
Relativizing versus Nonrelativizing Techniques: The Role of

Local Checkability

(early draft)

Sanjeev Arora

U. C. Berkeley

Russell Impagliazzo

U. C. San Diego

Umesh Vazirani

U. C. Berkeley

Abstract

Contradictory oracle results have traditionally been interpreted as giving some evidence
that resolving a complexity issue is difficult. However, for quite a while, there have been a
few known complexity results that do not hold for every oracle, at least in the most obvious
way of relativizing the results. In the early 1990’s, a sequence of important non-relativizing
results concerning “non-controversially relativizable” complexity classes has been proved,
mainly using algebraic techniques. Although the techniques used to obtain these results
seem similar in flavor, it is not clear what common features of complexity they are exploiting.
It is also not clear to what extent oracle results should be trusted as a guide to estimating
the difficulty of proving complexity statements, in light of these non-relativizing techniques.

The results in this paper are intended to shed some light on these issues. First, we
give a list of simple axioms based on Cobham’s machineless characterization of P [Cob64].
We show that a complexity statement (provably) holds relative to all oracles if and only
if it is a consequence of these axioms. Thus, these axioms in some sense capture the set
of techniques that relativize. Oracle results, while not necessarily showing that resolving
a complexity conjecture is “beyond current technology” at least show that the result is
independent from these axioms.

We then suggest an axiom which we call the principle of local checkability. When added
to the previous axioms, local checkability implies all of the new non-relativizing results.
The axiom is intended to capture the fact that, if someone provides a complete transcript
of a computation, its correctness is easily checkable through examining its local properties.
Different versions of this axiom have been “folklore” in the complexity community, but the
extent to which it separates relativized and non-relativized complexity has not been fully
appreciated. (In fact, many people remain unconvinced after reading this paper!) We show
that all the recent results on interactive proofs remain valid under all oracles that respect
this principle, (although they are false with respect to general oracles). We also prove that
relative to such oracles, many open questions about complexity classes have essentially the
same answer as they do without any oracles. We conclude that relativization techniques
cannot prove any meaningful restrictions on the power of the principle of local checkability,
which is a known proof technique in complexity theory.

Unfortunately, our axiom is not “uncontroversially relativizable”, as is evident from
responses to earlier versions of this paper ([For94]). To at least partially respond to our
critics, we will give some alternative formulations of “locally checkable” and show that many
of our results are quite robust under changes in formulation.

1

1 Introduction

1.1 History

Relativization was a technique introduced by Baker, Gill and Solovay [BGS75] to provide
evidence that standard complexity theory techniques like simulation and diagonalization (see
Rabin [Rab59], and Hartmanis and Stearns [HS64]) would not suffice to resolve the P v/s NP
question.

Briefly, the relativization technique goes as follows. An Oracle Turing machine is defined
to be a Turing machine with random access to an oracle, which is an infinite array of bits.
The array is understood to represent a function from {0, 1}∗ → {0, 1}, or in other words,
a language. For a complexity class C and an oracle O, the complexity class CO is defined
as {L : L is accepted by a machine in C with access to O}. A complexity theoretic statement
(i.e. a statement like “P = NP” or “NP 6= EXPTIME”), is said to not relativize if there are
oracles A and B such that the statement holds in the presence of A and not in the presence of
oracle B. Thus any proof technique that that is insensitive to the presence of an oracle cannot
prove or disprove the statement (for example, the diagonalization/simulation arguments used
in [HS64] treat the simulated machine as a black box, and therefore appear to remain valid
in the presence of oracles). An example of a statement that doesn’t relativize is “P = NP.”
For this statement, A can be TQBF , the language of all true quantified boolean formulae,
since PTQBF = NPTQBF = PSPACE. A language B such that PB 6= NPB was exhibited in
[BGS75]. Combining this fact with the working assumption that “all known proof techniques
in complexity theory are relativizing” gave strong evidence about the difficulty of the P versus
NP question.

This method of relativization has been brought to bear upon many other open questions in
Complexity Theory, for example: P versus PSPACE [BGS75], NP versus EXPTIME [Dekh69,
GH83, Lis86], BPP versus NEXPTIME [H86], IP versus PSPACE [FS87], and a long list of
other classes.

In an informal sense, contrary relativizations of a complexity theory statement have been
viewed as a mini-independence result, akin to the independence results shown in mathematical
logic. This notion has never been made precise: in other words, what independence is implied by
contradictory relativizations, and what are the proof techniques from which this independence
is implied? (a survey by Hartmanis [Har88] provides further background on this). Of course,
it is possible to derive a lot of intuition about a complexity class by studying its behaviour in
a relativized setting (see a survey by Allender [All90] for this viewpoint). This informal use
of relativization should be distinguished from the formal consequences referred to above.

Although the relativization of time complexity classes is rather straightforward, the rela-
tivization of space complexity classes has proved to be a serious problem. The problem is that
several provable statements about space complexity classes admit to contrary relativizations
- a good example of this is the equivalence between deterministic time and alternating space.
This appears to contradict the working hypothesis that “all known proof techniques in com-
plexity theory are relativizing”. Attempts have been made to fix this problem by observing
that space-bounded relativized computation can be defined in several ways, and one of these
choices removes the above-mentioned anomalies (see [Buss88]). In other words, since this was
an isolated non-relativizing result, and did not seem to involve “revolutionary new techniques”,

2

it seemed more reasonable to doubt the model of relativization with respect to an oracle than
to abandon the useful working hypothesis that oracle results meant new techniques would have
to be developed to resolve complexity issues.

However, recent results on interactive proof systems and counting classes have made it
impossible to save the hypothesis that “all known proof techniques in complexity theory are
relativizing”. (It should be made clear that we know of no one in the complexity community
who actively advocated such a hypothesis, except as an informal rule of thumb.) The following
is a partial list of known non-relativizing complexity theoretic statements:

1. AltSpace(s(n)) = DTIME(exp(O(s(n))) ([CKS81]);

2. NP ⊂ ZKIP if one-way functions exist ([GMW91]);

3. If PP̧ 6= BPP¸ , then there are distributional problems in DistPP̧−AvgP (i.e., a “difficult
on average-case” problem). ([Lip91])

4. IP = PSPACE ([Sha90])

5. MIP = NEXPTIME ([BFL90])

6. NP = PCP(log n, 1) [AS92, ALMSS92]).

Many of these results use “algebraic techniques”, where Boolean functions are extrapolated
to low-degree polynomials. Several people have attributed the non-relativization of these results
to use of algebraic methods [For]). However, the first two results do not use algebraic techniques.
While the first and last involve classes that are somewhat controversial in exactly how they
should be appropriately relativized, all of the rest are non-controversially non-relativing results.
The results from [Sha90] and [BFL90] were already known to be false under some oracles
[FS87, FRS88]; all of the others except [Lip91] have had relativized counter-examples found
after the fact. (Although the proof in [Lip91] certainly uses non-relativizing techniques, we do
not know of any relativized counter-example.) For example, the statement NP = PCP(log n, 1)
also doesn’t relativize, as shown in [For]. The random oracle hypothesis (the conjecture that
any true complexity statement is true with probability 1 in the presence of a random oracle),
is also refuted by these results, since all results about interactive proofs mentioned above do
not hold in the presence of a random oracle (see, e.g, [CGH90]). Previous counter-examples
existed [Kurtz], but seemed somewhat technical.

In view of this, and the wide range of novel techniques used in the proof of these results,
there is great interest in identifying the new non-relativizing techniques embedded in these
results (and to try to use them to resolve other open questions which had hitherto seemed
formidable because of contrary relativizations). It has been felt (see for example the discussion
in [LFKN90, BF90]) that the algebraic techniques (like extending boolean formulae to finite
fields) used in these results break down in the presence of oracles, and there is some evidence
that this is true [For].

At the very least, it seems that the role of relativized computation has to be re-examined,
in order that oracles may be used constructively in the future. In this paper, we hope to
contribute to this process of re-examining, and to present a framework that clarifies some of
the issues.

3

1.2 Our Results

We give an axiomatic theory, which we call RCT , that makes precise what “relativizing tech-
niques” are. This theory can express any complexity theoretic statement S, in which time and
space are specified only within a polynomial (e.g. the statement P = NP). (A more refined
version allows space to be specified within a constant factor.) We show that S relativizes
(i.e. holds in the presence of all oracles) iff it is true in every (standard) model of RCT . We
in fact show that any S which can be proved (using the normal axioms of mathematics) to
be a relativizing statement, is a theorem of RCT . The contrapositive of this claim is that
the kind of “independence” implied when one proves contrary relativizations for S is precisely
independence from RCT .

We then examine the question of how this theory can be strengthened so that recent non-
relativizing results may also become provable.

Towards this goal, we identify a general principle, the principle of local checkability, which
appears to us to be at the root of the above-mentioned non-relativizing results. While this
principle can be formulated in several ways, all of them expresses the fact that computation
is a very local process, and hence checking the correctness of a computation is simpler than
performing the computation itself 1. We show that “local checkability” is a fact that does not
relativize.

Adding the “local-checkability” axiom to our theory enables us to model all relativized
worlds in which computations are locally checkable. In such worlds the power of the oracle
turns out to be very restricted, and thus the nature of computations is pretty close to that of
oracle-less computation. We show that many common complexity theoretic questions resolve
in our strengthened theory in essentially the same way (sometimes in a slightly weaker form) as
they would in the real world. We present several formulations of this principle, and the extent
of characterization of computation varies with the formulation. However, all of the formulations
turn out to be essentially equivalent to ”SAT (unrelativized) is PO-complete” (with varying
notions of reduction). Thus, local checkability is indeed related to the Cook-Levin Theorem.
We conclude that for many interesting unknown non-relativizing complexity facts, if they are
resolvable in any standard mathematical system (such as Peano Arithmetic) then they are
provable from our axioms.

Admittedly, most of the results presented here are very easy, more observations than theo-
rems. We also admit that the usefulness of our characterization by axioms of “relativizing proof
techniques” and “ modern proof techniques = relativizing proof techniques + local checkability”
is not a mathematical result, and is subjective in nature. It depends on the extent the reader is
convinced of the naturalness of the axioms. Indeed, there is much disagreement about exactly
what constitutes a “structural complexity-theoretic statement” and whether local checkability
in any of its formulations qualifies as such. We hope that by providing several formulations
and showing that most of our results are independent of formulation that we convince the
reader that local checkability is a basic, natural, and powerful fact about computation. It
is a mathematical fact that the local checkability axioms as presented here do imply recent
non-relativizing results. However, this in no way denies the novelty, beauty, or power of the
algebraic techniques used to establish these results, any more than Peano can claim credit for
Gauss’s law of reciprocity simply because the latter is provable in Peano Aritmetic!

1This fact is also at the root of the Cook-Levin Theorem, and a preliminary version of this paper identified

“local checkability” with the term “Cook-Levin theorem”

4

The rest of the paper is organized as follows: In Section 2 we introduce the axiomatic
theory that precisely models “relativizing statements.” In Section 3 we formulate the prin-
ciple of local checkability in several ways, and show how all the ways imply recent results on
interactive proofs. In Section 4 we explore the extent to which local checkability character-
izes complexity. In particular, the strongest version is powerful enough to resolve almost all
important complexity conjectures. We conclude with a discussion of the issues raised by this
paper.

2 An Axiomatic Theory

In this section, we give a first order theory which gives an exact characterization of “relativizat-
ing tecniques.” The theory, which is an extension of Cobham’s machine-less characterization
of P ([Cob64]), consists of a finite set of axioms concerning the class of “ polynomial-time
functions” which do not refer to any Turing machines or their inner working.

Thus, we will not be able to even phrase statements which involve exact time or space
as opposed to time and space up to a polynomial. In the full version of this paper, we will
also give a modification of the axioms which capture relativizing statements about the class
DTIME − SPACE(poly(n), O(n)), simultaneous polynomial time and linear space. This will
allow us to talk about space classes defined up to a constant factor. For simplicity and because
relativized space classes are somewhat controversial [For], we will omit this extension in the
current abstract.

Instead of having other axioms for other complexity classes such as NP̧ or PSPACE¸ , we
prefer to give definitions of these classes directly in terms of P. For example, we would define NP̧
in terms of languages with polynomial-time verifiable certificates, and PSPACE¸ as languages
expressible as reachability problems in graphs whose adjacency matrix have entries that are
polynomial-time computable and where each node has out-degree 1. (Alternately, a function
is in PSPACE¸ if it can be expressed as the first fixed point reached by iterating a decreasing
polynomial-time computable function starting at the input.) Statements concerning these
other classes are shorthand for the statement concerning P obtained if one translates the terms
involved.

2.1 Relativized Complexity Theory

Our presentation in this abstract will be somewhat informal. The following lists some ways
in which we will abuse notation and how these abuses would be removed in a more formal
presentation. Most readers can skip the next paragraph without much loss in comprehension.

We will be working in a two-sorted extension of number theory where we have variables
f1, f2, ... representing functions from non-negative integers to non-negative integers. Function
variables are meant to mean generic elements of some unspecified set quasi-FP¸ of presumed
tractible functions. We use the notation quasi-P¸ to represent the subclass of Boolean (0,1
valued) functions within quasi-FP¸ . 2 First order statements quantifying over the function

2quasi-P¸ is sometimes used to denote the time class of functions computable in slightly more than polynomial-

time, time exponential in poly log n. Here, the term means an incompletely specified set of functions that has

properties similar to those polynomial time has.

5

variables would intuitively correspond to satements such as ”for all tractible functions f there
is a tractible function g so that...”. We will often write ”∀f ∈ quasi-FP¸ ”, but technically the
range of the quantifier is implicit. To keep the theory first-order, we would use the standard
logical device of using a two-input function symbol Apply and re-writing f(x) as Apply(f, x).
In the following description, we often represent functions as having multiple arguments, which
can be justified (as is usually done) by the use of some specific pairing and projection functions
< x, y >,Π1,Π2. We can use any such functions computable in polynomial-time, but there
are many simple examples computable in linear time and logarithmic space. To say that an
explicitly defined function (say addition) is in quasi-P¸ would technically be written ∃f, f(x, y) =
x + y, but we will use the more intuitive abbreviation f ∈ quasi-FP¸ , for f(x, y) = x + y. We
omit such details in the future presentation.

To get our set of axioms, we recall Cobham’s machineless characterization of FP, the class
of polynomial time computable functions over the integers. The following is paraphrasing
Cobham’s result, although we have cleaned up some of the recursion schemes slightly.

Theorem 1 (Cobham [Cob64]) FP is exactly equal to the smallest class of functions, quasi-FP¸ ,
satisfying the following:

1 quasi-FP¸ contains all the following functions:

• Any function f which is non-zero only finitely often.

• Any constant function.

• x + y and x − y.

• |x|, the length of x.

• f(x, y) = yth bit of x (= 0 if y > |x|).

• f(x, y) = the number which differs from x in exactly the yth bit.

• Π1 and Π2 where Π1(x, y) = x and Π2(x, y) = y.

• x · y.

• 2|x|
2

(the so-called “smash function”)

2 If f, g ∈ quasi-P¸ , then for h(x) =< f(x), g(x) >,h ∈ quasi-FP¸ .

3 If f, g ∈ quasi-FP¸ , then f ◦ g ∈ quasi-FP¸ (◦ is functional compostion).

4 Let g(x) be any function in quasi-FP¸ so that ∀x, |g(x)| ≤ |x|. Then g′ ∈ quasi-FP¸ , where
g′(x, k), called the repetition of g for |k| steps, is defined recursively by: g′(x, k) =
g(g′(x, k/2)) if k > 1 and g′(x, 1) = x.

Note that all of these axioms are easy to express in our two-typed number theory following
the conventions mentioned before. Some of them are a bit forced; we could probably get a more
elegant theory by using the characterizations of Bellantoni and Cook ([BC92]) or of Leivant
([Leiv91]) instead of Cobham’s.

We add to the above axioms the usual Peano Arithmetic schema of induction axioms for
formulas in our language (where the variable being induced on is a natural number, and we are
allowed to have both kinds of variables as free variables in the formula.) We call the resulting
theory C, the Cobham theory.

6

We also need two new axioms, one technical, the other asserting the existence of a universal
function for quasi-FP¸ .

Definition 1 We call the following sentence the Axiom Length¸ : For all f ∈ cquasi − FP ,
there is a c > 0 with |f(x)| < |x|c.

Definition 2 We call the following sentence Axiom U : There exists a function U(i, t, x) ∈
quasi-FP¸ such that for every function f ∈ quasi-FP¸ , there exists an i and a c such that

f(x) = U(i, 2|x|
c

, x).

We call the theory obtained by adding U and Length¸ to the Cobham axioms as Relativizing
Complexity Theory or RCT¸ . We will use CŢ (language of Complexity Theory) to refer to
the first order language used to express these axioms. Now we show that RCT¸ characterizes
relativized polynomial time.

Definition 3 A standard model for CŢ is one in which the interpretations of the range of
natural number variables and the arithmetical function and relation symbols are the natural
numbers with the usual meanings for symbols.

Note that a standard model of CŢ is specified completely by any set of functions from
non-negative integers to non-negative integers. We will abuse notation and refer to a standard
model as a set of functions quasi-FP¸ .

Theorem 2 Any standard model quasi-FP¸ satisfies RCT¸ if and only if there is a set O ⊂ N
with quasi-FP¸ = FPO.

Proof: (Sketch) Clearly, for all oracles O, FPO is a model of RCT . Conversely, if quasi-P¸ is
a model of RST¸ , then axiom U gives us a universal function in quasi-P¸ . Define O as the oracle
that on input i, t, x, j outputs the j’th bit of U(i, t, x). It is easy to see from the universality
property and |U(i, t, x)| is polynomial, that quasi-P¸ ⊆ FPO. We then show that the Cobham
Axioms imply that quasi-P¸ is closed under polynomial-time Turing reducibility. Then just
observe that O ∈ quasi-P¸ from Axioms 1 and 3. ✷

We stress the simplicity and “obviousness” of our axioms. The moral here is that if we
restrict ourselves to formal models that have the “natural” properties we expect in polynomial
time computation, then polynomial time oracle Turing machines are all we can get. In this
sense, there’s no getting away from oracles if one wants to show that a result is beyond the reach
of a set of techniques that contains simple compositions and the use of universal machines.

It is clear that any theorem in RCT is a relativizing statement about FP. Some reflection
also shows the following: any relativizing statement we can prove (using Normal Math + usual
notion of oracle Turing machines) about P is just a theorem of the system Normal Math +
RCT¸ . More precisely, let Normal Math be any theory extending Peano Arithmetic. Then the
corresponding theory for relativized Normal Math would be Normal Math with an undefined
function symbol O meaning the oracle, and an extended induction schema allowing formulas
to mention O. Similarly, let NormalMath+RCT be an extension of Normal Math to CŢ where

7

we allow induction to involve formulas using function variables. Any statement in CŢ has a
corresponding statement in relativized normal math where we replace quasi-FP¸ by FP̧O. Then
it is easy to show that a statment in LCT is a theorem of NormalMath + RCT if and only if
its translation is a theorem of relativized NormalMath. We will present this in more detail in
the final version.

Thus all “relativizing” facts one can hope to prove about P are provable within RCT . We
conclude that “relativizing techniques” are just derivations involving RCT¸ .

2.2 Defining Other Classes in Terms of P

Note that the language above, LCT , cannot directly mention other complexity classes besides
P (or more exactly, quasi-P¸ .) However, most other complexity classes have straight-forward
definitions in terms of P . For example, we would use quasi-P¸ = quasi-NP¸ as an abbreviation
for: ∀c,∀f ∈ quasi-P¸ ,∃g ∈ quasi-P¸ , so that g(x) = 1 ⇐⇒ ∃y|y| ≤ |x|c ∧ f(x, y) = 1. Only
classes that are robust as to changes in time and space up to a polynomial are formalizable
in our language. When wanting to formulate complexity statements about these classes in our
language, we use these definitions to translate the statement into one about only quasi-P¸ . (Note
that if one drops the existence of the smash function and strengthens the length axiom to linear
from polynomial, then the axiomization given captures TIME-SPACE(p(n), n), simultaneous
polynomial time and linear space. We could use this theory instead of RCT if we want to
capture time up to a polynomial and space up to a constant.)

In this version, we will not go on at length as to how to define other classes in terms of
quasi-P¸ . However, we will give a few simple rules. First, to get time classes that involve
greater than polynomial time, use padded versions of polynomial-time functions. For example
, quasi-EXP¸ = f(x, 2|x|

k

)|k ∈ N, f ∈ quasi-P¸ .

To define sub-linear classes, we use the non-uniform versions of these classes, but insist that
the families of non-uniform computational devices be locally quasi-P¸ -uniform. For example,
quasi-NLogspace¸ would be defined as reachability problems on directed graphs whose node
names are log(n) bit strings, and whose edges each depend on one bit of the input.

By adopting this point of view, we want to avoid questions about oracle access that are
specific to classes. By looking at questions about other classes in terms of closure properties
of the polynomial-time computable functions, we hide details of how the oracle is accessed in
various models of computation. In other words, we want CO to represent those problems that
would be computable in C if O were computable in P , not the set of problems C-reducible to O.
Comparing the set of problems C1-reducible to O versus those C2-reducible to O is comparing
consequences of O being in C1 to consequences of O being in C2, rather than the consequences
of a single hypothesis.

In any case, if any class is uncontroversially relativized, it is P . So results about P should
also be uncontroversial in how to relativize them (or such was our hope.)

If O were in C, what else would be in C? One of the reasons we prefer the first type of
question is that the premise is the same for each complexity class. Thus, when we compare CO

1

to CO
2 , we are asking: if O were in P , would C1 = C2?, rather than: is the set of functions C1

reducible to O the same as the set of functions C2 reducible to O? The other is that it makes
clear that questions about many other classes are really questions about closure properties of
P , so the issue of how to relativize a class becomes less relevant.

8

3 The Principle of Local Checkability

In this section, we introduce some notions of local checkability that do not relativize. (Fortnow
has pointed out that there are other models and formulations of similar questions that do
relativize ([For]). However, we feel that that is irrelevant, since the principles as stated both do
not relativize and do imply many of the powerful non-relativing results in a relativizing way.)

As suggested in the introduction, this principle can be formulated in different ways, none
of which will affect the core of our arguments. We settle upon two formulations that may be
viewed as stronger forms of the usual Cook-Levin Theorem.

We define a proof-checker to be a Turing machine M that uses ∀ quantification and which is
provided, in addition to the input, a proof string. It is allowed random access to both the input
and the proof string. It is said to accept an input x using proof-string Π (denoted M(x,Π) = 1)
iff all branches created by its ∀ branching accept. It is said to run in time t(n) if its running
time is O(t(n)) on inputs of size n.

Definition 4 (PF-CHK(t(n))) A language L is in the class PF-CHK(t(n)) iff there is a proof-
checker M that runs in t(n) time and has the property

• ∀x ∈ L, there exists a Π such that M(x,Π) = 1.

• ∀x 6∈ L,∀Π, M(x,Π) = 0.

In order to make the concept of proof checker more robust, we can define a version just
in terms of polynomial-time computable functions. While giving a less exact characterization
of “known non-relativizing techniques”, weak local checkability is possibly more convincing to
skeptics, since it allows full access to the oracle.

To make it a bit simpler, we’ll just look at non-adaptive proof checkers. For Π ∈ {0, 1}m,
and S ⊆ {1, ..m}, let Π|S denote the substring obtained by restricting Π to the co-ordinates in
S.

Definition 5 (WPF-CHK(t(n))) A language L is in the class WPF-CHK(t(n)) iff there are
functions f, g ∈ FP and constants c, d > 0 so that for each y, |y| ≤ ct(n), g(x, y) returns a set
S ⊂ {1, ..nd} with |S| ≤ ct(n) and so that:
∀x, x ∈ L if and only if there exists a Π, |Π| = nd, such that ∀y, |y| ≤ ct(n), f(x, y, P i|g(x,y)) = 1.

Note that f and g are even allowed to run in time polynomial in n, and to use x arbitrarily.
The only “locality” constraint is that, for each y, only t(n) bits of the proof Π can be read.

Theorem 3 PF-CHK(log n) ⊆ WPF-CHK(log n).

Proof: The only advantage a proof system in PF-CHK(log n) has is that it can read bits
of the proof adaptively. To simulate this, we can append to Π, for each sequence y of non-
deterministic choices and each sequence z of supposed bits of the proof read so far, a bit P (y, z)
which represents “the bit of the proof Π that would be read next”. Then we make the new list

9

of non-adaptive constraints: On y, z, i, read all the P (y, z′) for z′ a subsequence of z, and read
Πi. Accept if one of the bits of z does not match the corresponding P (y, z′). Otherwise, reject
if either the machine on path y with answers z would reject, or if the machine on path y with
answers z reads i and gets an answer other than Πi. ✷

The term “Local Checkability Theorem” or “LCT” (also, the Levin-Cook Theorem!) from
now on will refer to the following statement.

Proposition 4 NP = PF-CHK(log n).

Proof: Clearly, PF-CHK(log n) ⊆ NP. The other direction follows from the observation from
the Cook-Levin Theorem ([Coo71, Lev73]), that witnesses for NP languages can, w.l.o.g. be
in the form of a tableau. The correctness of the tableau can be checked by examining all O(1)
sized “windows”. ✷

It follows that:

Proposition 5 NP = WPF-CHK(log n).

Theorem 6 If O is a random oracle then

PO 6⊆ PF-CHK(log n)O

with probability 1, and
PO 6⊆ WPF-CHK(log n)O

with probability 1.

Proof: Consider the language O. Clearly, O ∈ PO. We claim that O 6∈ PF-CHK(log n)O

with probability 1. The reason is that a proof-checker running in O(log n) time can only query
the oracle about strings of size O(log n). Therefore for large enough strings, its answer to “Is
x ∈ O?” is a random variable that is uncorrelated with whether x ∈ O (i.e. is correct only
with probability 1

2). A standard probability analysis now yields the result.

✷

We conclude that most oracles are unrealistic in this sense, and define a class of oracles
that model reality better.

Definition 6 An oracle O is consistent with LCT if NPO = PF-CHK(log n)O. It is consistent
with weak LCT if NPO = WPF-CHK(log n)O.

The following theorems show that adding such oracles can not change the answers to many
complexity questions.

Theorem 7 If O is an oracle that is consistent with LCT, then

(i)NPO = NP (ii) O ∈ NP ∩ co-NP.

10

Proof: (i) Let L ∈ NPO. Then L ∈ NP/poly, for the following reason: the proof-checker can
only query the oracle for strings of size O(log n). Hence it only uses nO(1) bits of information
from the oracle over all its branches, and these bits can be provided instead as an advice string.

Now we show that actually L ∈ NP. In other words, if the oracle doesn’t impart any more
power to polynomial time computation than to a log n time proof-checker, then it provides no
information that an NP machine couldn’t guess and verify on its own. Notice that once the
proof-checker is done with its ∀ guessing, its decision is a deterministic poly time computation
on some O(log n) bits. So the proof-string can just be required to contain a sub-proof (for
all possible choices of ∀ guesses) that this computation accepts. The subproof can be checked
by a log log n time proof-checker. Now the only oracle queries it can make are of size at most
O(log log n). Repeating this recursion idea some more, we conclude that only the first O(1)
bits of the oracle are needed, which can be incorporated into the checker’s program.

(ii) It is well known that NPO = NP iff O ∈ NP ∩ co-NP. ✷

Since oracles consistent with LCT are so restricted, it is clear that that resolving the P
versus NP question with respect to any such an oracle would essentially resolve the question
in the real world.

Theorem 8 If O is any oracle that is consistent with LCT, then the following hold:

• If PO 6= NPO then P 6= NP.

• If PO = NPO then NP = co-NP.

• EXPTIMEO = NPO iff EXPTIME = NP.

• If PSPACEO 6= PO then PSPACE 6= P. If PSPACEO = PO then PSPACE = NP∩co-NP.

Proof: Follows from Theorem 7. ✷

Even weak local checkability is very restrictive:

Theorem 9 If O is an oracle that is consistent with weak LCT, then SAT (unrelativized) is
NPO-complete under PO reductions.

Proof: We show SAT is PO hard for WPF-CHK(log n)O for every oracle O, whether or not
it satisfies weak local checkability. The claim then follows immediately.

Fix polynomial-time computable functions with oracle, fO(x, y, z) and gO(x, y), where
|y|, |z| ≤ c log n. We’ll show how to reduce the corresponding WPF-CHK(log n)O language
to SAT. Given input x of length n, let p1, ..pnd be variables representing the bits of an un-
known witness Π. For each y of length n, compute S = gO(x, y). There are only polynomially
many settings z of ΠS . For each one, if fO(x, y, z) does not accept, write down a clause saying
that the bits of Π in S cannot all match z. Thus, an assignment to the variables p1, ..pnd satisfies
the resulting formula if and only if, for the corresponding witness Π, for all y, fO(x, y,Π|gO(x,y))
accepts.

✷

A few corollaries follow:

11

Proposition 10 1. With probability 1, a random oracle O does not satisfy weak local check-
ability

2. If there is an oracle O that satisfies weak local checkability, and PO 6= NPO, then P 6= NP

3. Any oracle O for which PO = NPO satisfies weak LCT.

Proof: The first part follows by relativizing the argument of Bennett and Gill that NPO 6= PO

with probability 1 to show that NPO 6⊂ PO,SAT with probability 1 ([BG81]). From the above
theorem, WPF-CHK(log n)O ⊆ PO,SAT for every O.

If P = NP , then SAT ∈ P ⊆ PO, so WPF-CHK(log n)O ⊆ PO for every oracle O.

Finally, for each oracle O, PO ⊆ WPF-CHK(log n)O, since f can ignore the proof and per-
form any polynomial-time computation on x. Therefore, if PO = NPO, PO ⊆ WPF-CHK(log n)O ⊆
NPO = PO, so all classes in the chain are equal. ✷

Therefore, unlike for LCT, we have oracles of arbitrary power satisfying weak LCT. However,
seperating P from NP with any such oracle also separates unrelatived P from unrelativized
NP .

3.1 Frequent Objections

An objection that is frequently raised to studying oracles that’re consistent with LCT is the
following: the PF-CHK(log n) machine and the NP machine have very different types of access
to the oracle, and therefore studying oracles in this situation is uninteresting. We gave a partial
answer by introducing the notion of weak local checkability, which is more robust in access.
Also, weak local checkability is defined in terms of what is computable in polynomial-time. So
weak LCT is a statement about the closure properties of P . Fortnow ([For]) points out there
is a relativizing local checkability property if the oracle access model is changed. However,
this does not refute the idea that our particular concept of local checkability is responsible for
many of the non-relativizing complexity results. Local checkability is dependent on logarithmic
time computation, which is not robust under changes of machine model. However, many of the
results hold assuming weak local checkability, which is robust under model changes. We could
introduce some intermediate concepts of local checkability, where more of the consequences
would hold.

4 The Local Checkability Axiom

Now if we add the principle of local checkability (from Section 3) to RCT as an axiom, we
can characterize all relativized worlds in which the principle holds. We call this new theory
RCT + LCT .

The interesting point which follows from Theorem 8 is that if any interesting facts (like
P 6= NP) are provable in normal mathematics, then essentially the same facts are provable
with RCT + LCT .

It is also the case that most of the non-relativizing results in complexity follow from these
extended axioms.

12

Theorem 11 If O is any oracle that satisfies local checkability,

• IPO = PSPACEO,

• MIPO = NEXPTIMEO, and

• PCP(log n, 1)O = NPO

The last two also hold if O is consistent with weak LCT.

Proof: Notice that that any O consistent with LCT is just a language in NP ∩ co-NP, and
therefore PSPACEO,NPO,NEXPTIMEO etc. are the same as the unrelativized classes. The
claim follows. For weak LCT, we can reduce any NPO problem to SAT and then use any PCP
for SAT to prove the PCP theorem. We can use a padding argument to convert this to get the
multi-prover proof for NEXPTIME. ✷

To clarify why the above theorem is true we carefully trace through the role of local-
checkability in the results on interactive proofs. If O is consistent with LCT, then NPO is
polynomial time reducible to 3SAT (as implied by Theorem 7). Similarly, a padding argument
shows that NEXPTIMEO is reducible to an exponential size 3SAT formula in such a way that
each clause can be computed in polynomial time. The techniques of [BFL90, ALMSS92] now
show that MIPO = NEXPTIMEO and NPO = PCP(log n, 1)O. Similarly, the polynomial time
reduction from PSPACE to TQBF in [SM73] also merely uses the “local checkability” of a
computation in P (in other words, that PSPACE = Alt-P). The reduction to TQBF carries
over in the presence of O, since NP (and hence P) is reducible to 3SAT . Then the techniques
of [Sha90] show that IPO = PSPACEO.

5 Discussion

In this section we expand upon the ideas presented in the previous sections.

Firstly, it is a very surprising fact that all intuition about oracles can be stated by such sim-
ple axioms. Oracles were developed as intuitive ways to separate “easily provable” statements
from “hard-to-prove” ones. Our axioms exhibit the that the rigorous underpinning of that
body of work is surprisingly simple. This exact logical characterization in a sense demonstrates
both the strengths and the limitations of oracle methods.

The positive side is that if we want to stick only with models of computation that follows
“common-sensical” properties like closure under composition (and other properties given in
RCT) then oracle turing machines are the only such model. In this sense there is no getting
away from oracle TM’s.

On the negative side is the extreme simplicity of our axiomatic system. Since “techniques
that relativize” correspond exactly to logical derivations within this simple system, one con-
cludes that proving contrary relativizations for a complexity-theoretic statement is, at best, a
very limited independence result.

More seriously, the axioms of RCT do not capture the notion of what is currently provable
in complexity theory; in particular, the recent non-relativizing results about interactive proofs.

13

Hence if we wish make oracles a method of separating “provable” statements from “ones-
we-don’t-know-how-to-prove”, we are left with no option but to extend RCT by adding new
axioms.

One option would be to just add all “significant” non-relativizing facts as new axioms
whenever they are discovered, since they will all be contributions to the repertoire of “known
techniques.” Such ongoing “patching” clearly lacks the succinctness one seeks in the axiomatic
approach.

Thus the choice of a new axiom has to be guided at the minimum by the following consider-
ations (which guide mathematics in general): Firstly, the new axiom has to be independent of
existing axioms. Secondly, it it must correspond to our intuitions and let us prove interesting
theorems. Thirdly, the axiom has to express a real fact about computation as we understand
it.

To us, the principle of local checkability seems to satisfy all these criteria. Certainly its
incorporation makes RCT powerful enough to prove almost all interesting non-relativizing
statements (or some weaker forms of these statements). Unfortunately, adding LCT as an axiom
also rules out most oracles. (This seems to be inevitable if statements like MIP = NEXPTIME
have to be provable in our system.)

But our hope is that this new axiom will focus attention on the true non-relativizing part of
recent results in complexity theory, and hopefully, motivate more such non-relativizing results.

References

[All90] E. Allender, Oracles versus Proof Techniques that Do Not Relativize. Invited
paper at SIGAL’s Int’l Symposium on Algorithms, 1990.

[ALMSS92] S. Arora, C. Lund, R. Motwani, M. Sudan and M. Szegedy. Proof verification and
intractability of approximation problems. March 1992.

[AS92] S. Arora and S. Safra. Probabilistic Checking of Proofs; A New Characterization
of NP. February 1992.

[BF90] L. Babai, L. Fortnow. Characterization of ♯P by Arithmetic Straight Line Pro-
grams. In Proceedings of the 31st FOCS, 1990, pages 26–34.

[BFL90] L. Babai, L. Fortnow, and C. Lund. Non-deterministic exponential time has two-
prover interactive protocols. In Proc. 31th IEEE Symp. on Foundations of Com-
puter Science, pages 16–25, 1990.

[BGS75] T. J. Baker, J. Gill, and R. Solovay. Relativizations of the P = NP question. SIAM
Journal of Computing 1975 (4), pages 431-442.

[BC92] S. Bellantoni, and S. A. Cook, A New Recursion-Theoretic Characterization of
the Polytime Functions. Computational Complexity, Vol. 2: 97-110, 1992.

[BG81] C. H. Bennet, J. Gill. Relative to a Random Oracle P(A) 6= NP(A) 6= co-NP(A)
with probability 1. SIAM Journal of Computing, 1981 (10), pages 96 -113.

14

[Buss88] J. Buss. Relativized Alternation and Space-Bounded Computation, J. Comput.
Syst. Sci. 36(3): 351-378 , 1988.

[CKS81] A. K. Chandra, D. Kozen, and L. J. Stockmeyer, Alternation. J. ACM, 28(1), pp.
114-133 , 1981.

[CGH90] B. Chor, O. Goldreich, J. Hastad. The Random Oracle Hypothesis is False.
Manuscript, 1990, quoted in [LFKN90].

[Cob64] A. Cobham. The Intrinsic Computational Difficulty of Functions. In Proc. 1964
International Congress for Logic, Methodology and the Philosophy of Science, pages
24-30.

[Coo71] S. A. Cook. The complexity of theorem-proving procedures. In Proc. 3rd ACM
Symp. on Theory of Computing, pages 151–158, 1971.

[Dekh69] M.Dekhtiar. On the impossibility of eliminating exhaustive search in computing
a function relative to its graph. DAN SSSR = Soviet Math. Dokl. 14:1146-1148,
1969.

[For94] L. Fortnow. The Role of Relativization in Complexity Theory. Bulletin of the
EATCS, 52: 229-243, 1994.

[For] Lance Fortnow. Personal Communication.

[FRS88] L. Fortnow, J. Rompel, and M. Sipser. On the power of multi-prover interactive
protocols. In Proc. 3rd STRUCTURES, pages 156–161, 1988.

[FS87] L. Fortnow and M. Sipser. Are there interactive protocols for co-NP Languages?
In Information Processing Letters 28, North-Holland, 1988, pages 249-251.

[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman, 1979.

[GH83] I. Gasarch and S. Homer Relativizations comparing NP and EXPTIME. Informa-
tion and Control, 1983 (58) pages 88-100.

[GMW91] O. Goldreich, S. Micali, and A. Wigderson, Proofs that Yield Nothing But Their
Validity or All Languages in NP Have Zero-Knowledge Proof Systems. J. ACM,
38(3), pp. 691-729, 1991.

[Har88] J. Hartmanis. New Developments in Structural Complexity Theory. In Proc.
Structures, ’88, pages 271-286.

[HS64] J. Hartmanis and R.E. Stearns. Computational complexity of recursive sequences
FOCS, pp. 82-90, 1964

[H86] Heller. On Relativized Exponential and Probabilistic Complexity Classes. Infor-
mation and Computation (1986), pages 231–243.

[IL] G. Itkis and L. Levin. Personal Communication.

15

[Kar72] Richard M. Karp. Reducibility among combinatorial problems. In Raymond E.
Miller and James W. Thatcher, editors, Complexity of Computer Computations,
pages 85–103. Plenum Press, 1972.

[Kurtz] S. Kurtz, On the random oracle hyptothesis, Information and Control, 57(1), pp.
40-47, 1983.

[Leiv91] D. Leivant, A foundational delineation of computational feasibility, LICS 91, pp.
2-11, 1991.

[Lev73] L. Levin. Universal’ny̆ıe pereborny̆ıe zadachi (universal search problems : in rus-
sian). Problemy Peredachi Informatsii, 9(3):265–266, 1973.

[Lip91] R. Lipton, New directions in testing, In J. Fegenbaum and M. Merritt, edi-
tors, Distributed Computing and Cryptography, DIMACS Series in Discrete Math-
ematics and Theoretical Computer Science, Volume 2, pages 191-202. American
Mathematical Society, 1991.

[Lis86] G. Lischke. Relationships Between
Relativizations of P,NP,EL, NEL, EP and NEP. Zeitschrift fur Mathematische
Logik und Grundlagen der Mathematik, 1986 (2) pages 257 –270.

[LFKN90] C. Lund, L. Fortnow, H. Karloff, and N. Nisan. Algebraic methods for interactive
proof systems. In STOC90, pages 2–10, 1990.

[Orp83] P. Orponen. Complexity Classes of Alternating Machines with Oracles. In Proc.
10th ICALP, LNCS 154 pages 573-584.

[Rab59] M.Rabin. Speed of computation and classification of recursive sets. Third Conv.
Scient. Societies 1-2, Israel, 1959; (also Tech. Rep. 2, Hebrew Univ., Jerusalem,
1960).

[Sha90] A. Shamir. IP=PSPACE. In Proc. 22nd ACM Symp. on Theory of Computing,
pages 11–15, 1990.

[SM73] L. J. Stockmeyer, A. R. Meyer. Word Problems requiring exponential time. Pro-
ceedings of 5th STOC, 1973, pages 1–9.

16

