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In this lecture, we develop many tools that will be part of thequantum factoring algorithm. The problem of quantum
factoring reduces to a sequence of steps:

1. Finding a nontrivial square root ofN (modN)

2. Computing the order of an element (modN)

3. Finding the period of a periodic superposition

We will start from the last step and work backwards.

1 Properties of Quantum Fourier Transform
Previously we discussed the construction of the Quantum Fourier Transform circuit. We will now look at some
interesting properties that will help us in presenting interesting applications.

Recall that the Quantum Fourier Transform takes an input superposition

|α〉 =
N−1

∑
x=0

αx|x〉

and outputs

|α̂〉 =
N−1

∑
y=0

α̂y|y〉

where

α̂y =
N−1

∑
x=0

αx
ωxy
√

N
,ω = e

2πi
N

We now present some useful properties of the Quantum FourierTransform.

Property 1: Shifting the indices

Consider the superposition|α+ j〉 = ∑N−1
x=0 αx|x + j〉( modN). Then, using this as input to our QFT yieldsα̂+ j〉 =

∑N−1
y=0 ω jkα̂y|y〉. Note that this modifies only the phase so that the measurement probabilities don’t change, since

|ω jy| = 1 This is very easy to check using the formula given above:

|α̂+ j〉 =
N−1

∑
x=0

αx
ω(x+ j)y
√

N
|x〉 =

N−1

∑
y=0

ω jkα̂y|y〉

Property 2: Periodic superpositions

Suppose we haver|M, and a periodic superposition

|Pr〉 =

√

r
M

M/r−1

∑
k=0

|kr〉

Claim: the output of the QFT yields

|PM/r〉 =

√

1
r

r−1

∑
k=0

|kM/r〉
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Again, we can verify this property using the formula above:

√

r
M

M/r−1

∑
k=0

|kr〉 = ∑
y

α̂y|y〉

α̂y =

√

r
M

M/r−1

∑
k=0

ωkry

There are two cases fory:

1. Case 1:y is a multiple ofM
r .

In this case, thenωkry = ωkr M
r j = 1 for all j (ω is anm-th root of unity). Soα̂y =

√
r

M
M
r = 1√

r
.

Note that there arer multiples ofM/r. The sum of the magnitudes squared for these values ofy is 1. This
implies that for othery α̂y = 0.

2. Case 2:y is not a multiple ofMr .

We already showed that̂αy must be 0 from the previous case. But we can also give an intuition for why this is
the case. Note thatωry,ω2ry, . . . will be evenly spaced vectors of unit length around the origin. Thus theα̂y, the
sum of these complex numbers, is 0.

2 Period Finding
Now, applying what we know about the two properties, we present the following problem related to period finding,

which is used in the factoring algorithm. Given the following periodic superposition with a shift,
√ r

M ∑M/r−1
k=0 |kr + l〉

we want to be able to determiner. Sincel is arbitrary, we cannot simply measure the superposition. Instead, we want
to apply the QFT modulo M. By the first property, the shifting factorl drops out, and by the second property, we get
another periodic superposition,|PM/r〉 with periodM/r. Now, sinceM is known, we can perform a measurement to
gather information aboutr. The idea is to use Quantum Fourier Sampling to sample the superposition many times, say
m times, and calculate the GCD of the results. This will get us closer to the period after each sample, since every state
is a multiple of the period.

Now we ask what the chance of finding the correct period afterm samples. If afterm samples, suppose we have not
found the desired periodM/r, and instead we have thej-th multiple ofM/r. This means that in every of them samples,
we measured a multiple ofjM/r. There areM/( jM/r) = r/ j multiples of jM/r, and since there arer multiples total,
the probability of seeing a multiple ofjM/r is 1/ j. Therefore,

Pr[GCD = multiple of jM/r]= (1/ j)m ≤ (1/2)m

and the error,
Pr[GCD> M/r after m samples]≤ M(1/2)m

So we need O(logM) measurements to guarantee a solution.

Now more generally, we may have a periodr that does not divideM neatly. There is still a way to find the period of
such a superposition. Suppose we are given the superposition

|Pr〉 =
1√
s

s−1

∑
k=0

|kr〉

wherer does not divideM. If we take the QFT of this superposition, we will get some other superposition∑l α̂l |l〉.
By the formula for QFT, we find that

α̂l =
1√
sM

s−1

∑
k=0

ωkrl
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Intuitively, we want to find the values ofl for which the amplitudesωkrl ”line up” in the complex plane. Previously,
when the period dividedM exactly, all the amplitudes for multiples ofM/r ”lined up” at 1. It turns out that overr/2
values ”almost line up.” We present the following claim:

Claim: There are greater thanr/2 values ofl such that|lr modM| ≤ r/2, and for these values ofl, α̂l ≥ C√
r for some

constantC.

Thus, we can find such values ofl with constant probability.

Proof:

First we show that values ofl satisfying the inequality above have amplitudes greater thanC/
√

r (α̂l ≥ C/
√

r) for
some constantC. Recall thatα̂l = 1√

sM ∑s−1
k=0 ωkrl .

Without loss of generality, we consider the case wherelr is ”positive” (between 0 andr/2), and the other case is
treated identically. Then becauserl ≤ r/2 andk ≤ s, we have that the valuesωkrl are in the upper-half quadrants of the
complex plane, starting from 0 and fanning out untilωrs/2, which is ”before”ωM/2. If we sum these vectors, then the
resultant vector bisects the angle between 1 andω(s−1)rl. Note that we can lower-bound the magnitude of the result by
considering the bisector angle,α: The contribution from each individual vector to the resultant vector is at least cosα.
Thus,

|α̂l| ≥ cosα
1√
sM

s = cosα
√

s
M

=

√

cosα
r

so that a measurement will producel within a constant probability.

The argument that there are greater thanr/2 values such that|lr modM| ≤ r/2 is left to the reader.

2

Finally, we want to be able to recoverr from this fact. We know that we can recoverl satisfying the property that
|lr modM| ≤ r/2 with constant probability. Rearranging this inequality,we have that

∣

∣

∣

∣

l
M

− k
r

∣

∣

∣

∣

≤ 1
2M

Since we know whatl/M is, we can exploit properties of rational numbers and continued fractions to give usr from
k/r.

For the next part, we assume thatM > 2r2 (M can be chosen to be as large as we like to satisfy this). Let’s examine
the rationalsp/q such thatq ≤ r, and ask how close it is tok/r. Note that in the ’worst’ case,

∣

∣

∣

∣

p
q
− k

r

∣

∣

∣

∣

≥ 1
qr

≥ 1
r2

However, the value we know about,l/M is closer tok/r.

Thus, if we usel/M as a continued fraction approximation tok/r, we will be able to extractr easily, ask/r would
appear as part of the continued fraction (see section on continued fractions below).

2.1 Continued Fractions
The idea of continued fractions is to approximate real numbers using finite number of integers.

Definition 8.1 (Continued Fractions): A real numberα can be approximated by a set of positive integersa0, a1, . . . ,
an asCFn(α) = a0 + 1

a1+
1

a2+ 1
···+ 1

an

= Pn
Qn

, wherePn andQn are integers.
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Example: Let us try to approximateπ to the first two decimal places with a rational number. We knowthat

π = 3.14. . .

= 3+
14
100

= 3+
1

100
14

= 3+
1

7+ 2
14

≈ 3+
1
7

=
22
7

If we decided to approximateπ to four decimal places, we would have

π = 3.1415. . .

= 3+
1415
10000

= 3+
1

10000
1415

= 3+
1

7+ 95
1415

= 3+
1

7+ 1
1415
95

= 3+
1

7+ 1
14+ 85

95

≈ 3+
1

7+ 1
14

=
311
99

The following two lemmas are well known facts about continued fractions that we will leave without a proof.

Lemma 8.1: CFn(α) is the best rational approximation of α with denominator ≤ Qn.

Lemma 8.2: If α is rational then it occurs as one of the approximations CFn(α).

Moreover, it is easy to see that continued fractions are easyto compute for any rational number.

3 Quantum Factoring
We now know enough information to present the Quantum Factoring algorithm. First, we show that factoring a number
N reduces to finding a non-trivial square root of 1 (modN). LetR be a nontrivial square root of 1 (modN). This means
thatR2−1|N, or (R−1) and(R +1 are factors ofN.

To find a non-trivial square root, we simply pick a random numberx (modN) and compute its orderr, or the minimum
non-zeror such thatxr ≡ 1 (modN). Then, we can takey = xr/2 as a non-trivial square root, given thatx is not trivial.

Example: Let N = 15. Then let’s suppose we pickedx = 7. Thenx = 7,x2 = 4,x3 = 13,x4 = 1, sox has order 4. Now,
takingy = xr/2 = 4, notice thaty−1= 3 andy +1 = 5 are both factors of 15.

To compute the order, note that we can use a quantum circuit tosimulate the calculation of the functionf (a) = xa

(modN), which is k-to-one. Let (modM) be the domain of the function, and assumeM � N2.

CS 294-2, Spring 2007, Lecture 8 4



By picking a random element in the range off , we can used the machinery in the previous sections to find theperiod.

Let’s note a few assumptions we have made.

1. Continued fractions. This is known to be fast to compute.

2. GCD. This is also fast, using Euclid’s algorithm.

3. Modular exponentiation. This is also fast using repeatedsquaring.

All three of these functions can be simulated in a quantum circuit.

The entire quantum circuit set-up has two quantum registers(r1,r2), and performs the following steps:

1. Initially, r1 = r2 = |0. . .0〉.

2. Apply Hadamard basis tor1 to generate a superposition of all possible input strings.

3. Feedr1,r2 so we can calculatexa (modN). (output hasx,a,xa (modN)

4. Measurer2, to set up a periodic superposition inr1.

5. QFT and measurer1 to compute the order.

6. Use continued fractions to getr.

7. Finally, computexr/2±1

Note that because of randomized nature of part of the algorithm, we may need to repeat this procedure many times.
Everything needs to satisfy the right conditions in order for the result to be valid. Still, under repeated measurement,
we can bound the error tightly.
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