CS 294-2 Quantum Factoring Algorithm 2 / 14 / 04
Spring 2007 Lecture 8

In this lecture, we develop many tools that will be part of fuantum factoring algorithm. The problem of quantum
factoring reduces to a sequence of steps:

1. Finding a nontrivial square root &f (modN)
2. Computing the order of an element (neyl

3. Finding the period of a periodic superposition

We will start from the last step and work backwards.

| Properties of Quantum Fourier Transform

Previously we discussed the construction of the Quantunri€otiransform circuit. We will now look at some
interesting properties that will help us in presentingiiesting applications.

Recall that the Quantum Fourier Transform takes an inpugsition
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We now present some useful properties of the Quantum Folnaesform.

and outputs

where

Property 1: Shifting the indices

Consider the superpositida ) = SN+ ay[x+ j)( modN). Then, using this as input to our QFT yields ) =
Z;)';ol wjkéry|y>. Note that this modifies only the phase so that the measurttepnebabilities don’t change, since
|w!Y| = 1 This is very easy to check using the formula given above:
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Property 2: Periodic superpositions

Suppose we haveM, and a periodic superposition

M/r 1

IP) = Z |kr)

1rl
R =2 3 )

Claim: the output of the QFT yields

CS 294-2, Spring 2007, Lecture 8

=



Again, we can verify this property using the formula above:
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There are two cases fgr
1. Case lyis a multiple of™.
In this case, them®”Y = w1 = 1 for all j (e is anmth root of unity). Sady = §¥ = %

Note that there are multiples ofM/r. The sum of the magnitudes squared for these valugsi®fl.. This
implies that for othey &y = 0.

; i M
2. Case 2yis not a multiple of-.

We already showed that, must be 0 from the previous case. But we can also give aniouibr why this is
the case. Note thab™, w?Y,... will be evenly spaced vectors of unit length around the arighus thedy, the
sum of these complex numbers, is 0.

2 Period Finding

Now, applying what we know about the two properties, we pretiee following problem related to period finding,
which is used in the factoring algorithm. Given the follogyiperiodic superposition with a Shlf{/_r_ ZM/r ! [kr +1)

we want to be able to determineSincel is arbitrary, we cannot simply measure the superpositizstebd, we want

to apply the QFT modulo M. By the first property, the shiftirgtor] drops out, and by the second property, we get
another periodic superpositiofiy ) with periodM/r. Now, sinceM is known, we can perform a measurement to
gather information about The idea is to use Quantum Fourier Sampling to sample thergagition many times, say
mtimes, and calculate the GCD of the results. This will getlaser to the period after each sample, since every state
is a multiple of the period.

Now we ask what the chance of finding the correct period aftsamples. If aftem samples, suppose we have not
found the desired peridd /r, and instead we have theh multiple ofM /r. This means thatin every of tmesamples,
we measured a multiple gM /r. There areM/(jM/r) =r/j multiples of jM/r, and since there aremultiples total,
the probability of seeing a multiple @M /r is 1/j. Therefore,

Pr[GCD = multiple of jM/r]= (1/))™ < (1/2)™

and the error,
Pr{GCD> M/r after m samplesk M(1/2)™
So we need O(loll) measurements to guarantee a solution.

Now more generally, we may have a periothat does not divid neatly. There is still a way to find the period of
such a superposition. Suppose we are given the superpositio

IP) = z [kr)

wherer does not divideM. If we take the QFT of this superposition, we will get someestbuperpositiory, &|l).
By the formula for QFT, we find that
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Intuitively, we want to find the values dffor which the amplitudes)”' "line up” in the complex plane. Previously,
when the period dividet exactly, all the amplitudes for multiples ®/r "lined up” at 1. It turns out that over/2
values "almost line up.” We present the following claim:

Claim: There are greater thar2 values of such thaflr modM| <r/2, and for these values bfa; > % for some
constanC.

Thus, we can find such valueslofvith constant probability.
Proof:

First we show that values dfsatisfying the inequality above have amplitudes greatan@y./r (&) > C/+/r) for
some constar€. Recall tha = —= 33 g "

Without loss of generality, we consider the case wHeris "positive” (between 0 and/2), and the other case is
treated identically. Then becaude< r /2 andk < s, we have that the valueg<' are in the upper-half quadrants of the
complex plane, starting from 0 and fanning out unfif’2, which is "before”wM/2. If we sum these vectors, then the
resultant vector bisects the angle between 1@ffdV". Note that we can lower-bound the magnitude of the result by
considering the bisector angke; The contribution from each individual vector to the reanttvector is at least cos

Thus,
|6y > cosa 1 s=cosa/— =,/
=TTV VMV

so that a measurement will produceithin a constant probability.
The argument that there are greater th&avalues such thatr modM| <r/2 is left to the reader.
O

Finally, we want to be able to recoveffrom this fact. We know that we can recovesatisfying the property that
[Ir modM| < r/2 with constant probability. Rearranging this inequalitg, have that
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Since we know whalt/M is, we can exploit properties of rational numbers and comtihfractions to give us from
K/r.

For the next part, we assume that> 2r? (M can be chosen to be as large as we like to satisfy this). Ledsme
the rationalgp/q such thag < r, and ask how close it is to/r. Note that in the 'worst’ case,

P K, 1.1
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However, the value we know abolifM is closer tok/r.

Thus, if we usd /M as a continued fraction approximationkgr, we will be able to extract easily, ask/r would
appear as part of the continued fraction (see section otineeaat fractions below).

2.1 Continued Fractions

The idea of continued fractions is to approximate real nusbsing finite number of integers.

Definition 8.1 (Continued Fractions) A real numbeior can be approximated by a set of positive integgrsy, .. .,
an asChy(a) = ag+ —r— = &, whereR, andQ, are integers.
a1+—1— Qn
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Example: Let us try to approximater to the first two decimal places with a rational number. We kitioa¢

nm = 314...
14
1
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+4
1
3+ =
+7
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7

= 3

Q

If we decided to approximateto four decimal places, we would have

m = 31415..
_ g, 1415
~ “ 710000
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3+ 10000
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The following two lemmas are well known facts about contihéractions that we will leave without a proof.

Lemma 8.1 CF,(a) isthe best rational approximation of a with denominator < Q.

Lemma 8.2 If a isrational then it occurs as one of the approximationsCFy(a).

Moreover, it is easy to see that continued fractions are easgmpute for any rational number.

3 Quantum Factoring

We now know enough information to present the Quantum Faxtatgorithm. First, we show that factoring a number
N reduces to finding a non-trivial square root of 1 (n)d Let R be a nontrivial square root of 1 (mdy. This means
thatR? — 1|N, or (R— 1) and(R+ 1 are factors oN.

To find a non-trivial square root, we simply pick a random nem&{modN) and compute its ordet or the minimum
non-zera such thai’ = 1 (modN). Then, we can take = x'/2 as a non-trivial square root, given thas not trivial.

Example: LetN = 15. Then let’s suppose we pickge= 7. Thenx = 7,x> = 4,x3 = 13 x* = 1, sox has order 4. Now,
takingy = X'/2 = 4, notice thay — 1= 3 andy+ 1 = 5 are both factors of 15.

To compute the order, note that we can use a quantum circeitrtolate the calculation of the functidi{a) = x®
(modN), which is k-to-one. Let (mo#) be the domain of the function, and assukhes> N2.
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By picking a random element in the rangefofwe can used the machinery in the previous sections to findehed.

Let's note a few assumptions we have made.

1. Continued fractions. This is known to be fast to compute.
2. GCD. This is also fast, using Euclid’s algorithm.

3. Modular exponentiation. This is also fast using repeatparing.

All three of these functions can be simulated in a quantugudir

The entire quantum circuit set-up has two quantum regigtens), and performs the following steps:

Initially, ry =r, =0...0).

Apply Hadamard basis td to generate a superposition of all possible input strings.
Feed1,r, so we can calculaté® (modN). (output hax,a,x® (modN)

Measure,, to set up a periodic superpositionrin

QFT and measumg to compute the order.

Use continued fractions to get

N oo g kr w bd R

Finally, computed/2+ 1
Note that because of randomized nature of part of the algoritve may need to repeat this procedure many times.

Everything needs to satisfy the right conditions in ordertfe result to be valid. Still, under repeated measurement,
we can bound the error tightly.
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