by relying on structural properties of the well-studied
learning with errors (LWE) assumption; more specifically, it relies on a property called leakage

resilience. In this section, we give an overview of the ideas required to prove the adaptive hardcore
bit. We begin by describing how the learning with errors assumption can be used to construct a
trapdoor claw-free function pair, and then describe how the leakage resilience properties of LWE
imply the validity of the adaptive hardcore bit for this construction.

Recall that the learning with errors problem starts with a system ofm′ linear equations modulo

q on a set of n′ variables, with m′ > n′. Starting with a uniformly random matrix A ∈ Zm′×n′
q ,

and a vector s ∈ Zn′
q and letting t = As results in an easily solvable linear system of equations

(A, t ). To make the inversion problem challenging, a noise vector e ∈ Zm′
q is added, so instead

t = As + e . The distribution over the noise vector e is judiciously chosen (from a suitable Gaussian
distribution) so while s is uniquely determined by (A, t ), it is computationally difficult to recover
it. The learning with errors assumption states that the distribution over (A, t ) is computationally

indistinguishable from the distribution over (A,u) for a uniformly random stringu ∈ Zm′
q ; in other

words, the addition of the noise e computationally hides s .
Given an LWE sample (A, t = As + e ), it is natural to try to define a TCF family by letting

f0 (x ) = Ax + e0 and f1 (x ) = Ax + e0 + t . Note that the output of each function is now a random
sample from a distribution, since e0 is randomly chosen. Substituting t = As+e , we see that f1 (x ) =
A(x+s )+e0+e . If e were 0, then this would mean that f1 (x ) = f0 (x+s ) (i.e., the two distributions are
the same). By sampling e0 from a Gaussian much wider than e , we can ensure that the distributions
f1 (x ) and f0 (x + s ) are statistically close, thus effectively ensuring that f1 (x ) = f0 (x + s ). We refer
to such a function pair as a noisy trapdoor claw-free function pair (NTCF). Each claw of such a
function pair will now have the following property: for all claws (x0,x1,y) of the function pair,
x1 = x0 − s . Note that the claw-free property of this pair of functions follows immediately from
the LWE assumption, since knowledge of both x0 and x1 reveals the secret s .

A quantum device can use an NTCF to set up a superposition over a claw: 1√
2

( |0,x0〉+ |1,x0−s〉).
This follows easily by observing that it can create the superposition

∑
b

∑
x

∑
e0
|b〉|x〉|Ax +e0+bt〉

(omitting normalization factors), and measure the last register to obtain y, creating the desired
superposition in the first two registers. Recall that in our earlier description the quantum device
worked over qubits, whereas we worked moduloq while defining the NTCF. This is easily remedied
by converting all mod q entries to binary strings – letting n = n′�logq	 and m = m′�logq	, we
may think of f0, f1 : {0, 1}n → {0, 1}m . It is worth remarking at this point that given the form of
the superposition over the claw 1√

2
( |0,x0〉+ |1,x0 − s〉), it is tempting to ask why one cannot apply

Journal of the ACM, Vol. 68, No. 5, Article 31. Publication date: August 2021.



A Cryptographic Test of Quantumness and Certifiable Randomness 31:5

standard period-finding quantum algorithms to compute s . The point is that even though x0 and
x0 − s are stored in binary, x0 − s is computed modulo q and is incompatible with Fourier sampling
performed modulo 2. As we will see shortly, this mixing of Zq vectors with the Fourier transform
mod 2 is what makes the proof of the adaptive hardcore bit possible.

Given this additional structure, we can now state the adaptive hardcore bit property a bit more
precisely. The adaptive hardcore bit property states that it is difficult to hold both a single preimage
xb , as well as a string d ∈ {0, 1}n \ 0n and a bit c such that c = d · (x0 ⊕ x1). Since x1 = x0 − s , one
might hope to express the last condition directly in terms of s . Note that d · (x0 ⊕ (x0 − s )) is not

equal to d · s , due to the fact that a binary XOR and a difference modulo q do not cancel. Instead,

if s is binary, and can therefore be interpreted as a string in {0, 1}n′ , then it is possible to use xb

to efficiently compute a string d ′ ∈ {0, 1}n′ such that d · (x0 ⊕ (x0 − s )) = d ′ · s , via a linear map
that relies only on the fact that s is binary. To see how this map works, consider the special case
in which n′ = 1 and the secret s is a single bit. Then, if we let d ′ = d · (x0 ⊕ (x0 − 1)) (x0 − 1 is again
performed modulo q), then it follows that d · (x0 ⊕ (x0 − s )) = d ′ · s . This reasoning immediately
extends to the general case. It follows that the adaptive hardcore bit can be reformulated as stating
that it is difficult to produce a string d ′ and a bit c such that d ′ · s = c; in other words, not only is
it hard to find the secret s , it is even hard to find any bit of the secret s .

If we could assume that d ′ was chosen independently of the LWE sample, then the desired
hardcore bit property would follow from current results in classical cryptography that strengthen
the security of LWE to prove leakage resilience: Given an LWE sample As + e , any given bit of s is
computationally indistinguishable from a uniformly random bit. Unfortunately, there is an added
difficulty in our setting: The quantum device can choose the string d ′ after seeing the LWE sample
(after all, the device requires the LWE sample t = As + e to evaluate the function). It is in this
sense that the hardcore bit property is adaptive. We now outline the leakage resilience argument
to describe how it can be adapted to our setting.

In proving leakage resilience [21], the matrix A is replaced with a computationally indistin-

guishable matrix BC + E, where C ∈ Z�′×n′
q , for �′ 
 n′. The computational indistinguishability

is immediately implied by treating BC + E as a smaller LWE sample, in which C is the secret.
Moreover, E is chosen from a Gaussian with width sufficiently smaller than the Gaussian noise e ,
implying that (BC + E)s + e is statistically close to BCs + e . The point of this substitution is that
the matrix C compresses s , and the leftover hash lemma can be invoked to argue that even given
Cs (which is at least as much information as (BC +E)s), any bit of s is statistically close to uniform,
thus showing that it is a hardcore bit given A.

In the situation we are interested in, the choice of d ′ may depend upon the LWE sample As + e ,
which corresponds in the leakage resilience argument tod ′ depending onCs . We wish to argue that
d ′ · s is still statistically close to uniform. This is where the mod q versus mod 2 difference comes
into play: In our setting, the string d ′ is binary (as is the inner product of d ′ and s), whereas the
entries of C are uniformly random entries in Zq . It can be shown via a Fourier analytic argument
that even if Cs is fixed, then there is enough entropy left in s that d ′ · s is statistically close to
uniform.

As you might expect, the argument outlined above requires that d ′ is non-zero. Therefore, the
verifier must check that the stringd returned by the prover yields a non-zerod ′. Note that although
d ′ is an easily computable function of xb andd , the verifier has no way of knowing which preimage
(x0 or x1) the adversary may have in mind. It follows that there are two different values d ′0,d

′
1

(corresponding to x0 and x1) that both must be checked to be non-zero. Of course, the verifier
knows the trapdoor and can perform this check efficiently.
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The problem is a little more serious in the adaptive hardcore bit proof, which requires that
the validity of d ′ be testable efficiently without the trapdoor to maintain the entropy of s . Clearly,
knowledge of both preimages x0 and x1 is not the answer, since this uniquely determines s . Instead,
we modify the protocol so the verifier imposes a more restrictive constraint ond , by only accepting
d such that the first half of d ′0 is non-zero, and the second half of d ′1 is non-zero. Observe that
checking whether d ′ satisfies these constraints can either be done with x0 and the second half of s
(combined with x0, this can be used to compute the second half of x1, and therefore the second half
of d ′1), or x1 and the first half of s . Moreover, observe that with this limited knowledge, the adaptive
hardcore bit still holds; for example, knowledge of only x0 and the second half of s preserves the
entropy of the first half of s , thereby allowing us to apply the hardcore bit argument to the first
half of d ′0 (which we know to be non-zero).

Quantum Supremacy. The qubit certification protocol described above has implications for an
important milestone in the experimental realization of quantum computers, namely “quantum
supremacy”: a proof that an (untrusted) quantum computing device performs some computational
task that cannot be solved classically without impractical resources. While this could in principle
be achieved by demonstrating quantum factoring, the latter requires quantum resources well be-
yond the capability of near-term experiments. Instead current proposals are based on sampling
problems (see, e.g., Reference [24] for a recent survey). The major challenge for these proposals is
verifying that the quantum computer did indeed sample from the desired probability distribution,
and all existing proposals rely on exponential time classical algorithms for verification. By con-
trast, our supremacy provides a proof of quantumness that can be verified by a classical verifier in
polynomial time. This proposal seems promising from a practical viewpoint—indeed, even using
off-the-shelf bounds for LWE-based cryptography suggests that a protocol providing 50 bits of
security could be implemented with a quantum device of around 2, 000 qubits (see, e.g., Reference
[25]). It would be worth exploring whether there are clever implementations of this scheme that
can lead to a protocol in the 200–500 qubit range.

Another challenge in making our proposal suitable for near-term devices is fault tolerance.
While our protocol will require some level of fault tolerance, the hope is that it might not require
general fault tolerance techniques, due to its robustness: Our protocol is robust to a device that
only successfully answers the verifier’s challenges with a sufficiently large, but constant, success
probability.

Certifiable randomness. The challenge in achieving certifiable randomness lies in using compu-
tational assumptions to establish not pseudorandomness, but rather that the output of the protocol
must be (close to) statistically random. In our analysis, we leverage the properties of the NTCF to
characterize the quantum state and measurements of the untrusted quantum device—essentially
showing that it must have a qubit initialized in state |+〉, which it measured in the standard basis,
thus generating one bit of statistical randomness. This is the analogue of the use of the violation
of Bell inequalities to characterize the state of the device in entanglement-based testing.

We first explain how to show that a device that succeeds in the qubit certification test (which we
will often refer to as a single round test or single round protocol) must generate randomness. In
the test the device must make one of two measurements: either a “preimage” measurement or an
“equation” measurement. We focus on a single bit of information provided by each measurement.
The “preimage” measurement can be treated as a projection into one of two orthogonal subspaces
corresponding to the two preimages x0,x1 for the element y that the device has returned to the
verifier. The “equation” measurement can similarly be coarse-grained into a projection on one of
two orthogonal subspaces, “valid” or “invalid,” i.e., the subspace that corresponds to all measure-
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ment outcomes d, c such that d · (x0 + x1) = c , or the subspace associated with outcomes d, c such
that d · (x0 + x1) = c ⊕ 1.

Applying Jordan’s lemma, it is possible to decompose the device’s Hilbert space into a direct
sum of one- and two-dimensional subspaces, such that within each two-dimensional subspace the
“preimage” and “equation” measurements each correspond to an orthonormal basis, such that the
two bases make a certain angle with each other. We argue that almost all angles must be very close
to π/4. Indeed, whenever the angles are not near-maximally unbiased, it is possible to show that by
considering the effect of performing the measurements in sequence, one can devise an “attack” on
the NTCF of a kind that contradicts the adaptive hardcore bit property of the NTCF—informally,
the attack can simultaneously produce a valid preimage and a valid equation, with non-negligible
advantage.

As a result, it is possible to show that the state and (coarse-grained) measurements of the device
are, up to a global change of basis, close to the following: The device starts with a qubit initialized
to |+〉, which it measures in the standard basis for the case of a preimage test and in the Hadamard
basis for the case of an equation test. The fact that an efficient quantum device cannot break the
cryptographic assumption has thus been translated into a characterization of the state and actions
of the quantum device, which further implies that the output of the device in the single round test
must contain close to a bit of true (information theoretic) randomness.

One might further conjecture that for a generic TCF (e.g., modeled as a random oracle), if the
output of any efficient quantum device passes the single round test with non-negligible advantage
over 1

2 , then the triple y,d, c returned in the equation test must have high min-entropy. Such a
strong statement would immediately yield a randomness certification protocol. Among the many
difficulties in showing such a statement is that both y and d may be adaptively and adversarially
chosen—in the single round protocol above this issue is addressed by the adaptive hardcore bit
property of the NTCF.

Outline of randomness generation protocol. Going beyond the analysis of the single round test
requires significantly more work. So far, we have argued that if an efficient quantum algorithm has
the ability to generate a valid equation with probability sufficiently close to 1, then, if instead it is
asked for a preimage, this preimage must be close to uniformly distributed over the two possibili-
ties. To leverage this our randomness expansion protocol proceeds in multiple rounds, repeatedly
asking for new images y and a preimage of y (to generate randomness) while inserting a few
randomly located equation tests to test the device. Each time an “equation” challenge has been an-
swered, we refresh the pseudorandom keys used for the NTCF. This is required to avoid a simple
“attack” by the device, which would repeatedly use the same y, preimage x , and guessed equation
d—succeeding in the protocol with probability 1

2 without generating any randomness.
Let us call the sequence of rounds with a particular set of pseudorandom keys an epoch. Intu-

itively, we would like to claim that if the device passes all the equation tests, then for most epochs
and for most rounds within that epoch, the state of the device and its measurements must be (close
to) as characterized above: It starts with a qubit initialized to |+〉, which it measures in the standard
basis for the case of a preimage test, and in the Hadamard basis for the case of an equation test.
To show this, we would like to claim that if the device passes all the equation tests, then for most
such tests it must produce a valid equation with probability close to 1. Since each equation test oc-
curs at a random round in the epoch, it should follow from the adaptive hardcore bit property that
the sequence of bits that the verifier extracts from the device’s answers to preimage tests during
that epoch must look statistically random. We give a martingale-based argument to formalize this
intuition.
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There is, however, a bigger challenge to analyzing the protocol—we must show that the sequence
that the verifier extracts from the device’s answers to preimage tests must look statistically ran-
dom even to an infinitely powerful quantum adversary, who may share an arbitrary entangled
state with the quantum device. If we could assert that each round of the protocol is played with
a qubit exactly in state |+〉, and measured in the standard basis basis for the case of a preim-
age test, then this would lead to an easy proof that the extracted sequence looks random to the
adversary. Unfortunately, the characterization of the device’s qubits leaves plenty of room for
entanglement with the adversary. Showing that such entanglement cannot leak too much infor-
mation about the device’s measurements was the major challenge in previous work on certified
randomness through Bell inequality violations [6, 30, 43]. Our cryptographic setting presents a
new difficulty, which is that in contrast to the Bell inequality violation scenarios, in our setting
it is not impossible for a deterministic device to succeed in the test: It is merely computationally

hard to do so. This prevents us from directly applying the results in References [6, 30] and re-
quires us to suitably modify their framework. We describe this part of the argument in more detail
below.

In terms of efficiency, for the specific LWE-based NTCF that we construct, our protocol can
use as few as poly log(N ) bits of randomness to generate O (N ) bits that are statistically within
negligible distance from uniform. However, this requires assuming that the underlying LWE as-
sumption is hard even for sub-exponential size quantum circuits with polynomial-size quantum
advice (which is consistent with current knowledge). The more conservative assumption that our
variant of LWE is only hard for polynomial size quantum circuits requires O (N ϵ ) bits of random-
ness for generating the NTCF, for any constant ϵ > 0. The following is an informal description;
see Theorem 8.13 for a more formal statement.

Theorem 1.1 (Informal). Let F be an NTCF family and λ a security parameter. Let N = Ω(λ2)
and assume the quantum hardness of solving lattice problems of dimension λ in time poly(N ). There

is an N -round protocol for the interaction between a classical polynomial-time verifier and a quantum

polynomial-time device such that the protocol can be executed using poly(log(N ), λ) bits of random-

ness, and for any efficient device and side information E correlated with the device’s initial state,

Hδ
∞ (O |CE)ρ ≥ (ξ − o(1))N .

Here, ξ is a positive constant, δ is a negligible function of λ, and ρ is the final state of the classical

output register O, the classical register C containing the verifier’s messages to the device, and the side

information E, restricted to transcripts that are accepted by the verifier in the protocol.

Sketch of the security analysis. We describe the protocol in slightly more detail (see Section 5 for
a formal description). The verifier first uses poly(log(N ), λ) bits of randomness to select a pair of
functions { fk,b }b ∈{0,1} from an NTCF family and sends the public function key k to the quantum
device. This pair of functions can be interpreted as a single 2-to-1 function fk : (b,x ) → fk,b (x ).
The verifier keeps private the trapdoor information that allows to invert fk . The protocol then
proceeds for N rounds. In each round the device first outputs a value y in the common range of
fk,0 and fk,1. After having received y, the verifier issues one of two challenges: 0 or 1, preimage or
equation. If the challenge is “preimage,” then the device must output an x such that f (x ) = y. If the
challenge is “equation,” then the device must output a nontrivial binary vector d and a bit c such
that d · (x0+x1) = c , where x0 and x1 are the unique preimages ofy under fk,0 and fk,1, respectively.
Since the verifier has the secret key, she can efficiently compute x0 and x1 from y and therefore
check the correctness of the device’s response to each challenge. The verifier chooses poly log(N )
rounds in which to issue the challenge 1, or “equation,” at random. Selecting these rounds requires
only poly log(N ) random bits. At the end of each such round, the verifier samples a new pair of
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functions from the NTCF family and communicates the new public key to the device. On each of
the remaining N − poly log(N ) rounds the verifier records a bit according to whether the device
returns the preimage x0, or x1 (e.g., recording 0 for the lexicographically smaller preimage). At
the end of the protocol the verifier uses a strong quantum-proof randomness extractor to extract
Ω(N ) bits of randomness from the recorded string (this requires at most an additional poly log(N )
bits of uniformly random seed).

To guarantee that the extractor produces bits that are statistically close to uniform, we would
like to prove that the N −poly log(N ) random bits recorded by the verifier must have Ω(N ) bits of
(smoothed) min-entropy,1 even conditioned on the side information available to an infinitely pow-
erful quantum adversary, who may share an arbitrary entangled state with the quantum device.

The analysis proceeds as follows: First, we assume without loss of generality that the entire pro-
tocol is run coherently, i.e., we may assume that the initial state of the quantum device (holding
quantum register D) and the adversary (holding quantum register E) is a pure state |ϕ〉DE, since the
adversary may as well start with a purification of their joint state. We may also assume that the
verifier starts with a cat state on poly log(N ) qubits and uses one of the registers of the state, C,
to provide the random bits used to select the type of test being performed in each round. (This is
for the sake of analysis only; the actual verifier is of course completely classical.) We can similarly
arrange that the state remains pure throughout the protocol by using the principle of deferred mea-
surement. Our goal is to show a lower bound on the smooth min-entropy of the output register O

in which the verifier has recorded the device’s outputs, conditioned on the state E of the adversary,
and on the register C of the cat state (conditioning on the latter represents the fact that the veri-
fier’s choice of challenges may be leaked to the adversary, and we would like security even in this
scenario). Intuitively, this amounts to bounding the information accessible to the most powerful
adversary quantum mechanics allows, conditioned on the joint state of the verifier and device.

To bound the entropy of the final state, we need to show that the entropy “accumulates” at
each round of the protocol. A general framework to establish entropy accumulation in quantum
protocols such as the one considered here was introduced in Reference [6]. At a high level, the
approach consists in reducing the goal of a min-entropy bound to a bound on the appropriate
notion of (1 + ε ) quantum conditional Rényi entropy and then arguing that, under suitable condi-
tions on the process that generates the outcomes recorded in the protocol, entropy accumulates
sequentially throughout the protocol.

In a little more detail, the first step on getting a handle on the smooth min-entropy is to use the
quantum asymptotic equipartion property (QAEP) [42] to relate it to the (1 + ε ) conditional
Rényi entropy for suitably small ε . The second step uses a duality relation for the conditional Rényi
entropy to relate the (1 + ε ) conditional Rényi entropy of the output register O, conditioned on
the adversary side information in R and the register C of the cat state, to a quantity analogous
to the (1 − ε ′) conditional Rényi entropy of the output register, conditioned on the register E for
the device, and a purifying copy of the register C of the cat state. The latter quantity, a suitable
conditional entropy of the output register conditioned on the challenge register and the state of
the device, is the quantity that we ultimately aim to bound. Note what these transformations have
achieved for us: It is now sufficient to consider as side information only “known” quantities in
the protocol, the verifier’s choice of challenges and the device’s state; the information held by the
adversary plays no other role than that of a purifying register.

As mentioned earlier, our cryptographic setting presents the additional difficulty that our guar-
antee is only that it is computationally hard for a deterministic device to succeed in the protocol.
The results in References [6, 30] crucially rely on the fact that the process that generates the ran-

1We refer to Section 2 for definitions of entropic quantities.
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domness does so irrespective of the quantum state in which it is initialized (as long as the output
of the process satisfies the test’s success criterion). This requirement comes from the conditioning
that is performed to show that entropy accumulates; in our setting, conditioning is more delicate,
as it can in principle induce non-computationally efficient states for the device.

Recall that we argued that for a single round of the protocol, we can decompose the device’s
Hilbert space into a direct sum of one- or two-dimensional subspaces, such that within most two-
dimensional subspace the “preimage” and “equation” measurements correspond to orthonormal
bases that make an angle close to π/4 with each other. Showing that the Rényi entropy accumu-
lates in each round requires a device in which all angles are close to π/4, not “almost all.” To
accommodate for this, we “split” the state of the device into its component on the good subspace,
where the angles are unbiased, and the bad subspace, where the measurements may be aligned.
The fact that the distinction between good and bad subspace is not measured in the protocol, but
is only a distinction made for the analysis, requires us to apply a fairly delicate martingale based
argument that takes into account possible interference effects and bounds those “branches” where
the state has gone through the bad subspace an improbably large number of times. Whenever the
state lies in the good susbpace, we can appeal to an uncertainty principle from Reference [30] to
show that the device’s measurement increases the conditional Rényi entropy of the output register
by a small additive constant. Pursuing this approach across all N rounds, we obtain a linear lower
bound on the conditional Rényi entropy of the output register, conditioned on the state of the de-
vice. As argued above this in turn translates into a linear lower bound on the smooth conditional
min-entropy of the output, conditioned on the state of the adversary and the verifier’s choice of
challenges. It only remains to apply a quantum-proof randomness extractor to the output, using a
poly-logarithmic number of additional bits of randomness, to obtain the final result.

Concurrent and related work. The idea of using a TCF as a basic primitive in interactions be-
tween an efficient quantum prover and a classical verifier has been further developed in recent
work by Mahadev [27], giving the first construction of a quantum fully homomorphic encryption
scheme with classical keys. In further follow-up work, Mahadev [28] shows a remarkable use of
an NTCF family with adaptive hardcore bit. Namely, that the NTCF can be used to certify that
a prover measures a qubit in a prescribed basis (standard or Hadamard). This allows to achieve
single prover verifiability for quantum computations using a purely classical verifier (but relying
on computational assumptions).

Independently of this work, a construction of trapdoor one-way functions with second preimage
resistance based on LWE was recently introduced in Reference [14], where it is used to achieve
delegated computation in the weaker honest-but-curious model for the adversary (i.e., without
soundness against provers not following the protocol). The family of functions considered in Ref-
erence [14] is not sufficient for our purposes, as it lacks the adaptive hardcore bit property.

After the completion of our work, in Reference [20] the construction of NTCF family introduced
here was extended to a more general hardcore bit property (informally, over Z8 instead of Z2 here)
and used to implement a two-party functionality called “remote state preparation” by which a clas-
sical client can “force” the preparation of one out of eight possible single-qubit quantum states by
the prover. The authors of Reference [15] also generalize Reference [14] to obtain a similar func-
tionality; however, their construction does not offer the property of being verifiable (informally, it
is possible for the server to prepare a state that is not the expected one).

We believe that the technique of constraining the power of a quantum device using NTCFs
promises to be a powerful tool for the field of untrusted quantum devices.

Organization. We start with some notation and preliminaries in Section 2. Section 3 contains
the definition of a noisy trapdoor claw-free family (NTCF). Our construction for such a family
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is given in Section 4 (with Appendix 2.3 containing relevant preliminaries on the learning with
errors problem). The randomness generation protocol is described in Section 5. In Section 6, we
introduce our formalism for modeling the actions of an arbitrary prover, or device, in the protocol.
In Section 7, we analyze a single round of the protocol, and in Section 8, we show that randomness
accumulates across multiple rounds.

2 PRELIMINARIES

2.1 Notation

Z is the set of integers, and N the set of natural numbers. For any q ∈ N such that q ≥ 2, we
let Zq denote the ring of integers modulo q. We generally identify an element x ∈ Zq with its

unique representative [x]q ∈ (−q

2 ,
q

2 ] ∩ Z. For x ∈ Zq , we define |x | = |[x]q |. When considering
an s ∈ {0, 1}n , we sometimes also think of s as an element of Zn

q , in which case, we write it as s.
We use the terminology of polynomially bounded and negligible functions. A function n : N→

R+ is polynomially bounded if there exists a polynomial p such that n(λ) ≤ p (λ) for all λ ∈ N. A
function n : N → R+ is negligible if for every polynomial p, p (λ)n(λ) →λ→∞ 0. We write negl(λ)
to denote an arbitrary negligible function of λ. For two parameters κ, λ, we write κ 
 λ to express
the constraint that κ should be “sufficiently smaller than” λ, meaning that there exists a small
universal constant c > 0 such that κ ≤ cλ, where c is usually implicit for context.
H always denotes a finite-dimensional Hilbert space. We use indicesHA,HB, and so on, to refer

to distinct spaces. Pos(H ) is the set of positive semidefinite operators onH , and D(H ) the set of
density matrices, i.e., the positive semidefinite operators with trace 1. For an operator X onH , we

use ‖X ‖ to denote the operator norm (largest singular value) ofX , and ‖X ‖tr =
1
2 ‖X ‖1 =

1
2 Tr
√
XX †

for the trace norm.

2.2 Distributions

We generally use the letter D to denote a distribution over a finite domain X , and f for a density
on X , i.e., a function f : X → [0, 1] such that

∑
x ∈X f (x ) = 1. We often use the distribution and

its density interchangeably. We write U for the uniform distribution. We write x ← D to indicate
that x is sampled from distribution D, and x ←U X to indicate that x is sampled uniformly from
the set X . We write DX for the set of all densities on X . For any f ∈ DX , Supp( f ) denotes the
support of f ,

Supp( f ) =
{
x ∈ X | f (x ) > 0

}
.

For two densities f1 and f2 over the same finite domain X , the Hellinger distance between f1 and
f2 is

H 2 ( f1, f2) = 1 −
∑
x ∈X

√
f1 (x ) f2 (x ). (3)

The total variation distance between f1 and f2 is

‖ f1 − f2‖TV =
1

2

∑
x ∈X
| f1 (x ) − f2 (x ) | ≤

√
2H 2 ( f1, f2). (4)

The following immediate lemma relates the Hellinger distance and the trace distance of superpo-
sitions:

Lemma 2.1. Let X be a finite set and f1, f2 ∈ DX . Let

|ψ1〉 =
∑
x ∈X

√
f1 (x ) |x〉 and |ψ2〉 =

∑
x ∈X

√
f2 (x ) |x〉.
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Then

‖|ψ1〉 − |ψ2〉‖tr =

√
1 − (1 − H 2 ( f1, f2))2.

We say that a family of quantum circuits {Cλ }λ∈N (respectively, observables {Oλ }λ∈N) is
polynomial-time generated if there exists a polynomial-time deterministic Turing machine that,
on every input λ ∈ N, returns a gate-by-gate encoding of the circuit Cλ (respectively, of a circuit
that implements Oλ ). We introduce a notion of efficient distinguishability between distributions.

Definition 2.2. We say that two families of distributions D0 = {D0,λ }λ∈N and D1 = {D1,λ }λ∈N on
the same finite set {Xλ } are computationally indistinguishable if for every polynomial-time gener-
ated family of quantum circuits A = {Aλ : Xλ → {0, 1}} it holds that

���� Pr
x←D0,λ

[Aλ (x ) = 0] − Pr
x←D1,λ

[Aλ (x ) = 0]
���� = negl(λ), (5)

where the probability is taken over the choice of x from either distribution as well as randomness
inherent in any measurement performed by the circuit Aλ .

The next definition generalizes the previous one to the case of quantum states.

Definition 2.3. We say that two families of sub-normalized density matrices σ0 = {σ0,λ }λ∈N and
σ1 = {σ1,λ }λ∈N on the same Hilbert space {Hλ } are computationally indistinguishable if for every
polynomial-time generated family of observables O = {Oλ }λ∈N it holds that

���Tr
(
Oλ (σ0,λ − σ1,λ )

) ��� = negl(λ).

2.3 The Learning with Errors Problem

We give some background on the Learning with Errors problem (LWE). For a positive real B
and a positive integer q, the truncated discrete Gaussian distribution over Zq with parameter B is
the distribution supported on {x ∈ Zq : ‖x ‖ ≤ B} with density

DZq,B (x ) =
e
−π ‖x ‖2

B2

∑
x ∈Zq, ‖x ‖≤B e

−π ‖x ‖2
B2

. (6)

More generally, for a positive integerm the truncated discrete Gaussian distribution over Zm
q with

parameter B is the distribution supported on {x ∈ Zm
q : ‖x ‖ ≤ B

√
m} with density

∀x = (x1, . . . ,xm ) ∈ Zm
q , DZm

q ,B (x ) = DZq,B (x1) · · ·DZq,B (xm ). (7)

Lemma 2.4. Let B be a positive real and q,m positive integers. Consider e ∈ Zm
q such that ‖e‖ ≤

B
√
m. The Hellinger distance between the distribution D = DZm

q ,B and the shifted distribution D + e,

with density (D + e) (x ) = D (x − e), satisfies

H 2 (D,D + e) ≤ 1 − e
−2π

√
m‖e‖

B , (8)

and the statistical distance between the two distributions satisfies

���D − (D + e)���2

TV
≤ 2

(
1 − e

−2π
√

m‖e‖
B

)
. (9)
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Proof. Let τ =
∑

x ∈Zq, ‖x ‖≤B
e
−π ‖x ‖2

B2 . We will rely on the fact that for any e0 in the support of

DZm
q ,B , ‖e0‖ ≤ B

√
m. We can compute the bound as follows:

∑
e0∈Zm

q

√
DZm

q ,B (e0)DZm
q ,B (e0 − e) =

1

τm

∑
e0∈Zm

q

e
−π (‖e0 ‖2+‖e0−e‖2 )

2B2

≥ 1

τm

∑
e0∈Zm

q

e
−π (‖e0 ‖2+(‖e0 ‖+‖e‖)2 )

2B2

=
1

τm

∑
e0∈Zm

q

e
−π (‖e0 ‖2 )

B2 e
−π (2‖e0 ‖‖e‖)

2B2 e
−π (‖e‖2 )

2B2

≥ e
−π (‖e‖2+2B

√
m‖e‖)

2B2
1

τm

∑
e0∈Zm

q

e
−π (‖e0 ‖)2

B2

= e
−π (‖e‖2+2B

√
m‖e‖)

2B2

≥ e
−π (4B

√
m‖e‖)

2B2

= e
−2π

√
m‖e‖

B .

The bound on the statistical distance follows from the bound on the Hellinger distance using the
inequality in (4). �

We define the main assumption that underlies all computational hardness claims made in the
article.

Definition 2.5. For a security parameter λ, let n,m,q ∈ N be integer functions of λ. Let χ =
χ (λ) be a distribution over Z. The LWEn,m,q, χ problem is to distinguish between the distributions
(A,As+ e (mod q)) and (A, u), where A←U Z

n×m
q , s←U Zn

q , e← χm , and u←U Zm
q . Often, we

consider the hardness of solving LWE for any function m such that m is at most a polynomial in
n logq. This problem is denoted LWEn,q, χ .

In this article, we make the assumption that no quantum polynomial-time procedure can solve
the LWEn,q, χ problem with more than a negligible advantage in λ, even when given access to a
quantum polynomial-size advice state depending on the parameters n,m,q, and χ of the problem.
We refer to this assumption as “the LWEn,q, χ assumption.”

As shown in References [34, 37], for any α > 0 such that σ = αq ≥ 2
√
n the LWEn,q,DZq ,σ

problem, where DZq,σ is the discrete Gaussian distribution, is at least as hard as approximating

the shortest independent vector problem (SIVP) to within a factor of γ = Õ (n/α ), where Õ
hides factors logarithmic in the argument, in worst case dimension n lattices. This is proven using
a quantum reduction. Classical reductions (to a slightly different problem) exist as well [11, 33]
but with somewhat worse parameters. The best known (classical or quantum) algorithm for these

problems runs in time 2Õ (n/ log γ ) . For our construction, given in Section 4, we assume hardness of
the problem against a quantum polynomial-time adversary in the case that γ is a super polyno-
mial function in n. This is a commonly used assumption in cryptography (for, e.g., homomorphic
encryption schemes such as Reference [19]).

We use two additional properties of the LWE problem. The first is that it is possible to generate
LWE samples (A,As + e) such that there is a trapdoor allowing recovery of s from the samples.
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Theorem 2.6 (Theorem 5.1 in [29]). Let n,m ≥ 1 and q ≥ 2 be such that m = Ω(n logq).
There is an efficient randomized algorithm GenTrap(1n , 1m ,q) that returns a matrix A ∈ Zm×n

q

and a trapdoor tA such that the distribution of A is negligibly (in n) close to the uniform distri-

bution. Moreover, there is an efficient algorithm Invert that, on input A, tA and As + e where

‖e‖ ≤ q/(CT

√
n logq) and CT is a universal constant, returns s and e with overwhelming proba-

bility over (A, tA) ← GenTrap(1n , 1m ,q).

The second property is the existence of a “lossy mode” for LWE. The following definition is
Definition 3.1 in Reference [5]:

Definition 2.7. Let χ = χ (λ) be an efficiently sampleable distribution over Zq . Define a lossy

sampler Ã← lossy(1n , 1m , 1�,q, χ ) by Ã = BC + F, where B←U Zm×�
q , C←U Z�×n

q , F← χm×n .

Theorem 2.8 (Lemma 3.2 in [5]). Under the LWE�,q, χ assumption, the distribution of a random

Ã← lossy(1n , 1m , 1�,q, χ ) is computationally indistinguishable from A←U Zm×n
q .

2.4 Entropies

For p ∈ [0, 1], we write H (p) = −p logp − (1 − p) log(1 − p) for the binary Shannon entropy.
We measure randomness using Rényi conditional entropies. For a positive semidefinite matrix
σ ∈ Pos(H ) and ε ≥ 0, let

〈σ 〉1+ε = Tr(σ 1+ε ).

This quantity satisfies the following approximate linearity relations:

∀ε ∈ [0, 1], 〈σ 〉1+ε + 〈τ 〉1+ε ≤ 〈σ + τ 〉1+ε ≤
(
1 +O (ε )

) (
〈σ 〉1+ε + 〈τ 〉1+ε

)
. (10)

In addition, for positive semidefinite σ , ρ ∈ Pos(H ) such that the support of ρ is included in the
support of σ , and ε ≥ 0, let

Q̃1+ε (ρ‖σ ) = 〈σ−
ε

2(1+ε ) ρσ−
ε

2(1+ε ) 〉1+ε . (11)

Quantum analogues of the conditional Rényi entropies can be defined as follows:

Definition 2.9. Let ρAB ∈ Pos(HA ⊗ HB) be positive semidefinite. Given ε > 0, the (1 + ε ) Rényi

entropy of A conditioned on B is defined as

H1+ε (A|B)ρ = sup
σ ∈D(HB )

H1+ε (A|B)ρ |σ ,

where for any σB ∈ D(HB),

H1+ε (A|B)ρ |σ = −
1

ε
log Q̃1+ε (ρ‖σ ).

Rényi entropies are used in the proofs, because they have better “chain-rule-like” prop-
erties than the min-entropy, which is the most appropriate measure for randomness
quantification.

Definition 2.10. Let ρAB ∈ Pos(HA ⊗ HB) be positive semidefinite. Given a density matrix the
min-entropy of A conditioned on B is defined as

H∞ (A|B)ρ = sup
σ ∈D(HB )

H∞ (A|B)ρ |σ ,

where for any σB ∈ D(HB),

H∞ (A|B)ρ |σ = max
{
λ ≥ 0 | 2−λ IdA ⊗σB ≥ ρAB

}
.
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It is often convenient to consider the smooth min-entropy, which is obtained by maximizing the
min-entropy over all positive semidefinite operators matrices in an ε-neighborhood of ρAB. The
definition of neighborhood depends on a choice of metric; the canonical choice is the “purified
distance.” Since this choice will not matter for us, we defer to Reference [41] for a precise definition.

Definition 2.11. Let ε ≥ 0 and ρAB ∈ Pos(HA ⊗ HB) positive semidefinite. The ε-smooth min-

entropy of A conditioned on B is defined as

H ε
∞ (A|B)ρ = sup

σAB∈B (ρAB,ε )

H∞ (A|B)σ ,

where B (ρAB, ε ) is the ball of radius ε around ρAB, taken with respect to the purified distance.

The following theorem relates the min-entropy to the the Rényi entropies introduced earlier.
The theorem expresses the fact that, up to a small amount of “smoothing” (the parameter δ in the
theorem), all these entropies are of similar order.

Theorem 2.12 (Theorem 3.2 [32]). Let ρXE ∈ Pos(HX ⊗ HE) be positive semidefinite of the form

ρXE =
∑

x ∈X |x〉〈x | ⊗ ρx
E

, whereX is a finite alphabet. Let σE ∈ D(HE) be an arbitrary density matrix.

Then for any δ > 0 and 0 < ε ≤ 1,

Hδ
∞ (X |E)ρ ≥ −

1

ε
log

(∑
x

Q̃1+ε

(
ρx

E ‖σE

))
− 1 + 2 log(1/δ )

ε
.

3 TRAPDOOR CLAW-FREE HASH FUNCTIONS

Let λ be a security parameter, and X and Y finite sets (depending on λ). For our purposes an
ideal family of functions F would have the following properties: For each public key k , there are
two functions { fk,b : X → Y}b ∈{0,1} that are both injective and have the same range, and are
invertible given a suitable trapdoor tk (i.e., tk can be used to compute x given b and y = fk,b (x )).
Furthermore, the pair of functions should be claw-free: It must be hard for an attacker to find
two pre-images x0,x1 ∈ X such that fk,0 (x0) = fk,1 (x1). Finally, the functions should satisfy an
adaptive hardcore bit property, which is a stronger form of the claw-free property: Assuming for
convenience thatX = {0, 1}w , we would like that it is computationally infeasible to simultaneously
generate a pair (b,xb ) ∈ {0, 1}×X and a d ∈ {0, 1}w \ {0w } such that with non-negligible advantage
over 1

2 the equation d · (x0 ⊕ x1) = 0, where x1−b is defined as the unique element such that
fk,1−b (x1−b ) = fk,b (xb ), holds.

Unfortunately, we do not know how to construct a function family that exactly satisfies all
these requirements under standard cryptographic assumptions. Instead, we construct a family that
satisfies slightly relaxed requirements, which we will show still suffice for our purposes, based on
the hardness of the learning with errors problem introduced in Section 2.3. The requirements are
relaxed as follows: First, the range of the functions is no longer a set Y ; instead, it is DY , the set
of probability densities over Y . That is, each function returns a density, rather than a point. The
trapdoor injective pair property is then described in terms of the support of the output densities:
These supports should either be identical, for a colliding pair, or be disjoint, in all other cases.

The consideration of functions that return densities gives rise to an additional requirement of
efficiency: There should exist a quantum polynomial-time procedure that efficiently prepares a
superposition over the range of the function, i.e., for any key k and b ∈ {0, 1}, the procedure can
prepare the state

1
√
X

∑
x ∈X,y∈Y

√(
fk,b (x )

)
(y) |x〉|y〉. (12)
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In our instantiation based on LWE, it is not possible to prepare (12) perfectly, but it is possible

to create a superposition with coefficients
√

( f ′
k,b

(x )) (y), such that the resulting state is within

negligible trace distance of (12). The density f ′
k,b

(x ) is required to satisfy two properties used in

our protocol. First, it must be easy to check, without the trapdoor, if any ∈ Y lies in the support of
f ′
k,b

(x ). Second, the inversion algorithm should operate correctly on all y in the support of f ′
k,b

(x ).

We slightly modify the adaptive hardcore bit requirement as well. Since the set X may not be
a subset of binary strings, we first assume the existence of an injective, efficiently invertible map
J : X → {0, 1}w . Next, we only require the adaptive hardcore bit property to hold for a subset
of all nonzero strings, instead of the set {0, 1}w \ {0w }. Finally, membership in the appropriate set
should be efficiently checkable, given access to the trapdoor.

A formal definition follows.

Definition 3.1 (NTCF family). Let λ be a security parameter. Let X and Y be finite sets. Let KF
be a finite set of keys. A family of functions

F =
{
fk,b : X → DY

}
k ∈KF ,b ∈{0,1}

is called a noisy trapdoor claw free (NTCF) family if the following conditions hold:

(1) Efficient Function Generation. There exists an efficient probabilistic algorithm GENF
that generates a key k ∈ KF together with a trapdoor tk :

(k, tk ) ← GENF (1λ ).

(2) Trapdoor Injective Pair. For all keys k ∈ KF the following conditions hold:
(a) Trapdoor : There exists an efficient deterministic algorithm INVF such that for allb ∈ {0, 1},

x ∈ X, and y ∈ Supp( fk,b (x )), INVF (tk ,b,y) = x . Note that this implies that for all
b ∈ {0, 1} and x � x ′ ∈ X, Supp( fk,b (x )) ∩ Supp( fk,b (x ′)) = ∅.

(b) Injective pair : There exists a perfect matching Rk ⊆ X ×X such that fk,0 (x0) = fk,1 (x1) if
and only if (x0,x1) ∈ Rk .

(3) Efficient Range Superposition. For all keys k ∈ KF and b ∈ {0, 1} there exists a function
f ′
k,b

: X → DY such that the following hold:

(a) For all (x0,x1) ∈ Rk and y ∈ Supp( f ′
k,b

(xb )), INVF (tk ,b,y) = xb and INVF (tk ,b ⊕ 1,y) =
xb⊕1.

(b) There exists an efficient deterministic procedure CHKF that, on input k , b ∈ {0, 1}, x ∈ X
andy ∈ Y , returns 1 ify ∈ Supp( f ′

k,b
(x )) and 0 otherwise. Note that CHKF is not provided

the trapdoor tk .
(c) For every k and b ∈ {0, 1},

Ex←U X
[
H 2 ( fk,b (x ), f ′k,b (x ))

]
≤ μ (λ),

for some negligible function μ (·). Here, H 2 is the Hellinger distance; see (3). Moreover,
there exists an efficient procedure SAMPF that on input k and b ∈ {0, 1} prepares the
state

1
√
|X|

∑
x ∈X,y∈Y

√
( f ′

k,b
(x )) (y) |x〉|y〉. (13)

(4) Adaptive Hardcore Bit. For all keysk ∈ KF the following conditions hold, for some integer
w that is a polynomially bounded function of λ.

(a) For all b ∈ {0, 1} and x ∈ X, there exists a set Gk,b,x ⊆ {0, 1}w such that Prd←U {0,1}w [d �
Gk,b,x ] is negligible, and moreover there exists an efficient algorithm that checks for mem-
bership in Gk,b,x given k,b,x and the trapdoor tk .
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(b) There is an efficiently computable injection J : X → {0, 1}w , such that J can be inverted
efficiently on its range, and such that the following holds: If

Hk =
{
(b,xb ,d,d · (J (x0) ⊕ J (x1))) | b ∈ {0, 1}, (x0,x1) ∈ Rk , d ∈ Gk,0,x0

∩Gk,1,x1

}
, 2

Hk = {(b,xb ,d, c ) | (b,x ,d, c ⊕ 1) ∈ Hk

}
,

then for any quantum polynomial-time procedureA there exists a negligible function μ (·)
such that���� Pr

(k,tk )←GENF (1λ )
[A (k ) ∈ Hk ] − Pr

(k,tk )←GENF (1λ )
[A (k ) ∈ Hk ]

���� ≤ μ (λ). (14)

4 A TRAPDOOR CLAW-FREE FAMILY BASED ON LWE

In this section, we present our LWE-based construction of an NTCF. For LWE-related preliminaries
and definitions, see Section 2.3. Let λ be a security parameter. All other parameters are functions
of λ. Let q ≥ 2 be a prime. Let �,n,m ≥ 1 be polynomially bounded functions of λ and BL,BV ,BP

be positive integers such that the following conditions hold:

(A.1) n = Ω(� logq + λ),
(A.2) m = Ω(n logq),
(A.3) BP =

q

2CT

√
mn log q

, for CT the universal constant in Theorem 2.6,

(A.4) We have BL < BV < BP so the ratios BP

BV
and BV

BL
are both super-polynomial in λ.

Given a choice of parameters satisfying all conditions (A.1) to (A.4), we describe the function
family FLWE. Let X = Zn

q and Y = Zm
q . The key space KFLWE

is a subset of Zm×n
q × Zm

q defined in

Section 4.1. For b ∈ {0, 1}, x ∈ X and key k = (A,As + e), the density fk,b (x ) is defined as

∀y ∈ Y, ( fk,b (x )) (y) = DZm
q ,BP

(y − Ax − b · As), (15)

where the density DZm
q ,BP

is defined in (6). It follows from the definition of the key generation

procedure GENFLWE
given in Section 4.1 that fk,b is well-defined given k = (A,As + e), as for our

choice of parameters k uniquely identifies s .
The four properties required for a noisy trapdoor claw-free family, as specified in Definition 3.1,

are verified in the following subsections, providing a proof of the following theorem. Recall the
definition of the hardness assumption LWEn,q, χ given in Definition 2.5.

Theorem 4.1. For any choice of parameters satisfying the conditions (A.1) to (A.4), the function

family FLWE is a noisy trapdoor claw free family under the hardness assumption LWE�,q,DZq ,BL
.

Remark 4.2. We briefly discuss possible parameter settings for a correct and secure realization of
the construction.

For known worst-case to average-case reductions to apply [37], we should set BL ≥ 2
√
�. For

the sake of efficiency, we can choose BL so equality holds. Since the evaluation algorithms run

in poly(�) time, we should take � = poly(λ). The ratios BP

BV
=

BV

BL
affect the so-called “statistical

security parameter” of the construction. Aiming for 2−λ statistical security, we may set BP

BV
=

BV

BL
=

2λ .
Once � has been chosen, the parameters n,m are determined by conditions (A.1), (A.2) and q

is determined by condition (A.3). These conditions already imply that q = 22λ/ poly(λ). We need
to set � so the LWE problem with the resulting q is computationally hard. The hardness of the

2Note that although both x0 and x1 are referred to define the set Hk , only one of them, xb , is explicitly specified in any

4-tuple that lies in Hk .
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LWE problem scales very roughly as 2Ω̃(�/ log(q/BL )) (see, e.g., References [13, 39, 40]). In our case
log(q/BL ) = O (λ) and, therefore, we can choose � ≈ λ2, which would imply exponential hardness
(in λ).

We note that other choices of parameters are possible. For example, one could be satisfied with
a statistical security parameter that is smaller than the computational security guarantee, thus

choosing BP

BV
, BV

BL
as more moderate functions of λ and improving efficiency. Another possible

consideration is that in our suggested setting the ratio q/BL scales sub-exponentially with �, which
corresponds to the hardness of sub-exponential approximation for lattice problems. One might not
want to assume that sub-exponential approximation is hard and instead choose the parameters so
q/BL scales more moderately as a function of �.

4.1 Efficient Function Generation

GENFLWE
is defined as follows: First, the procedure samples a random A ∈ Zm×n

q , together with

trapdoor information tA. This is done using the procedure GenTrap(1n , 1m ,q) from Theorem 2.6.
Recall that Assumption (A.2) requires thatm = Ω(n logq) as needed for the theorem to hold. The
trapdoor allows the evaluation of an inversion algorithm Invert that, on input A, tA andb = As+e

returns s and e as long as ‖e‖ ≤ q

CT

√
n log q

. Moreover, the distribution on matrices A returned by

GenTrap is negligibly close to the uniform distribution on Zm×n
q .

Next, the sampling procedure selects s ∈ {0, 1}n uniformly at random, and a vector e ∈ Zm
q

by sampling each coordinate independently according to the distribution DZq,BV
defined in (6).

GENFLWE
returns k = (A,As + e) and tk = tA.

4.2 Trapdoor Injective Pair

(a) Trapdoor. It follows from (15) and the definition of the distribution DZm
q ,BP

in (6) that for any

key k = (A,As + e) ∈ KFLWE
and for all x ∈ X,

Supp( fk,0 (x )) =
{
Ax + e0 | ‖e0‖ ≤ BP

√
m
}
, (16)

Supp( fk,1 (x )) =
{
Ax + As + e0 | ‖e0‖ ≤ BP

√
m
}
. (17)

The procedure INVFLWE
takes as input the trapdoor tA, b ∈ {0, 1}, and y ∈ Y . It uses the

algorithm Invert to determine s0, e0 such that y = As0 + e0, and returns the element s0 −
b · s ∈ X. Using Theorem 2.6, this procedure returns the unique correct outcome provided
y = As0 + e0 for some e0 such that ‖e0‖ ≤ q

CT

√
n log q

. This condition is satisfied for all

y ∈ Supp( fk,b (x )) provided BP is chosen so

BP ≤
q

CT

√
mn logq

, (18)

which is satisfied by the choice in (A.3).
(b) Injective Pair. We let Rk be the set of all pairs (x0,x1) such that fk,0 (x0) = fk,1 (x1). By

definition, this occurs if and only if x1 = x0 − s, and so Rk is a perfect matching.

4.3 Efficient Range Superposition

For k = (A,As + e) ∈ KFLWE
,b ∈ {0, 1} and x ∈ X, let

( f ′k,b (x )) (y) = DZm
q ,BP

(y − Ax − b · (As + e)). (19)

Note that f ′
k,0

(x ) = fk,0 (x ) for all x ∈ X. The distributions f ′
k,1

(x ) and fk,1 (x ) are shifted by e.

Given the key k and x ∈ X, the densities f ′
k,0

(x ) and f ′
k,1

(x ) are efficiently computable. For all
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x ∈ X,

Supp( f ′k,0 (x )) = Supp( fk,0 (x )), (20)

Supp( f ′k,1 (x )) =
{
Ax + e0 + As + e | ‖e0‖ ≤ BP

√
m
}
. (21)

(a) Using that BV < BP , it follows that the norm of the term e0 + e in (21) is always at most
2BP

√
m. Therefore, the inversion procedure INVFLWE

can be guaranteed to return x on input
tA, b ∈ {0, 1}, y ∈ Supp( f ′

k,b
(x )) if we strengthen the requirement on BP given in (18) to

BP ≤
q

2CT

√
mn logq

, (22)

which is still satisfied by (A.3). This strengthened trapdoor requirement also implies that for
all b ∈ {0, 1}, (x0,x1) ∈ Rk , and y ∈ Supp( f ′

k,b
(xb )), INVFLWE

(tA,b ⊕ 1,y) = xb⊕1.

(b) On input k = (A,As + e), b ∈ {0, 1}, x ∈ X, and y ∈ Y , the procedure CHKFLWE
operates as

follows: If b = 0, then it computes e
′ = y − Ax . If ‖e′‖ ≤ BP

√
m, then the procedure returns

1, and 0 otherwise. If b = 1, then it computes e
′ = y − Ax − (As + e). If ‖e′‖ ≤ BP

√
m, then

it returns 1, and 0 otherwise.
(c) We bound the Hellinger distance between the densities fk,b (x ) and f ′

k,b
(x ). If b = 0, then

they are identical. If b = 1, then both densities are shifts of DZm
q ,BP

, where the shifts differ

by e. Each coordinate of e is drawn independently from DZq,BV
, so ‖e‖ ≤

√
mBV . Applying

Lemma 2.4, we get that

H 2 ( fk,1 (x ), f ′k,1 (x )) ≤ 1 − e
−2π mBV

BP .

Using the assumption that BP/BV is super-polynomial as required in Assumption (A.4), this
is negligible, as desired. It remains to describe the procedure SAMPFLWE

. At the first step, the
procedure creates the following superposition:

∑
e0∈Zm

q

√
DZm

q ,BP
(e0) |e0〉. (23)

This state can be prepared efficiently as described in Reference [37, Lemma 3.12].3

At the second step, the procedure creates a uniform superposition over x ∈ X, yielding the
state

q−
n
2

∑
x ∈X

e0∈Zm
q

√
DZm

q ,BP
(e0) |x〉|e0〉. (24)

At the third step, using the key k = (A,As + e) and the input bit b the procedure computes

q−
n
2

∑
x ∈X

e0∈Zm
q

√
DZm

q ,BP
(e0) |x〉|e0〉|Ax + e0 + b · (As + e)〉. (25)

3Specifically, the state can be created using a technique by Grover and Rudolph ([23]), who show that to create such a state, it

suffices to have the ability to efficiently compute the sum
∑d

x=c DZq ,BP
(x ) for any c, d ∈ {−�

√
BP �, . . . , �

√
BP 	 } ⊆ Zq

and to within good precision. This can be done using standard techniques used to sample from the normal distribution.
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At this point, observe that e0 can be computed from x , the last register, b and the key k . The
procedure can then uncompute the register containing e0, yielding

q−
n
2

∑
x ∈X

e0∈Zm
q

√
DZm

q ,BP
(e0) |x〉|Ax + e0 + b · (As + e)〉

= q−
n
2

∑
x ∈X,y∈Y

√
DZm

q ,BP
(y − Ax − b · (As + e)) |x〉|y〉

= q−
n
2

∑
x ∈X,y∈Y

√
( f ′

k,b
(x )) (y) |x〉|y〉. (26)

4.4 Adaptive Hardcore Bit

This section is devoted to the proof that condition 4 of Definition 3.1 holds. We start by providing
a formal statement. Recall that X = Zn

q and let w = n�logq	. Let J : X → {0, 1}w be such that

J (x ) returns the binary representation of x ∈ X. For b ∈ {0, 1}, x ∈ X, and d ∈ {0, 1}w , let
Ib,x (d ) ∈ {0, 1}n be the vector whose each coordinate is obtained by taking the inner product mod

2 of the corresponding block of �logq	 coordinates of d and of J (x ) ⊕ J (x − (−1)b
1), where 1 ∈ Zn

q

is the vector with all its coordinates equal to 1 ∈ Zq . For k = (A,As + e),b ∈ {0, 1} and x ∈ X, we
define the set Gk,b,x as

Gk,b,x =

{
d ∈ {0, 1}w

���� ∃i ∈
{
b
n

2
, . . . ,b

n

2
+
n

2

}
: (Ib,x (d ))i � 0

}
.

Observe that for all b ∈ {0, 1} and x ∈ X, if d is sampled uniformly at random, d � Gk,b,x with

negligible probability. This follows simply because for any b ∈ {0, 1}, J (x ) ⊕ J (x − (−1)b
1) is non-

zero, since J is injective. Observe also that checking membership in Gk,b,x is possible given only
b,x . This shows condition 4.(a) in the adaptive hardcore bit condition in Definition 3.1.

Given (x0,x1) ∈ Rk (where k = (A,As + e)), recall from Section 4.2 that x1 = x0 − s. We use
the following notation: We write s ∈ {0, 1}n as s = (s0, s1), where s0, s1 ∈ {0, 1}

n
2 are the n

2 -bit
prefix and suffix of s , respectively (for simplicity, assume n is even; if not, then ties can be broken
arbitrarily). For convenience, we also introduce the following set, where y = fk,0 (x0) = fk,1 (x1):

Ĝs1,0,x0 = Ĝs0,1,x1 = Gk,0,x0
∩Gk,1,x1

. (27)

The motivation for using two different notations for the same set is to clarify that membership in
the set can be decided given (sb⊕1,b,xb ), for either b ∈ {0, 1}. This point will be important in the
proof of Lemma 4.4.

The following lemma establishes item 4.(b) in Definition 3.1:

Lemma 4.3. Assume a choice of parameters satisfying the conditions (A.1) to (A.4). Assume the

hardness assumption LWE�,q,DZq ,BL
holds. Let s ∈ {0, 1}n . Let 4

Hs =
{
(b,x ,d,d · (J (x ) ⊕ J (x − (−1)b

s))) | b ∈ {0, 1}, x ∈ X, d ∈ Ĝsb⊕1,b,x

}
, (28)

H s =
{
(b,x ,d, c ) | (b,x ,d, c ⊕ 1) ∈ Hs

}
. (29)

Then for any quantum polynomial-time procedure

A : Zm×n
q × Zm

q → {0, 1} × X × {0, 1}w × {0, 1}

4We write the sets as Hs instead of Hk to emphasize the dependence on s .
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there exists a negligible function μ (λ) such that���� Pr
(A,As+e)←GENFLWE

(1λ )

[
A (A,As + e) ∈ Hs

]

− Pr
(A,As+e)←GENFLWE

(1λ )

[
A (A,As + e) ∈ H s

] ���� ≤ μ (λ). (30)

The proof of the lemma proceeds in three steps. First, in Section 4.4.2, we establish some pre-

liminary results on the distribution of the inner product (d̂ · s mod 2), where d̂ ∈ {0, 1}n is a fixed
nonzero binary vector and s ←U {0, 1}n a uniformly random binary vector, conditioned on Cs = v

for some randomly chosen matrix C ∈ Z�×n
q and arbitrary v ∈ Z�

q . This condition is combined

with the LWE assumption in Section 4.4.3 to argue that (d̂ · s mod 2) remains computationally
indistinguishable from uniform even when the matrix C is an LWE matrix A, and the adversary is

able to choose d̂ after being given access to As + e for some error vector e ∈ Zm
q . This will allow

us to derive the following lemma, whose proof is provided in Section 4.4.3.
We will show computational indistinguishability based on the hardness assumption

LWE�,q,DZq ,BL
specified in Definition 2.5. Since our goal is to prove Lemma 4.3, we consider pro-

cedures that output a tuple (b,x ,d, c ) ∈ {0, 1} × X × {0, 1}w × {0, 1}.
Lemma 4.4. Assume a choice of parameters satisfying the conditions (A.1) to (A.4). Assume the

hardness assumption LWE�,q,DZq ,BL
holds. Let

A : Zm×n
q × Zm

q → {0, 1} × X × {0, 1}w × {0, 1}
be a quantum polynomial-time procedure. For b ∈ {0, 1} and x ∈ X, let Ib,x : {0, 1}w → {0, 1}n be

an efficiently computable map. For every s = (s0, s1) ∈ {0, 1}n and (b,x ) ∈ {0, 1} × X, let Ĝsb⊕1,b,x ⊆
{0, 1}w be a set depending only on b,x and sb⊕1 and such that for all d ∈ Ĝsb⊕1,b,x the first (if b = 0)

or last (if b = 1) n
2 bits of Ib,x (d ) are not all 0. Then the distributions

D0 =
(
(A,As + e) ← GENFLWE

(1λ ), (b,x ,d, c ) ← A (A,As + e), Ib,x (d ) · s mod 2
)

(31)

and

D1 =
(
(A,As + e) ← GENFLWE

(1λ ), (b,x ,d, c ) ←

A (A,As + e), (δd ∈Ĝsb⊕1,b,x
r ) ⊕ (Ib,x (d ) · s mod 2)

)
, (32)

where r ←U {0, 1} and δd ∈Ĝsb⊕1,b,x
is 1 if d ∈ Ĝsb⊕1,b,x and 0 otherwise, are computationally indis-

tinguishable.

We prove Lemma 4.3 from Lemma 4.4 by relating the inner product appearing in the definition

of Hk (in condition 4.(b) of Definition 3.1) to an inner product of the form d̂ · s , where d̂ can be
efficiently computed from d . This proof appears in Section 4.4.1 below.

4.4.1 Proof of Lemma 4.3 from Lemma 4.4. The proof is by contradiction. Assume that there
exists a quantum polynomial-time procedureA such that the left-hand side of (30) is at least some
non-negligible function η(λ). We derive a contradiction by showing that the two distributions D0

and D1 in Lemma 4.4, for Ib,x defined at the start of this section and Ĝsb⊕1,b,x defined in (27), are
computationally distinguishable, giving a contradiction.

Let (A,As + e) ← GENFLWE
(1λ ) and (b,x ,d, c ) ← A (A,As + e). To link A to the distributions

in Lemma 4.4, we relate the inner product condition in (28) to an inner product d̂ · s of the form

appearing in (31), for d̂ = Ib,x (d ) that can be computed efficiently from b,x , and d . This is based
on the following claim:
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Claim 4.5. For all b ∈ {0, 1},x ∈ X,d ∈ {0, 1}w and s ∈ {0, 1}n the following equality holds:

d · (J (x ) ⊕ J (x − (−1)b
s)) = Ib,x (d ) · s . (33)

Moreover, the function Ib,x is efficiently computable given b,x .

Proof. We do the proof in case n = 1 and w = �logq	, as the case of general n follows by
linearity. In this case s is a single bit. If s = 0, then both sides of (33) evaluate to zero, so the
equality holds trivially. It then suffices to define Ib,xb

(d ) so the equation holds when s = 1. A
choice of either of

I0,x0 (d ) = d · (J (x0) ⊕ J (x0 − 1)), I1,x1 (d ) = d · (J (x1) ⊕ J (x1 + 1))

satisfies all requirements. It is clear from the definition of Ib,x that it can be computed efficiently
given b,x . �

The procedureA, the function Ib,x defined at the start of this section, and the sets Ĝsb⊕1,b,x in (27)
fully specifyD0 andD1. To conclude, we construct a distinguisherA′ betweenD0 andD1. Consider
two possible distinguishers, A′u for u ∈ {0, 1}. Given a sample w = ((A,As + e), (b,x ,d, c ), t ), A′u
returns 0 if c = t ⊕ u, and 1 otherwise. First note that∑

u ∈{0,1}

���� Pr
w←D0

[
A′u (w ) = 0

]
− Pr

w←D1

[
A′u (w ) = 0

] ����
=

∑
u ∈{0,1}

���� Pr
w←D0

[
A′u (w ) = 0 ∧ d ∈ Ĝsb⊕1,b,x

]
− Pr

w←D1

[
A′u (w ) = 0 ∧ d ∈ Ĝsb⊕1,b,x

] ����, (34)

since if d � Ĝsb⊕1,b,x , then the distributions D0 and D1 are identical by definition. Next, if the
sample held by A′u is from the distribution D0 and if (b,x ,d, c ) ∈ Hs , then by the definition of Hs

and (33) it follows that c = d · (J (x ) ⊕ J (x − (−1)b
s) = Ib,x (d ) · s = t . If instead (b,x ,d, c ) ∈ H s ,

then c ⊕ 1 = d · (J (x ) ⊕ J (x − (−1)b
s) = Ib,x (d ) · s = t . The expression in (34) is thus equal to:

(34) =
���� Pr

(A,As+e)←GENFLWE
(1λ )

[
A (A,As + e) ∈ Hs

]
− 1

2
Pr

w←D1

[
d ∈ Ĝsb⊕1,b,x

] ����
+
���� Pr

(A,As+e)←GENFLWE
(1λ )

[
A (A,As + e) ∈ H s

]
− 1

2
Pr

w←D1

[
d ∈ Ĝsb⊕1,b,x

] ����
≥
���� Pr
(A,As+e)←GENFLWE

(1λ )

[
A (A,As + e)∈Hs

]
− Pr

(A,As+e)←GENFLWE
(1λ )

[
A (A,As+e)∈H s

]����
≥ η.

Therefore, at least one ofA′0 orA′1 must successfully distinguish between D0 and D1 with advan-

tage at least
η

2 , a contradiction with the statement of Lemma 4.4. �

4.4.2 A Building Block: Moderate Matrices. The following lemma argues that, provided the ma-
trix C ∈ Z�×n

q is a uniformly random matrix with sufficiently few rows, the distribution (C,Cs)
for arbitrary s ∈ {0, 1}n does not reveal any parity of s .

Lemma 4.6. Let q be a prime, �,n ≥ 1 integers, and C ∈ Z�×n
q a uniformly random matrix. With

probability at least 1 − q� · 2− n
8 over the choice of C the following holds: For a fixed C, all v ∈ Z�

q

and d̂ ∈ {0, 1}n \ {0n }, the distribution of (d̂ · s mod 2), where s is uniform in {0, 1}n conditioned on

Cs = v, is within statistical distance O (q
3�
2 · 2− n

40 ) of the uniform distribution over {0, 1}.

To prove the lemma, we introduce the notion of a moderate matrix.
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Definition 4.7. Let b ∈ Zn
q . We say that b is moderate if it contains at least n

4 entries whose

unique representative in (−q/2,q/2] has its absolute value in the range (
q

8 ,
3q

8 ]. A matrix C ∈ Z�×n
q

is moderate if its entire row span (except 0n ) is moderate.

Lemma 4.8. Let q be prime and �,n be integers. Then

Pr
C←U Z�×n

q

(
C is moderate

)
≥ 1 − q� · 2−

n
8 .

Proof. Consider an arbitrary non-zero vector b in the row-span of a uniform C. Then the mar-

ginal distribution of b is uniform. By Chernoff, b is moderate with probability at least 1 − e− 2n
16 ≥

1 − 2−
n
8 . Applying the union bound over all at most q� − 1 non-zero vectors in the row span, the

result follows. �

Lemma 4.9. Let C ∈ Z�×n
q be an arbitrary moderate matrix and let d̂ ∈ {0, 1}n \{0n } be an arbitrary

non-zero binary vector. Let s be uniform over {0, 1}n and consider the random variables v = Cs mod q

and z = d̂ · s mod 2. Then (v, z) is within total variation distance at most q
�
2 · 2− n

40 of the uniform

distribution over Z�
q × {0, 1}.

Proof. Let f be the probability density function of (v, z). Interpreting z as an element of Z2,

let f̂ be the Fourier transform over Z�
q × Z2. Let U denote the density of the uniform distribution

over Z�
q × Z2. Applying the Cauchy-Schwarz inequality,

1

2
���f −U ���1

≤
√

q�

2
���f −U ���2

=
1

2
��� f̂ − Û ���2

=
1

2

( ∑
(v̂, ẑ )∈Z�

q×Z2\{(0,0) }

��� f̂ (v̂, ẑ)���2
)1/2

, (35)

where the second line follows from Parseval’s identity, and for the third line, we used f̂ (0, 0) =
Û (0, 0) = 1 and Û (v̂, ẑ) = 0 for all (v̂, ẑ) � (0�, 0). To bound (35), we estimate the Fourier coeffi-

cients of f . Denoting ω2q = e−
2π i
2q , for any (v̂, ẑ) ∈ Z�

q × Z2, we can write

f̂ (v̂, ẑ) = Es

[
ω

(2·v̂T C+q ·ẑd̂
T )s

2q

]

= Es

[
ωw

T
s

2q

]
=

∏
i

Esi

[
ωwi si

2q

]
, (36)

where we wrote w
T = 2 · v̂T

C + q · ẑd̂
T ∈ Zn

2q . It follows that f̂ (0�, 1) = 0, since (d · s mod 2) is

uniform for s uniform.
We now observe that for all i ∈ {1, . . . ,n} such that the representative of (v̂T

C)i in (−q/2,q/2]

has its absolute value in (
q

8 ,
3q

8 ] it holds that wi

q
∈ ( 1

4 ,
3
4 ] mod 1, in which case

���Esi
[ωwi si

2q ]
��� = ���� cos

(π
2
· wi

q

) ���� ≤ cos
(π

8

)
≤ 2−

1
10 . (37)

Since C is moderate, there are at least n
4 such entries, so from (36) it follows that | f̂ (v̂, ẑ) | ≤ 2−

n
40

for all v̂ � 0. Recalling (35), the lemma is proved. �
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We now prove Lemma 4.6 by generalizing Lemma 4.9 to adaptive d (i.e., d can depend on C,Cs).

Proof of Lemma 4.6. We assume C is moderate; by Lemma 4.8, C is moderate with probability

at least 1−q� ·2− n
8 . Let s be uniform over {0, 1}n ,D1 = (Cs, d̂ ·s mod 2), andD2 uniformly distributed

over Z�
q × {0, 1}. Using that C is moderate, it follows from Lemma 4.9 that

ε = ‖D1 − D2‖TV ≤ q
�
2 · 2

−n
40 . (38)

Fix v0 ∈ Z�
q and let

Δ =
1

2

∑
b ∈{0,1}

���� Pr
s←U {0,1}n

(
d̂ · s mod 2 = b ���Cs = v0

)
− 1

2

����. (39)

To prove the lemma, it suffices to establish the appropriate upper bound on Δ, for all v0. By defini-
tion,

ε = ‖D1 − D2‖TV =
1

2

∑
b ∈{0,1},v∈Z�

q

���� Pr
(
Cs = v

)
Pr

(
d̂ · s mod 2 = b ���Cs = v

)
− 1

2q�
����

≥ 1

2

∑
b ∈{0,1}

���� Pr
(
Cs = v0

)
Pr

(
d̂ · s mod 2 = b ���Cs = v0

)
− 1

2q�
����

=
1

2

∑
b ∈{0,1}

���� Pr
(
Cs = v0

) ( 1

2
+ (−1)b Δ

)
− 1

2q�
����, (40)

where all probabilities are under a uniform choice of s ←U {0, 1}n , and the last line follows from
the definition of Δ in (39). Applying the inequality |a | + |b | ≥ max( |a − b |, |a + b |), valid for any
real a,b, to (40) it follows that

Pr
(
Cs = v0

)
· Δ ≤ ε and Pr

(
Cs = v0

)
≥ 1

q�
− 2ε . (41)

If q3�/22−
n
40 > 1

3 , then the bound claimed in the lemma is trivial. If q3�/22−
n
40 ≤ 1

3 , then εq� ≤ 1
3 , so

it follows from (41) that Δ ≤ 3q�ε , which together with (38) proves the lemma. �

4.4.3 Proof of Lemma 4.4. We use Lemma 4.6 and prove computational indistinguishability by
introducing a sequence of hybrids. For the first step, we let

D (1) =
(
(Ã, Ãs + e), (b,x ,d, c ) ← A (Ã, Ãs + e), Ib,x (d ) · s mod 2

)
, (42)

where Ã = BC + F ← lossy(1n , 1m , 1�,q,DZq,BL
) is sampled from a lossy sampler (see Defini-

tion 2.7). From the definition, F ∈ Zm×n
q has entries i.i.d. from the distribution DZq,BL

over Zq . To

see that D0 and D (1) are computationally indistinguishable, first note that the distribution of ma-
trices A generated by GENFLWE

is negligibly far from the uniform distribution (see Theorem 2.6).
Next, by Theorem 2.8, under the LWE�,q,DZq ,BL

assumption a uniformly random matrix A and a

lossy matrix Ã are computationally indistinguishable. Note that this step, as well as subsequent
steps, uses that A and Ib,x are efficiently computable.

For the second step, we remove the term Fs from the lossy LWE sample Ãs + e to obtain the
distribution

D (2) =
(
(BC + F,BCs + e), (b,x ,d, c ) ← A (BC + F,BCs + e), Ib,x (d ) · s mod 2

)
. (43)
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Using that s is binary and the entries of F are taken from a BL-bounded distribution, it follows that

‖Fs‖ ≤ n
√
mBL . Applying Lemma 2.4, the statistical distance between D (1) and D (2) is at most

γ =
√

2
(
1 − e

−2π mnBL
BV

)1/2

, (44)

which is negligible, due to the requirement that BV

BL
is superpolynomial given in (A.4).

For the third step, observe that the distribution D (2) in (43) only depends on sb through Cs and
Ib,x (d ) · s , where C is uniformly random. It follows from Lemma 4.6 that provided n

2 = Ω(� logq +
λ) as required by Assumption (A.1), with overwhelming probability (in the security parameter)
over the choice of C, if we fix all variables except for sb , the distribution of (Ib,x (d ) · s mod 2) is

statistically indistinguishable (within statistical distance 2−λ) from r ←U {0, 1} as long as the n
2

bits of Ib,x (d ) associated with sb are not all 0 (i.e., the first n
2 bits if b = 0 or the last n

2 bits if b = 1).

Using that for d ∈ Ĝsb⊕1,b,x the n
2 bits of Ib,x (d ) associated with sb are not all 0, the distribution

D (2) in (43) is statistically indistinguishable from

D (3) =
(
(BC + F,BCs + e), (b,x ,d, c ) ←

A (BC + F,BCs + e), (δd ∈Ĝsb⊕1,b,x
r ) ⊕ (Ib,x (d ) · s mod 2))

)
,

where r ←U {0, 1}.
For the fourth step, we reinsert the term Fs to obtain

D (4) =
(
Ã, Ãs + e, (b,x ,d, c ) ← A (Ã, Ãs + e), (δd ∈Ĝsb⊕1,b,x

r ) ⊕ (Ib,x (d ) · s mod 2)
)
.

Statistical indistinguishability between D (3) and D (4) follows similarly as between D (1) and D (2) .

Finally, computational indistiguishability between D (4) and D1 follows similarly to between D (1)

and D0. �

5 PROTOCOL DESCRIPTION

We introduce two protocols. The first we call the (general) randomness expansion protocol, or Proto-
col 1. This is our main randomness expansion protocol. It is introduced in Section 5.1 and summa-
rized in Figure 2. The protocol describes the interaction between a verifier and prover. Ultimately,
we aim to obtain the guarantee that any computationally bounded prover that is accepted with
non-negligible probability by the verifier in the protocol must generate transcripts that contain
information-theoretic randomness.

The second protocol is called the simplified protocol, or Protocol 2. It is introduced in Section 5.2,
and summarized in Figure 3. This protocol abstracts some of the main features Protocol 1 and will
be used as a tool in the analysis (it is not meant to be executed literally).

5.1 The Randomness Expansion Protocol

Our randomness expansion protocol, Protocol 1, is described in Figure 2. The protocol is
parametrized by a security parameter λ and a number of rounds N . The other parameters, the
error tolerance parameter γ ≥ 0 and the testing parameter q ∈ (0, 1], are assumed to be specified
as a function of λ and N . For intuition, γ can be thought of as a small constant and q as a parameter
that scales as poly(λ)/N .

At the start of the protocol, the verifier executes (k, tk ) ← GenF (1λ ) to obtain the public key
k and trapdoor tk for a pair of functions { fk,b : X → DY}b ∈{0,1} from the NTCF family (see
Definition 3.1). The verifier sends the public key k to the prover and keeps the associated trapdoor
private.
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In each of the N rounds of the protocol, the prover is first required to provide a value y ∈ Y .
For each b ∈ {0, 1}, the verifier uses the trapdoor to compute x̂b ← InvF (tk ,b,y). (If the inver-
sion procedure fails, then the verifier requests another sample from the prover.) For convenience,
introduce a set

Ĝy = Gk,0,x0
∩Gk,1,x1

, (45)

where for b ∈ {0, 1} the set Gk,b,xb
is defined in 4.(a) of Definition 3.1. The verifier then chooses

a round type G ∈ {0, 1} according to a biased distribution: either a test round, G = 0, chosen with
probability Pr(G = 0) = q, or a generation round, G = 1, chosen with the remaining probability
Pr(G = 1) = 1 − q. The former type of round is less frequent, as the parameter q will eventually
be set to a very small value that goes to 0 as the number of rounds of the protocol goes to infinity.
The prover is not told the round type.

Depending on the round type, the verifier chooses a challenge C ∈ {0, 1} that she sends to the
prover. In the case of a test roun, the challenge is chosen uniformly at random; in the case of a
generation round, the challenge is alwaysC = 1. In caseC = 0 the prover is asked to return a pair

(u,d ) ∈ {0, 1} × {0, 1}w . The pair is called valid if u = d · (J (x̂0) ⊕ J (x̂1)) and d ∈ Ĝy , where the

function J is as in 4.(b) of Definition 3.1. If d ∈ Ĝy , then the verifier sets a decision bit W = 1 if

the answer is valid, andW = 0 if not. If d � Ĝy , then the verifier sets the decision bitW ∈ {0, 1}
uniformly at random.5 In caseC = 1, the prover should return a pair (b,x ) ∈ {0, 1} ×X. The pair is
called valid if CHKF (k,b,x ,y) = 1. The verifier sets a decision bitW = 1 in case the pair is valid,
andW = 0 otherwise. The set of valid pairs on challenge C = c ∈ {0, 1} is denoted Vy,c .

After each test round the verifier samples a fresh (k, tk ) ← GenF (1λ ) and communicates the
new public key k to the prover.

At the end of the protocol, the verifier computes the fraction of test rounds in which the decision
bit has been set to 1. If this fraction is smaller than (1−γ ), then the verifier aborts. Otherwise, the
verifier returns the concatenation of the bits b obtained from the prover in generation rounds.
(These bits are recorded in the verifier’s output string O1 · · ·ON , such that Oi = 0 whenever the
round is a test round.)

5.2 The Simplified Protocol

For purposes of analysis only, we introduce a simplified variant of Protocol 1, which is specified
in Figure 3. We call it the simplified protocol, or Protocol 2. The protocol is very similar to the
randomness expansion protocol described in Figure 2, except that the prover’s answers and the
verifier’s checks are simplified, and in test rounds there is an additional challenge bit T ∈ {0, 1}.
This new challenge asks the prover to perform a projective measurement on its private space
that indicates whether the state lies in a “good subspace” (indicated by an outcome K = 0) or in
the complementary “bad subspace” (outcome K = 1). The “good” and “bad” subspaces represent
portions of space where the device’s other two measurements, M and Π, are anti-aligned and
aligned, respectively; see the definition of a simplified device in Section 6.2 for details.

For the case of a challenge C = 0, in Protocol 1 the prover returns an equation (u,d ). In the
simplified protocol, the prover returns a single bit e ∈ {0, 1} that is meant to directly indicate the
verifier’s decision (i.e., the bitW ). If, moreover T = 1, then the prover is required to reply with an
additional bit k ∈ {0, 1}. In this case, the verifier makes the decision to accept, i.e., setsW = 1, if
and only if e = 1 and k = 0. For the case of a challenge C = 1, in Protocol 1 the prover returns a

5This choice is made for technical reasons that have to do with the definition of the adaptive hardcore bit property; see

Section 7 and the proof of Proposition 7.4 for details.
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Fig. 2. The randomness expansion protocol, Protocol 1. See Definition 3.1 for notation associated with the

NTCF family F .

pair (b,x ). In the simplified protocol the prover returns a value v ∈ {0, 1, 2} that is such that v = b
in case (b,x ) is valid, i.e., (b,x ) ∈ Vy,1, and v = 2 otherwise.

Note that this “honest” behavior for the prover is not necessarily efficient. Moreover, it is easy
for a “malicious” prover to succeed in Protocol 2, e.g., by always returning u = 1 (valid equation),
k = 0 (good subspace) and v ∈ {0, 1} (valid pre-image). Our analysis will not consider arbitrary
provers in Protocol 2, but instead provers whose measurements satisfy certain constraints that
arise from the analysis of Protocol 1. For such provers, it will be impossible to succeed in the
simplified protocol without generating randomness. Further details are given in Section 7.

5.3 Completeness

We describe the intended behavior for the prover in Protocol 1. Fix an NTCF family F and a key
k ∈ KF . In each round, the “honest” prover performs the following actions:

(1) The prover executes the efficient procedure SAMPF in superposition to obtain the state

|ψ (1)〉 = 1
√
|X|

∑
x ∈X,y∈Y,b ∈{0,1}

√
( f ′

k,b
(x )) (y) |b,x〉|y〉.
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Fig. 3. The simplified protocol, Protocol 2.

(2) The prover measures the last register to obtain an y ∈ Y . Using item 2, from the definition
of an NTCF, the prover’s re-normalized post-measurement state is

|ψ (2)〉 = 1
√

2

(
|0,x0〉 + |1,x1〉

)
|y〉,

where for b ∈ {0, 1}, xb = INVF (tk ,b,y).
(a) In case Ci = 0, the prover evaluates the function J on the second register, containing xb ,

and then applies a Hadamard transform to allw+1 qubits in the first two registers. Tracing
out the register that contains y, this yields the state

|ψ (3)〉 = 2−
w+2

2

∑
d,b,u

(−1)d ·J (xb )⊕ub |u〉|d〉

= 2−
w
2

∑
d ∈{0,1}w

(−1)d ·J (x0 ) |d · (J (x0) ⊕ J (x1))〉|d〉.

The prover measures both registers to obtain an (u,d ) that it sends back to the verifier.

(b) In case Ci = 1, the prover measures the first two registers of |ψ (2)〉 in the computational
basis and returns the outcome (b,xb ) to the verifier.

Lemma 5.1. For any λ and k ← GENF (1λ ), the strategy for the honest prover (on input k) in one

round of the protocol can be implemented in time polynomial in λ and is accepted with probability

negligibly close to 1.

Proof. Both efficiency and correctness of the prover follow from the definition of an NTCF

(Definition 3.1). The prover fails only if it obtains an outcome d � Ĝy , which by item 4(a) in the
definition happens with negligible probability. �

6The bit k should not be confused with the public key k for the NTCF that is used in Protocol 1. In Protocol 2, there is no

NTCF and no key.
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6 DEVICES

We model an arbitrary prover in the randomness expansion protocol (Protocol 1 in Figure 2) as a
device that implements the actions of the prover: The device first returns any ∈ Y ; then, depending
on the challengeC ∈ {0, 1}, it either returns an equation (u,d ) (caseC = 0) or a candidate pre-image
(b,x ) (caseC = 1). For simplicity, we assume that the device makes the same set of measurements
in each round of the protocol. This is without loss of generality, as we allow the state of the device
to change from one round to the next; in particular, the device is allowed to use a quantum memory
as a control register for the measurements.

In Section 6.1, we introduce our notation for modeling provers in Protocol 1 as devices. In Sec-
tion 6.2, we consider a simplified form of device that is appropriate for modeling a prover in the
simplified protocol, Protocol 2. In Section 7, we give a reduction showing how to associate a spe-
cific simplified device to any computationally efficient general device, such that the randomness
generation properties of the two devices can be related to each other (this is done in Section 8).

For the remainder of this section, we fix an NTCF family F satisfying the conditions of Defini-
tion 3.1 and use notation introduced in the definition.

6.1 General Devices

The following notion of device models the behavior of an arbitrary prover in the randomness
expansion protocol, Protocol 1 (Figure 2).

Definition 6.1. Given k ∈ KF , a device D = (ϕ,Π,M ) (implicitly, compatible with k) is specified
by the following:

(1) A normalized density ϕ ∈ Pos(HD ⊗ HY). Here, HD is an arbitrary space private to the
device, andHY is a space of the same dimension as the cardinality of the setY , also private
to the device. For every y ∈ Y , define

ϕy = (IdD ⊗〈y |Y) ϕ (IdD ⊗|y〉Y) ∈ Pos(HD).

Note that ϕy is sub-normalized, and
∑

y∈Y Tr(ϕy ) = Tr(ϕ) = 1.

(2) For every y ∈ Y , a projective measurement {M (u,d )
y } onHD, with outcomes (u,d ) ∈ {0, 1} ×

{0, 1}w .

(3) For everyy ∈ Y , a projective measurement {Π(b,x )
y } onHD, with outcomes (b,x ) ∈ {0, 1}×X.

For each y, this measurement has two designated outcomes (0,x0) and (1,x1), which are the
answers that are accepted on challengeC = 1 in the protocol; recall that we use the notation

Vy,1 for this set. For b ∈ {0, 1}, we use the shorthand Πb
y = Π(b,xb )

y , Πy = Π0
y + Π1

y , and

Π2
y = Id−Π0

y − Π1
y .

By Naimark’s theorem, up to increasing the dimension ofHD the assumption that {Π(b,x )
y } and

{M (u,d )
y } are projective is without loss of generality.
We explain the connection between the notion of device in Definition 6.1 and a prover in Proto-

col 1. Given a device D = (ϕ,Π,M ), we can define actions for the prover in Protocol 1 as follows:
The prover is initialized in state ϕ. When a round of the protocol is initiated, the prover measures
register Y in the computational basis and returns the outcome y ∈ Y . We always assume that the
prover directly measures the register, as any pre-processing unitary can be incorporated in the
definition of the state ϕ. When sent challenge C = 0 (respectively, C = 1), the prover measures

register D using the device’s projective measurement {M (u,d )
y } (respectively, {Π(b,x )

y }), and returns
the outcome to the verifier.
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Definition 6.2. We say that a device D = (ϕ,Π,M ) is efficient if

(1) There is a uniformly generated family of polynomial-size circuits that prepare the state ϕ
given the NTCF key k as input;

(2) For everyy ∈ Y , the measurements {M (u,d )
y } and {Π(b,x )

y } can be implemented by polynomial-
size circuits.

Using the definition of an NTCF family (Definition 3.1), it is straightforward to verify that the
device associated with the “honest” prover described in Section 5.3 is efficient.

We introduce notation related to the post-measurement states generated by a device in Proto-
col 1. An execution of Protocol 1 involves a choice of round types д ∈ {0, 1}N and challenges
c ∈ {0, 1}N by the verifier and a sequence of outputs o ∈ {0, 1, 2}N computed by the verifier as a
function of the answers provided by the device. Here, in caseд = 0 (test round), we use o ∈ {0, 1} to
denote the outcome of the test (calledW in the protocol description), and in case д = 1 (generation
round), we use o ∈ {0, 1, 2} such that o = 2 in caseW = 0, and o = O as recorded by the verifier in
caseW = 1. We call the tuple (д, c,o) the transcript of the protocol; it contains all the information
relevant to the verifier’s final acceptance decision and to the extraction of randomness. Additional
information such as the choice of NTCF key and the prover’s complete answers (including the
value y) is discarded for ease of presentation. We let Acc denote the set of transcripts (д, c,o) that
are accepted by the verifier in the last step of the protocol, i.e., such that

∑
i :дi=0 oi ≥ (1 − γ )qN .

Definition 6.3. Let D = (ϕ,Π,M ) be a device. For any transcript (д, c,o) for an execution of
Protocol 1 with D, let ϕco

D
be the post-measurement state of the device, conditioned on having

received challenges c and returned outcomes o. The joint state of the transcript and the device at
the end of the N rounds (but before the verifier’s decision to abort) is

ϕ (N )
COD

=
∑
д,c,o

q(д, c ) |c〉〈c |C ⊗ |o〉〈o |O ⊗ ϕco
D , (46)

where q(д, c ) is the probability that the sequence of round types and challenges (д, c ) is chosen by
the verifier in the protocol.

We write |ϕ〉DE for a purification of the initial stateϕD of the device, with E the purifying register,
and ρco

E
for the post-measurement state on register E conditioned on the transcript being (c,o).

6.2 Simplified Devices

Next, we introduce a simplified notion of device that can be used to model the actions of a prover
in the simplified protocol, Protocol 2 (Figure 3).

Definition 6.4. A simplified device is a tuple (ϕ,Π,M,K ) such that:

(1) ϕ = {ϕy }y∈Y ⊆ Pos(HD) is a family of positive semidefinite operators on an arbitrary space
HD such that

∑
y Tr(ϕy ) ≤ 1;

(2) For each y ∈ Y , {M0
y ,M

1
y = Id−M0

y }, {Π0
y ,Π

1
y ,Π

2
y = Id−Π0

y − Π1
y }, and {K0

y ,K
1
y = Id−K0

y }
are projective measurements onHD;

(3) For each y ∈ Y , the measurement operators Ky commute with the My and with the Πy . (My

and Πy do not necessarily commute with each other.)

We introduce a quantity called overlap that measures how “incompatible” a simplified device’s
measurements are. This measure is analogous to the measure of overlap used to quantify incom-
patibility in the derivation of entropic uncertainty relations (see, e.g., Reference [26]).

Definition 6.5. Given a simplified device D = (ϕ,Π,M,K ), the overlap of D is

Δ(D) = max
y∈Y

���K0
y

(
Π0

yM
1
y Π0

y + Π1
yM

1
y Π1

y

)���.
Journal of the ACM, Vol. 68, No. 5, Article 31. Publication date: August 2021.



A Cryptographic Test of Quantumness and Certifiable Randomness 31:31

Note that the overlap only quantifies the measurement incompatibility in the “good subspace”
K0

y .

To any simplified device D = (ϕ,Π,M,K ), we associate the post-measurement states

∀e ∈ {0, 1}, ϕe
00 =

∑
y∈Y
|y〉〈y | ⊗ Me

yϕyM
e
y ,

∀e,k ∈ {0, 1}, ϕek
01 =

∑
y∈Y
|y〉〈y | ⊗ Kk

yM
e
yϕyM

e
yK

k
y ,

∀v ∈ {0, 1, 2}, ϕv
1 =

∑
y∈Y
|y〉〈y | ⊗ Πv

yϕy Πv
y . (47)

A simplified device can be used in the simplified protocol in a straightforward way: Upon receipt
of a challenge C = 0 (respectively, C = 1), the device first samples an y ∈ Y according to the
distribution with weights Tr(ϕy ). It then performs the projective measurement {M0

y ,M
1
y } followed

by, if T = 1, {K0
y ,K

1
y } (respectively, {Π0

y ,Π
1
y ,Π

2
y }) on ϕy , and returns the outcomes e,k ∈ {0, 1}

(respectively, v ∈ {0, 1, 2}) to the verifier.

Definition 6.6. Let D = (ϕ,Π,M,K ) be a simplified device. For any transcript (д, c, t ,o,k ) for an
execution of Protocol 2 with D, let ϕctok

D
be the post-measurement state of the device, conditioned

on having received challenges (c, t ) and returned outcomes (o,k ). The joint state of the transcript
and the device at the end of the N rounds (but before the verifier’s decision to abort) of the protocol
is

ϕ (N )
CTOKD

=
∑

д,c,t,o,k

q(д, c, t ) |c, t〉〈c, t |CT ⊗ |o,k〉〈o,k |OK ⊗ ϕctok
D , (48)

where q(д, c, t ) = q(д, c )κ (t ) with κ (t ) =
∏

i κ
ti (1 − κ)1−ti is the probability that the sequence of

round types and challenges (д, c, t ) is chosen by the verifier in the protocol.

7 SINGLE-ROUND ANALYSIS

In this section, we consider the behavior of an arbitrary device D in a single round of the random-
ness expansion protocol, Protocol 1 in Figure 2. Our goal is to introduce a simplified device D ′

such that analyzing the randomness generation properties of D ′ is easier than it is for D, and such
that bounds on the amount of randomness generated by D ′ in the simplified protocol, Protocol 2
in Figure 3, imply bounds on the amount of randomness generated by D in Protocol 1. Throughout
the section, we fix an NTCF family F (Definition 3.1) and a key k ∈ KF sampled according to
Gen(1λ ) for a parameter λ that plays the role of security parameter.

7.1 A Constraint on the Measurements of Any Efficient Device

We start with a lemma showing that for any efficient device D = (ϕ,Π,M ), the measurements Π
and M must be strongly incompatible, in the sense that if the device first measures Π, and then
measures M , then it is unable to determine if the pair (u,d ) returned by M corresponds to a valid
pair, i.e., (u,d ) ∈ Vy,0. Indeed, if this were the case, then the device could be used to violate the

hardcore bit property (14). Recall the definition of the set Ĝy ⊆ {0, 1}w in (45).

Lemma 7.1. Let D = (ϕ,Π,M ) be an efficient device. Define a sub-normalized density

ϕ̃YBXD =
∑
y∈Y
|y〉〈y |Y ⊗

∑
b ∈{0,1}

|b,xb 〉〈b,xb |BX ⊗ Π(b,xb )
y ϕy Π(b,xb )

y . (49)
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Let

σ0 =
∑

b ∈{0,1}
|b,xb 〉〈b,xb |BX ⊗

∑
(u,d )∈Vy,0

|u,d〉〈u,d |U ⊗ (IdY ⊗M (u,d )
y )ϕ̃ (b )

YD
(IdY ⊗M (u,d )

y ),

σ1 =
∑

b ∈{0,1}
|b,xb 〉〈b,xb |BX ⊗

∑
(u,d )�Vy,0

1d ∈Ĝy
|u,d〉〈u,d |U ⊗ (IdY ⊗M (u,d )

y )ϕ̃ (b )
YD

(IdY ⊗M (u,d )
y ), (50)

where 1d ∈Ĝy
denotes the indicator function for the event that d ∈ Ĝy . Then σ0 and σ1 are computa-

tionally indistinguishable.

Informally, σ0 and σ1 in (50) are the result of performing the pre-image measurement {Π(b,xb ) }
on ϕy , directly followed by an equation measurement: σ0 is the post-measurement state associated
with correct equations, and σ1 with wrong equations. Indistinguishability of the two states follows
from the hardcore bit property (14), which specifies that it is computationally infeasible to obtain
a valid pre-image together with a correct equation.

Proof. Suppose for contradiction that there exists an efficient observable O such that

Tr(O (σ0 − σ1)) ≥ μ (51)

for some non-negligible function μ (λ). Consider the following efficient procedure: The procedure

first prepares the state ϕ̃YBXD in (49). This can be done efficiently by first preparing ϕYD, then

measuring a y ∈ Y , then applying the measurement {Π(b,x )
y } to ϕy , and returning a special abort

symbol if the outcome is invalid, i.e., CHKF (k,b,x ,y) = 0.

The procedure then applies the measurement {M (u,d )
y } to ϕ̃YBXD, obtaining an outcome (u,d ). At

this point, conditioned on the event thatd ∈ Ĝy , depending on whether (u,d ) ∈ Vy,0 or (u,d ) � Vy,0,
the procedure has either prepared σ0 or σ1. Finally, the procedure measuresO to obtain a bitv , and
returns (b,x ,d,v ⊕ u). This defines an efficient procedure. Moreover, using (51) it follows that

the procedure violates the hardcore bit property (14). (The cases where d � Ĝy are not taken
into account by the hardcore bit property, so it is sufficient to have a good distinguishing ability

conditioned on d ∈ Ĝy .) �

7.2 Angles between Incompatible Measurements

We show a general lemma that argues about the principal angles between two binary-outcome
measurements that have a certain form of incompatibility.

Lemma 7.2. Let Π,M be two orthogonal projections onH and ϕ a state onH . Let γ = 1−Tr(Mϕ)
and

μ =
����
1

2
− Tr

(
MΠϕΠ

)
− Tr

(
M (Id−Π)ϕ (Id−Π)

) ����.
Let 1

2 < ω ≤ 1. Let K be the orthogonal projection on the direct sum of eigenspaces of ΠMΠ +
(Id−Π)M (Id−Π) with associated eigenvalue in [1 − ω,ω]. Then

Tr
(
(Id−K )ϕ

)
≤

2μ + 10
√
γ

1 − 4ω (1 − ω)
.

Proof. Using Jordan’s lemma, we find a basis ofH in which

M = ⊕j

(
c2

j c jsj

c jsj s2
j

)
and Π = ⊕j

(
1 0
0 0

)
, (52)

where c j = cosθ j , sj = sinθ j , for some angles θ j . There may be 1-dimensional blocks in the Jordan
decomposition, but up to adding a few dimensions these can be identified with two-dimensional
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blocks such that c2
j ∈ {0, 1}. LetK be the orthogonal projection on those 2-dimensional blocks such

that min(c2
j , s

2
j ) ≥ 1 −ω. Note that K commutes with both M and Π, but not necessarily with ϕ. It

is easy to verify that this definition of K coincides with the definition given in the lemma.
Suppose first that γ = 0. Then ϕ is supported on the range of M . For any block j, let Pj be

the projection on the block and α j = Tr(Pjϕ). It follows from the decomposition in (52) and the
definition of μ that ����

1

2
−

∑
j

α j

(
c4

j + s
4
j

) ���� ≤ μ . (53)

Using that for j such that min(c2
j , s

2
j ) ≤ 1 − ω, we have

c4
j + s

4
j = 1 − 2 max(c2

j , s
2
j )

(
1 −max(c2

j , s
2
j )

)
≥ 1

2
+

(
1

2
− 2ω (1 − ω)

)
,

and c4
j + s

4
j ≥

1
2 always, it follows from (53) that for any ω > 1

2 ,

Tr
(
(Id−K )ϕ

)
≤ 2μ

1 − 4ω (1 − ω)
. (54)

Next, consider the case where γ > 0. Assume Tr(Mϕ) > 0, as otherwise the lemma is trivial. Let
ϕ ′ = MϕM/Tr(Mϕ). By the gentle measurement lemma (see, e.g., Reference [45, Lemma 9.4.1]),

���ϕ ′ − ϕ���1
≤ 2
√
γ . (55)

Using the definition of μ, it follows that

����
1

2
− Tr

(
MΠϕ ′Π

)
− Tr

(
M (Id−Π)ϕ ′(Id−Π)

) ���� ≤ μ + 4
√
γ .

Applying the same reasoning as for the case γ = 0 yields an analogue of (54), with ϕ ′ instead of ϕ
on the left-hand side and μ + 4

√
γ instead of μ on the right-hand side. Finally, using again (55) the

same bound transfers to ϕ up to an additional loss of 2
√
γ . �

7.3 Simulating an Efficient Device Using a Simplified Device

Recall the definitions of a simplified device (Definition 6.4) and of the overlap of a simplified device
(Definition 6.5). Recall also the definition of post-measurement states {ϕco } associated with a device
D = (ϕ,Π,M ) given in Definition 6.3, and of post-measurement states {(ϕ ′)ctok } associated with
a simplified device D ′ = (ϕ ′,Π′,M ′,K ) given in Definition 6.6. These ensembles of states provide
a means to meaningfully compare a device D and a simplified device D ′. We record this in the
following definition:

Definition 7.3. Let D = (ϕ,Π,M ) be a device and D ′ = (ϕ ′,Π′,M ′,K ) a simplified device. We say
that D ′ simulates D if for every (c,o) ∈ {0, 1}N × {0, 1, 2}N and t = 0N the states ϕco and (ϕ ′)cto

are identical.

The following proposition shows that any efficient device can be simulated by a simplified device
whose measurements generally make an angle that is bounded away from 1. As in Lemma 7.1,
the only assumption required on the efficient device is that it does not break the hardcore bit
property (14).

Proposition 7.4. Let D = (ϕ,Π,M ) be an efficient device and 1
2 < ω ≤ 1. Then there is a (not

necessarily efficient) simplified device D̃ = (ϕ, Π̃, M̃,K ) such that the following hold:

(1) D̃ has overlap Δ(D̃) ≤ ω;

(2) The simplified device D̃ simulates the device D;
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(3) For any advice states ϕ ′ = {ϕ ′y } that are independent from the key k ∈ KF (see Definition 2.5)

it holds that ∑
y

Tr(K1
yϕ
′
y ) ≤ C

√∑
y

Tr(M̃1
yϕ
′
y ) + negl(λ), (56)

where C > 0 is a constant depending only on ω.

Proof. For each y ∈ Y let

M̂y =
∑

(u,d ): d�Ĝy

M (u,d )
y , My =

∑
(u,d )∈Vy,0

M (u,d )
y +

1

2
M̂y ,

and for b ∈ {0, 1}, Πb
y = Π(b,xb )

y . By introducing an isometry Uy : HD → HD′ into a larger space,

we can embed My into a projection My such that My = U †y MyUy . For b ∈ {0, 1}, let Π
b

y be such

that U †y Π
b

yUy = Πb
y .

The device D̃ is defined as follows: The device first measures any ∈ Y exactly asD would. It then
applies the isometry Uy . This defines the {ϕ ′y }. Let ϕ ′ =

∑
y ϕ
′
y , and note that Tr(ϕ ′) = Tr(ϕ) ≤ 1.

• The measurement {Π̃0
y , Π̃

1
y , Π̃

2
y } is defined as follows: The device first coherently performs

the measurement {Π(b,x )
y }. If an outcome (b,x ) ∈ Vy,1 is obtained, then the device returns

v = b. Otherwise, the device returns v = 2.
• The measurement {M̃0

y , M̃
1
y } is defined as follows: The device first performs the measurement

{Π̃2
y , Id−Π̃2

y }. If the first outcome is obtained, then it returns a random outcome. Otherwise, it

coherently performs the measurement {M (u,d )
y }. If d � Ĝy , then the device returns a random

outcome. Otherwise, if (u,d ) ∈ Vy,0, then it returns a 0, and 1 if not.

• Let Ky be the projection obtained by applying Lemma 7.2 to the projections Π = Π
0

y and

M = My and the state

ϕ =
(Π

0

y + Π
1

y )ϕ ′y (Π
0

y + Π
1

y )

Tr
(
(Π

0

y + Π
1

y )ϕ ′y
) .

The measurement {K0
y ,K

1
y } is defined by setting

K0
y = (Π

0

y + Π
1

y )Ky + (Id−Π
0

y − Π
1

y ) and K1
y = (Π

0

y + Π
1

y ) (Id−Ky ).

The first two conditions on D ′ claimed in the lemma follow by definition. The overlap property
holds by definition of K0

y . For the simulation property, note that it is possible for D ′ to further
measure the post-measurement states to locally obtain an equation, or a pre-image, as D would
have; this guarantees that the post-measurement states of the two devices are identical in each
round.

It remains to show the third item. It follows from computational indistinguishability of σ0 and
σ1 shown in Lemma 7.1 that both operators have a trace that is within negligible of each other.

Using the notation introduced here, and in particular the definition of My , this implies that the
difference ����

∑
b ∈{0,1}

Tr
(
My Π

b

yϕ
′
y Π

b

y

)
−

∑
b ∈{0,1}

Tr
(
(Id−My )Π

b

yϕ
′
y Π

b

y

) ����
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is negligible. Since the two expressions sum to Tr((Id−Π
2

y )ϕ ′y ), it follows that, letting

ϕ̃y =
(Id−Π

2

y )ϕ ′y (Id−Π
2

y )

Tr((Id−Π
2

y )ϕ ′y )
, (57)

we get that

Tr(My Π
0

yϕ̃y Π
0

y ) + Tr(My Π
1

yϕ̃y Π
1

y )

is within negligible of 1
2 . To conclude, we apply Lemma 7.2 to the operators Π = Π

0
and M = My .

The conclusion of the lemma gives that

Tr
(
(Id−Ky )ϕ̃y

)
≤ C

√
Tr((Id−M̃0

y )ϕ̃y ) + negl(λ), (58)

for some universal constant C (depending on ω). Multiplying both sides of (58) by

py =
Tr((Id−Π

2

y )ϕ ′y )∑
y Tr((Id−Π

2

y )ϕ ′y )
,

summing over y and applying Jensen’s inequality gives∑
y

Tr
(
(Id−Π

2

y ) (Id−Ky ) (Id−Π
2

y )ϕ ′y
)

≤ C

√∑
y

Tr
(
(Id−Π

2

y ) (Id−M̃0
y ) (Id−Π

2

y )ϕ ′y
)
+ negl(λ), (59)

where we also used
∑

y Tr((Id−Π
2

y )ϕ ′y ) ≤ 1, since Tr(
∑

y ϕ
′
y ) ≤ 1. Using that by definition

(Id−Π
2

y ) (Id−Ky ) = K1
y and (Id−M̃0

y ) commutes with (Id−Π
2

y ) gives (56). �

8 ACCUMULATING RANDOMNESS ACROSS MULTIPLE ROUNDS

To analyze the randomness generated by a device in the randomness expansion protocol, we pro-
ceed in two steps. First, we show that the randomness generated by the device can be related to

the randomness generated by the simplified device D̃ that is associated to it by Proposition 7.4,
when it is used as a device in the simplified protocol, Protocol 2. This is done in Section 8.1. Then,
in Section 8.2, we analyze the randomness generated in a single round of the simplified protocol,
and in Section 8.3, we analyze multiple rounds of the protocol.

8.1 Reduction to the Simplified Protocol

Let D = (ϕ,Π,M,K ) be a simplified device. The main difference between the behavior of the sim-
plified device and the original device it is derived from is that the simplified device (sometimes)
performs an additional projective measurement {K0,K1}, in addition to the “equation” measure-
ment {M0,M1}. (Recall that in Protocol 2, the device performs the measurement whenever the
verifier sends a challenge bit T = 1, which happens with probability Pr(T = 1) = κ in the test
rounds.) Informally, the measurement {K0,K1} is used to detect if the state of the device is in the
“good subspace” in which the device’s measurements generate randomness, as measured by the
overlap Δ(D). This measurement is a conceptual tool that is not performed as part of the real pro-
tocol, but is included in the simplified protocol to facilitate the randomness generation analysis.

To lift the analysis of the randomness generated in Protocol 2 to Protocol 1, we will show that,
in most test rounds of Protocol 1, the state of the device lies largely within the “good subspace”
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K = K0. Recall the definition of the states {ϕctok } associated with the simplified device in Defini-
tion 6.6. Let

|ϕco〉 =
∑

k

|ϕctok 〉 =
∑

k

Pok
ct |ϕ〉, (60)

where Pok
ct is notation for the operator that corresponds to applying the device’s (projective) mea-

surement operators M , Π and K indicated by c and t , respectively, and obtaining the sequence of
outcomes o and k , respectively. The fact that |ϕco〉 does not depend on t is justified by the fact that
{K , Id−K } is a projective measurement.

Our goal is to bound the contribution to (60) of terms Pok
ct |ϕ〉 that correspond to a large fraction

of (Id−K ) (“bad subspace”) outcomes, i.e., such that the Hamming weight |k | of the string k is
large. Establishing the right bound is made delicate by the possibility of interference between the
branches. We first state and prove a general lemma and then show how the lemma can be applied
in our context.

Lemma 8.1. Let n be an integer, 0 < κ < 1, and T = (T1, . . . ,Tn ) a sequence of independent

Bernoulli random variables such that for any t ∈ {0, 1}n , Pr(T = t ) = κ (t ) =
∏

i κ
ti (1 − κ)1−ti . Let

M = (M1, . . . ,Mn ) and K = (K1, . . . ,K |T | ) be sequences of random variables over {0, 1} that may be

correlated between themselves and with T but satisfy that for each i ≥ 1, Mi and Ti are independent

conditioned on (T ,M,K )<i . (For an integer i ∈ {1, . . . ,n}, we write (T ,M,K )<i for the triple formed

by the length-(i − 1) prefixes of T and M , and the length-|T<i | prefix of K .7)

Assume that there is a monotone concave function д : [0, 1] → [0, 1] such that д(0) = 0, д(x ) ≥ x
for all x ∈ [0, 1], and for any i ∈ {1, . . . ,n} and any sequences t ,m ∈ {0, 1}i−1 and k ∈ {0, 1} |t | it

holds that

Pr
(
K |t |+1 = 1

��� (T ,M,K )<i = (t ,m,k ), Ti = 1
)

≤ д
(

Pr
(
Mi = 0

��� (T ,M,K )<i = (t ,m,k ), Ti = 1
))
. (61)

Then for any 0 < η < 1 there are κ0,C0 > 0 such that for all 0 ≤ κ ≤ κ0 and γ = κ3/2, for all integer

n ≥ 1, ∑
t ∈{0,1}n

κ (t )
∑

m: |m | ≥(1−γ )n

( ∑
k : |k |>ηκn

√
Pr

(
(T ,M,K ) = (t ,m,k )

))2

≤ C0 2−κn . (62)

Intuitively, the lemma holds, because the condition |m | ≥ (1 − γ )n ensures that the outcome
Mi = 0 is fairly unlikely, in which case (61) implies that wheneverTi = 1 the outcomeKj = 1, where
j is the number of nonzero entries of T in indices less or equal to i , should also be unlikely. The
proof is made a little difficult by the square roots, whose presence is motivated by the application
to norms of quantum states detailed later. Nevertheless, to understand the statement of the lemma,
it may be useful to consider the case when all Mi (respectively,Kj ) are independent and identically
distributed and the square root and the square are not present. In this case, the lemma reduces to
showing that if

G =
{
m ∈ {0, 1}n : |m | ≥ (1 − γ )n

}
,

Bt =

{
(m,k ) : m ∈ {0, 1}n , k ∈ {0, 1} |t |, |k | ≥ ηκn

}
, (63)

7Recall that we write |T | for the Hamming weight of the string T . Here, we think of each Kj as a random variable that is

correlated with the random variable Mi , where i is the index of the jth non-zero entry of T .
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for t ∈ {0, 1}n , then ∑
t ∈{0,1}n

κ (t ) Pr
(
G ∧ Bt

)
≤ C02−κn .

Note that here as in the remainder of the section, for a set X, we often slightly abuse notation and
write Pr(X) for Pr(X ∈ X) whenever it is clear from context which random variable is referred to.

As a first step, note that we may safely assume that Pr(Mi = 0) ≤ γ +C
√
κ for some constantC ,

as otherwise by a Chernoff bound Pr(G) ≤ e−Ω(Cκn) ≤ C02−κn provided C is large enough. Then,
using (61) it follows that Pr(Kj = 1) ≤ д(γ + C

√
κ), so applying the Prohorov bound [36] (see

Theorem 8.3 below for an extension to martingales) with ξ there equal to Ki here, n there equal to
|t | here, t = η and v2 = д(γ +C

√
κ), we get that for any t ,

Pr(Bt ) ≤ e
− η

2 arcsinh

(
η

2д (γ +C
√

κ )

)
|t |
.

Using the assumption that д is monotone non-decreasing such that д(0) = 0, by choosing κ0 small
enough with respect to η one can ensure that the exponent

η

2
arcsinh

( η

2д(γ +C
√
κ)

)
is an arbitrarily large constant C1. Then∑

t ∈{0,1}n
κ (t ) Pr(Bt ) ≤

∑
t ∈{0,1}n

κ (t ) 2−C1 |t |

=
(
1 + (2−C1 − 1)κ

)n

≤ C0 2−κn ,

where the second line uses the expression for the moment generating function for the binomial
distribution and the last inequality uses 2 < e and holds for C1 large enough. This completes the
argument. To extend it to the general case, we use two tail bounds for martingales that replace the
use of the Chernoff bound and the Prohorov bound, respectively. The first is Azuma’s inequality.

Theorem 8.2 (Azuma’s ineqality). Let (ξi ,Fi )0≤i≤n be a martingale difference sequence such

that ξ0 = 0 and |ξi | ≤ 1 for each i ∈ {1, . . . ,n}. Then for any t ≥ 0,

Pr
(����

n∑
i=1

ξi

���� ≥ tn
)
≤ 2e−

t 2

2 n .

The second is a version of the Prohorov bound for martingales.

Theorem 8.3 (Corollary 2.2 in [17]). Let (ξi ,Fi )0≤i≤n be a martingale difference sequence such

that ξ0 = 0 and |ξi | ≤ 1 for each i ∈ {1, . . . ,n}. Let

Xn =

n∑
i=1

ξi and 〈X 〉n =
n∑

i=1

E
[
ξ 2

i
���Fi−1

]
.

Then for any t ≥ 0 and v > 0,

Pr
(���Xn

��� ≥ tn and 〈X 〉n ≤ v2n
)
≤ e

− t
2 arcsinh

(
t

2v2

)
n
.

We give the proof of Lemma 8.1.

Proof of Lemma 8.1. We reduce the proof of (62) to a sequence of martingale tail bounds.
Define a filtration (F1, . . . ,Fi , . . . ,Fn ) where Fi is the σ -algebra generated by (M,T ,K )i . Let
F<i = ∩j<iFj . Recall the definition of the event G in (63). The proof proceeds in three steps
that we each formulate as a separate claim.
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Claim 8.4 (First step: conditional expectations of M). LetC be a sufficiently large universal

constant (C is specified in (69) in the proof). Let δ ′1 = γ + 2
√

(C + 1)κ. Let

B′ =
{

(t ,m,k ) :

n∑
i=1

E
[
Mi

��� (T ,M,K )<i = (t ,m,k )<i

]
≤ (1 − δ ′1)n

}
. (64)

Then it holds that∑
m∈G

∑
t

κ (t )
( ∑

k :(t,m,k )∈B′

√
Pr

(
(M,K ) = (m,k ) |T = t

))2

≤ 2 · 2−κn . (65)

Proof. For i ∈ {1, . . . ,n}, let Zi = Mi −E[Mi |F<i ] andWi = Z1+ · · ·+Zi . Then by definition the
sequence (W1, . . . ,Wn ) is a martingale. Moreover, for any i ≥ 2, it holds that |Wi −Wi−1 | = |Zi | ≤ 1,
since Mi ∈ {0, 1}. Applying Azuma’s inequality (Theorem 8.2) it follows that for any δ1 > 0,

Pr
(����

n∑
i=1

Zi

���� ≥ δ1n
)
≤ 2 e−

δ 2
1
2 n . (66)

Let δ1 be large enough such that the right-hand side of (66) is less than 2−(C+1)κn , for some
constant C to be determined below. Let δ ′1 = δ1 + γ and B′ as in (64). Then by the Cauchy-
Schwarz inequality

∑
m∈G

∑
t

κ (t )
( ∑

k :(t,m,k )∈B′

√
Pr

(
(M,K ) = (m,k ) |T = t

))2

≤
∑

m∈G

∑
t

κ (t )
( ∑

k :(t,m,k )∈B′
Pr

(
(M,K ) = (m,k ) |T = t

)) ( ∑
k :(t,m,k )∈B′

1
)

≤
∑

m∈G

∑
t

κ (t )2 |t |
( ∑

k :(t,m,k )∈B′
Pr

(
(M,K ) = (m,k ) |T = t

))
, (67)

where the last inequality follows, since by definition the string k ranges over {0, 1} |t | . Let T be the
event

T =
{
(t ,m,k ) : m ∈ G ∧ (t ,m,k ) ∈ B′

}
.

Then for (t ,m,k ) ∈ T it holds that |m | ≥ (1 − γ )n and∑
i

zi =
∑

i

mi − E[Mi |(T ,M,K )<i = (t ,m,k )<i ]

≥ (1 − γ )n − (1 − δ ′1)n

= (δ ′1 − γ )n.

Thus it follows from (66) and our choice of δ1 that

Pr
(
T

)
=

∑
m∈G

∑
t,k : (t,m,k )∈B′

Pr
(
(T ,M,K ) = (t ,m,k )

)
≤ 2−(C+1)κn . (68)

Finally, note that by the Chernoff bound, for C large enough,∑
|t | ≥Cκn

κ (t )2 |t | ≤ 2−κn . (69)
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Fix C so (69) holds. Then, starting from (67), we get∑
m∈G

∑
t

κ (t )
( ∑

k :(t,m,k )∈B′

√
Pr

(
(M,K ) = (m,k ) |T = t

))2

≤ 2Cκn
( ∑

m∈G

∑
t,k : (t,m,k )∈B′

Pr
(
(T ,M,K ) = (t ,m,k )

))
+ 2−κn

≤ 2 · 2−κn ,

where the first inequality uses (69) and the second uses (68). �

Claim 8.5 (Second step: conditional expectations ofT (1−M )). For any δ ′2 = γ/κ+δ2, where

δ2 is sufficiently large compared to δ ′1, letting

B′′ =
{

(t ,m,k ) � B′ :
∑

i

E
[
Ti (1 −Mi )��� (T ,M,K )<i = (t ,m,k )<i

]
≥ δ ′2κn

}
, (70)

we have that ∑
m∈G

∑
t

κ (t )
( ∑

k :(t,m,k )∈B′′

√
Pr

(
(M,K ) = (m,k ) |T = t

))2

≤ 2−κn . (71)

Proof. For i ∈ {1, . . . ,n}, let Z ′i = Ti (1 −Mi ) − E[Ti (1 −Mi ) |F<i ,B′] andW ′
i = Z ′1 + · · · + Z ′i .

Then the sequence (W ′
1 , . . . ,W

′
n ) is a martingale such that |W ′

i −W ′
i−1 | ≤ 1. Let

v2
Z ′ =

∑
i

E[|Z ′i |2 |F<i ,B′].

For (t ,m,k ) � B′, using that by assumption Ti is independent from Mi conditioned on F<i and
E[Ti |F<i ] = κ it holds that

v2
Z ′ ≤

∑
i

E
[
Ti (1 −Mi ) |F<i ,B′

]

= κ
∑

i

E
[
(1 −Mi ) |F<i ,B′

]
≤ δ ′1κn.

Let v2 = δ ′1κn. Applying Theorem 8.3, for any δ2 > 0,

Pr
(����

∑
Z ′i

���� ≥ δ2κn ∧ v2
Z ′ ≤ v2n

)
≤ e

− 1
2 δ2κ arcsinh

(
δ2
2δ ′

1

)
n
. (72)

Assume δ2 chosen sufficiently large compared to δ ′1 so the right-hand side in (72) is less than

2−(C+1)κn . Let δ ′2 = δ2 + γ/κ and B′′ as in (70). Then proceeding similarly to the end of the proof
of Claim 8.4, we get (71). �

Claim 8.6 (Third step: conditional expectations of T (1 −M )K ). Let

B =
{

(t ,m,k ) : (t ,m) ∈ {0, 1}2n , k ∈ {0, 1} |t |, |k | ≥ ηκn
}
,

and

B′′′ = B′′ ∪ B′ ∩ B. (73)

Assume that η = γ/κ + δ3, where δ3 is sufficiently large compared to д(δ ′2). Then∑
m∈G

∑
t

κ (t )
( ∑

k :(t,m,k )∈B′′′

√
Pr

(
(M,K ) = (m,k ) |T = t

))2

≤ 2−κn . (74)
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Proof. We have∑
i

E
[
Ti (1 −Mi )K |T<i |+1

��� (T ,M,K )<i = (t ,m,k )<i

]

≤
∑

i

E
[
TiK |T<i |+1

��� (T ,M,K )<i = (t ,m,k )<i

]

=
∑

i

Pr
(
K |T<i |+1=1

���(T ,M,K )<i = (t ,m,k )<i ,Ti = 1
)

Pr
(
Ti=1

���(T ,M,K )<i=(t ,m,k )<i

)

≤ κ
∑

i

д
(

Pr
(
Mi = 0

��� (T ,M,K )<i = (t ,m,k )<i , Ti = 1
))

≤ κnд
(

1

n

∑
i

Pr
(
Mi = 0

��� (T ,M,K )<i = (t ,m,k )<i , Ti = 1
))
. (75)

Here, for the second line, we used 0 ≤ (1 −Mi ) ≤ 1; the third follows by an application of Bayes’
rule; for the fourth line, we used assumption (61) and the fact that for all i ,

Pr
(
Ti = 1

��� (T ,M,K )<i = (t ,m,k )<i

)
= κ; (76)

and for the last line, we used concavity of д. For any (t ,m,k ) � (B′′ ∪ B′) it holds that∑
i

E
[
(1 −Mi )��� (T ,M,K )<i = (t ,m,k )<i

]
=

1

κ

∑
i

E
[
Ti (1 −Mi )��� (T ,M,K )<i = (t ,m,k )<i

]

≤ δ ′2n,

where the equality uses (76) and the fact thatTi andMi are independent conditioned on (T ,M,K )<i ,
and the inequality uses the definition of B′′. Combined with (75), we get that for any (t ,m,k ) �
(B′′ ∪ B′), ∑

i

E
[
Ti (1 −Mi )K |T<i |+1

��� (T ,M,K )<i = (t ,m,k )<i

]
≤ д(δ ′2)κn. (77)

For i ∈ {1, . . . ,n} let

Z ′′i = Ti (1 −Mi )Ki − E
[
Ti (1 −Mi )Ki |F<i , B′′ ∪ B′

]
andW ′′

i = Z ′′1 + · · ·+Z ′′i . Then the sequence (W ′′
1 , . . . ,W

′′
n ) is a martingale such that |W ′′

i −W ′′
i−1 | ≤

1 and by (77),

v2
Z ′′ =

∑
i

E
[
|Z ′′i |2 |F<i , B′′ ∪ B′

]
≤ д(δ ′2)κn.

Applying Theorem 8.3, for any δ3 > 0, it holds that

Pr
(����

∑
Z ′′i

���� ≥ δ3κn ∧ B′′ ∪ B′
)
≤ e

− 1
2 δ3κ arcsinh

(
δ3

2д (δ ′
2

)

)
n
.

By choosing δ3 sufficiently large compared to д(δ ′2) the right-hand side can be made less than

2−(C+1)κn . Assume further that δ3 + γ/κ ≤ η. Let B′′′ be as in (73). Then (74) follows similarly to
the proof of (65) and (71) in Claim 8.4 and Claim 8.5, respectively. �

The lemma follows by combining Claim 8.4, Claim 8.5, and Claim 8.6 with the triangle inequality.
�

Recall the definition of the states |ϕctok 〉 in Definition 6.6. For a parameter η > 0 and any
t ∈ {0, 1}N , let

|ϕ
cto
〉 =

∑
k : |k | ≤ηκqN

|ϕctok 〉, (78)

and ϕ
cto

the sub-normalized density obtained by taking the partial trace of |ϕ
cto
〉 over register D.
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Corollary 8.7. Let D = (ϕ,Π,M,K ) be a simplified device such that condition (56) from Propo-

sition 7.4 holds. Then for any 0 < η < 1 there is a κ0 > 0 such that for all 0 ≤ κ ≤ κ0 and γ = κ3/2,∑
д,c ∈{0,1}N

q(д, c )
∑

t ∈{0,1}N−|д |
κ (t )

∑
o: (д,c,o)∈Acc

���ϕco − ϕ
cto���1

= O
(
2−κqN

)
. (79)

Proof. We apply Lemma 8.1. Fix д, c ∈ {0, 1}N and let n = |{i : ci = 0}|. Let T1, . . . ,Tn be
independent Bernoulli random variables distributed as in the statement of Lemma 8.1. LetM andK
be distributed as the measurement outcomes associated with the measurements {Id−M0, Id−M1}
and {K0,K1} made by the device in those rounds i ∈ {0, . . . ,N } such that ci = 0. Note that this is
well-defined, since the two measurements are required to commute by Definition 6.4. Moreover,
with this choice the assumption that Mi and Ti are independent conditioned on the past holds (in
contrast, K |T |<i+1 is correlated with Ti and with Mi ).

Using (56) from Proposition 7.4, it follows that these random variables satisfy the assumptions
of Lemma 8.1 for a choice of the function д(x ) = C

√
x , for a large enough constant C . The conclu-

sion (62) of the lemma gives (79). �

We conclude with a lemma that relates the randomness in the states ϕ
cto

to randomness in
the states ϕctok , for k such that |k | ≤ ηκqN , as these are the post-measurement states associated
with the simplified device in Protocol 2. The lemma relies on the following variant of the Cauchy-
Schwarz inequality:

Lemma 8.8. Let � ≥ 1 be an integer and |v1〉, . . . , |v�〉 arbitrary vectors in Cd . Then( �∑
i=1

|vi 〉
) ( �∑

i=1

|vi 〉
)†
≤ �

�∑
i=1

|vi 〉〈vi |.

Proof. Taking the overlap with an arbitrary unit vector |x〉, the claimed inequality is equivalent
to showing

����
�∑

i=1

〈x |vi 〉
����
2

≤ �
�∑

i=1

���〈x |vi 〉���2.
This follows from the Cauchy-Schwarz inequality applied to the sequences (1, . . . , 1) and
(〈x |v1〉, . . . , 〈x |v�〉). �

Using the lemma, we show the following:

Lemma 8.9. Let D = (ϕ,Π,M,K ) be a simplified device, and ϕ
cto

the ensemble of states associated

with D as described in (78). Then∑
д,c ∈{0,1}N

q(д, c )
∑

t ∈{0,1}N−|д |
|t | ≤2κqN

κ (t )
∑

o: (д,c,o)∈Acc

〈
ϕ

cto〉
1+ε

≤ 2O (H (η))κqN
∑

д,c ∈{0,1}N
q(д, c )

∑
t ∈{0,1}N−|д |

κ (t )
∑

o,k : (д,c,t,o,k )∈Acc2

〈
ϕctok

〉
1+ε
,

where Acc2 denotes the set of transcripts that are accepted by the verifier in Protocol 2.
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Proof. From the definition of ϕ
cto

in (78), applying Lemma 8.8 to the vectors |ϕctok 〉 and taking
the partial trace over E, we deduce that

ϕ
cto
≤

(
κqN

≤ ηκqN

) ∑
k : |k | ≤ηκqN

ϕ
ctok
, (80)

where
(

κqN
≤ηκqN

)
denotes the number of sequences k ∈ {0, 1} |t | such that |k | ≤ ηκqN . Using stan-

dard tail bounds for the binomial distribution, this is at most 2O (H (η))κqN . Applying the operator
monotone function 〈·〉1+ε on both sides of (80) and using the approximate linearity (10), we obtain〈

ϕ̃cto
〉

1+ε
≤ 2O (H (η))κqN

∑
k : |k | ≤ηκqN

〈
ϕ̃ctok

〉
1+ε
,

where the factors (1 + O (ε )) from the approximate linearity got absorbed in the prefactor. To
conclude the bound claimed in the lemma, note that the conditions that (д, c,o) ∈ Acc and |k | ≤
ηκqN imply (д, c, t ,o,k ) ∈ Acc2. �

8.2 Randomness Accumulation in the Simplified Protocol

In this section, we consider the behavior of a simplified device D = (ϕ,Π,M,K ) in a single round
of Protocol 2. The following lemma shows that, provided the device has overlap Δ(D) bounded
away from 1, then if the state ϕ of the device has high overlap with the projection operator M1,
performing a measurement of {Π0,Π1,Π2} on ϕ necessarily perturbs the state (hence generates
randomness). The proof is based on a “measurement-disturbance trade-off” from Reference [32],
itself a consequence of uniform convexity for certain matrix p-norms.

Lemma 8.10. Let D = (ϕ,Π,M,K ) be a simplified device with overlap Δ(D) ≤ ω, for some ω < 1.

Let 0 ≤ ε ≤ 1
2 and

t =
〈ϕG 〉1+ε

〈ϕ〉1+ε
, where G =

1

2

(
Π0 + Π1

)
+

1

2
M1K0 and ϕG =

√
Gϕ
√
G . (81)

Then
〈ϕ0

1〉1+ε + 〈ϕ1
1〉1+ε + 〈ϕ2

1〉1+ε

〈ϕ〉1+ε
≤ 2−ελω (t ) +O (ε2),

where the post-measurement states ϕv
1 , v ∈ {0, 1, 2}, are introduced in (47), and

λω (t ) = log(e )
(
t − 1

2
− ω

2

)2

(82)

if t ≥ 1
2 +

ω
2 , and 0 otherwise.

Proof. The proof uses ideas from Reference [32]. Let ϕ be as in the lemma and ϕ ′ =
∑

v ΠvϕΠv .
Then 〈∑

v

√
GΠvϕΠv

√
G

〉
1+ε

≤
∑

v

〈ϕ1/2ΠvGΠvϕ1/2〉1+ε +O (ε )

≤
(

1

2
+
ω

2

)
〈ϕ1/2

(
Π0 + Π1

)
ϕ1/2〉1+ε +

1

2
〈ϕ1/2Π2ϕ1/2〉1+ε +O (ε )

≤
(

1

2
+
ω

2

)
〈ϕ ′〉1+ε +O (ε ),

where the first and last lines use the approximate linearity relations (10), and the second line
uses the definition of K and G ≤ Id. This allows us to proceed as in the proof of Reference
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[32, Theorem 5.8] to obtain

〈ϕ − ϕ ′〉1+ε ≥ 2
(
t − 1

2
− ω

2

)
〈ϕ〉1+ε −O (ε ),

and conclude by applying Reference [32, Proposition 4.4]. �

Using Lemma 8.10, we proceed to quantify the accumulation of randomness across multiple
rounds of the simplified protocol, when it is executed with a simplified device that has overlap
bounded away from 1. The following proposition provides a measure of the randomness present in
the transcript, conditioned on the verifier not aborting the protocol at the end, i.e., on (д, c, t ,o,k ) ∈
Acc2. (To see the connection with entropy, recall the definition of the (1 + ε ) conditional Rényi
entropy in Definition 2.9. The connection will be made precise in Section 8.3.)

Proposition 8.11. Let D = (ϕ,Π,M,K ) be a simplified device such that Δ(D) ≤ ω for some

ω < 1. Let 0 < ε ≤ 1
2 . Let γ ,η,κ,q > 0 and N an integer be parameters for an execution of Protocol 2

(Figure 3) with D. Then

− 1

εN
log

(∑
(д,c,t,o,k )∈Acc2

q(д, c )κ (t ) 〈ϕctok 〉1+ε

〈ϕ〉1+ε

)
≥ λω

(
1 − γ

κ
− η

)
−O

(
q +

ε

κq

)
, (83)

where the states ϕctok are introduced in Definition 6.6, λω is the function defined in (82), and q(д, c )
and κ (t ) are the distributions on N -bit strings (д, c ) and t as selected by the verifier in Protocol 2.

Proof. The proof follows a similar argument as used in Reference [32, Section 7], and we outline
the main steps.

Let t =
〈ϕG 〉1+ε

〈ϕ〉1+ε
be as defined in Lemma 8.10 (this t should not be confused with the string t

involved in the protocol description). Recall the notation for the post-measurement states intro-
duced in (47). After one round of Protocol 2 is executed, the post-measurement state of the device
can be decomposed into three components. First, in case Gi = 1, which happens with probability
(1 − q), the round is a generation round. The randomness generated in such a round is captured
by the bound from Lemma 8.10,

(1 − q)
(
〈ϕ0

1〉1+ε + 〈ϕ1
1〉1+ε + 〈ϕ2

1〉1+ε

)
≤ (1 − q)

(
1 − ln(2)ελω (t ) +O (ε2)

)
〈ϕ〉1+ε . (84)

The second case corresponds toGi = 0, which happens with probability q. In this case, for reasons
that will become clear later in this proof, we weigh the “success” and “failure” components of the
post-measurement state differently. For the “failure” part, we simply write

q

2

(
(1 − κ)〈ϕ0

00〉1+ε + κ〈ϕ00
01〉1+ε + κ〈ϕ01

01〉1+ε + κ〈ϕ11
01〉1+ε + 〈ϕ2

1〉1+ε

)
. (85)

For the “success” part, we add a weight of 2
εs
κq , where s = O (1) is a real parameter to be determined

later, to the cases where Ti = 1:

(1 − κ)q

2

(
〈ϕ1

00〉1+ε + 〈ϕ0
1〉1+ε + 〈ϕ1

1〉1+ε

)
+
κq

2
2

εs
κq

(
〈ϕ10

01〉1+ε + 〈ϕ0
1〉1+ε + 〈ϕ1

1〉1+ε

)
≤ (1 − κ)q

2

(
〈ϕ1

00〉1+ε + 〈ϕ0
1〉1+ε + 〈ϕ1

1〉1+ε

)
+κq

(
1 + ln(2)

εs

κq
+O

( ε2

κ2q2

))
t 〈ϕ〉1+ε , (86)

where the inequality follows from the definition of t . Using the first inequality in (10) and regroup-
ing terms, the sum of the left-hand sides of (84), (85), and (86) is at most

(84) + (85) + (86) ≤
(
1 − ε ln(2)

(
λω (t ) − st +O

(
q +

ε

κq

)))
〈ϕ〉1+ε . (87)
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A convenient choice of s is to take the derivative s = λ′ω (r ) for some r ∈ [0, 1] to be deter-
mined. With this choice, using that λω is convex, it follows that mint ∈[0,1] λω (t ) − st = λω (r ) −
λ′ω (r )r . By chaining the inequality (87) N times, where at each step the density ϕ is up-
dated with the one obtained from the previous round, and using that Acc2 contains those se-
quences (д, c, t ,o,k ) such that the number of occurrences of (c, t ,o,k ) ∈ {(0, 1, 1, 0), (1, ∗, 0, ∗),
(1, ∗, 1, ∗)} is at least (1 − γ/κ − η)κqN , we obtain

− 1

εN
log

(∑
(д,c,t,o,k )∈Acc2

q(д, c )κ (t ) 〈ϕctok 〉1+ε

〈ϕ〉1+ε

)
≥ (λω (r ) − λ′ω (r )r ) +

(
1 − γ

κ
− η

)
λ′ω (r )

−O
(
q +

ε

κq

)
,

with the term (1 − γ

κ
− η)λ′ω (r ) on the right-hand side correcting for the weights 2

εs
κq that would

appear on the left-hand side with an exponent derived from the acceptance criterion. Choosing
r = (1 − γ

κ
− η) completes the proof. �

8.3 Randomness Accumulation in the General Protocol

In this section, we combine the results obtained in the previous two sections to analyze the ran-
domness generated in Protocol 1. The main step is given in the following proposition:

Proposition 8.12. Let D = (ϕ,Π,M ) be an efficient device. Then for any η > 0 and q > 0
(that may be a function of N ) there is a choice of parameters 0 < κ,γ < 1 for protocol 1 such that the

following hold: Let |ϕ〉DE denote an arbitrary purification ofϕD, and ρCOE the joint state of the verifier’s

choice of challenges, the outputs computed by the verifier, and the adversary’s system E, restricted to

transcripts that are accepted by the verifier in the protocol.8 Then there is a δ ′ = 2−Ω(κqN ) and a

constant C > 0 such that for any N and δ (that may depend on N ),

1

N
Hδ+δ ′
∞ (O |CE)ρ ≥ λω

(
1 − κ1/2 − η

)
−O

(
q + H (η)1/2 +

1 + log(2/δ )

H (η)1/2κqN

)
. (88)

Proof. Let D̃ = (ϕ, Π̃, M̃,K ) be the elementary device obtained by applying Proposition 7.4 to

the device D, for a choice of ω = 3
4 . Let ϕ̃ = ϕ

1
1+ε , where ε > 0 is a small parameter to be specified

later. We apply Proposition 8.11 to D̃, with ϕ replaced by ϕ̃. Then (83) gives

− 1

εN
log

(∑
(д,c,t,o,k )∈Acc2

q(д, c )κ (t ) 〈ϕ̃ctok 〉1+ε

〈ϕ̃〉1+ε

)
≥ λω

(
1 − γ

κ
− η

)
−O

(
q +

ε

κq

)
. (89)

Next, we apply Lemma 8.9 to obtain

− 1

εN
log

(∑
(д,c,t,o):(д,c,o)∈Acc q(д, c )κ (t ) 〈ϕ̃cto〉1+ε

〈ϕ̃〉1+ε

)
≥ λω

(
1 − γ

κ
− η

)
−O

(
H (η)κ

q

ε
+ q +

ε

κq

)
,

(90)
where the correction H (η)κ

q

ε
comes from the exponential prefactor in the bound from Lemma 8.9.

The left-hand side of the bound in Lemma 8.9 only considers those sequences such that |t | ≤ 2κqN ,

but adding those sequences back only incurs a negligible error 2−Ω(κqN ) (inside the logarithm), due
to the Chernoff bound.

We make one ultimate re-writing step. For any fixed t , the post-measurement state ϕ̃cto can be
expressed as

PN · · · P1ϕ̃P1 · · · PN ,

8The state ρ is sub-normalized.
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where Pi is the measurement operator associated with challenge ci and outcome oi . Using

〈XX ∗〉1+ε = 〈X ∗X 〉1+ε for any X , and recalling the definition of ϕ̃ = ϕ
1

1+ε ,

〈PN · · · P1ϕ̃P1 · · · PN 〉1+ε = 〈ϕ
−ε

2(1+ε ) ϕ
1
2 P1 · · · P2

N · · · P1ϕ
1
2ϕ

−ε
2(1+ε ) 〉1+ε .

Introduce a sub-normalized density

ρcto
E = ϕ

1
2 P1 · · · P2

N · · · P1ϕ
1
2

that corresponds to the post-measurement state of register E (recall we assumed a purification
|ϕ〉DE of ϕ) at the end of Protocol 1, for a given transcript (c,o) for the interaction.

We are in a position to apply Theorem 2.12, with

ρo
CTOE =

∑
(д,c,t ): (д,c,o)∈Acc

q(д, c )κ (t ) |c, t〉〈c, t |CT ⊗ |o〉〈o |O ⊗ ρcto
E ,

and σCTE =
∑

(д,c,t ) q(д, c )κ (t ) |c, t〉〈c, t | ⊗ ϕ. Applying the theorem and using (90) and 〈ϕ̃〉1+ε = 1
by definition, we get that for any δ > 0,

1

N
Hδ
∞ (O |CTE)ρ ≥ λω

(
1 − γ

κ
− η

)
−O

(
H (η)κ

q

ε
+ q +

ε

κq

)
− 1 + 2 log(1/δ )

εN
. (91)

Using that the bound in (88) only considers registers C and O (the transcript) and E, by Corollary 8.7
for any choice of 0 < η < 1 there is aκ0 > 0 such that for all 0 ≤ κ ≤ κ0 andγ = κ3/2, the bound (91)

extends to a lower bound on the entropy Hδ+δ ′
∞ (O |CE)ρ at the cost of an additional δ ′ = O (2−κqN )

in the smoothing parameter.
Choose η to be an arbitrarily small constant, set κ = γ 2/3 and γ small enough so κ ≤ κ0. Let ε be

chosen as H (η)1/2κq. With this choice of parameters, the term in the O (·) on the right-hand side
of (91) is O (q + H (η)1/2). �

Making an appropriate choice of parameters for an execution of Protocol 1, Proposition 8.12
gives our main result.

Theorem 8.13. Let F be an NTCF family and λ a security parameter. Let N be a polynomially

bounded function of λ such that N = Ω(λ2). Set q = λ/N . Then there is a setting of η,γ ,κ, and a

δ = 2−Ω(qN ) such that for any efficient prover, and side information E correlated with the prover’s

initial state,

HN δ
∞ (O |CE)ρ ≥ ξN ,

where ρ is the final state of the output, challenge, and adversary registers, restricted to transcripts that

are accepted by the verifier in the protocol and ξ is a positive constant.9

Assume that an execution of Gen(1λ ) requires O (λr ) bits of randomness for some constant
r . (For example, for the case of our construction of an NTCF family based on LWE, we have
r = 2.) Then an execution of the protocol using the parameters in Theorem 8.13 requires only
poly(λ, logN ) bits of randomness for the verifier to generate the key k and select the challenges.

Taking N to be slightly sub-exponential in λ, e.g., N = 2
√

λ , yields sub-exponential randomness
expansion.

Proof of Theorem 8.13. Let D be a device that is accepted with non-negligible probability in
Protocol 1, where the parameters are stated in the theorem. Applying Proposition 8.12 to D with
a small enough choice of η gives the result, with, e.g., ξ = λω/2. �

9The constant ξ is at least some positive universal constant of order 1/10.
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