
CS 294-2 NP-complete Problems: lower bounds + Zeno Effect2/21/07
Spring 2007 Lecture 10

0.0.1 NP-Completeness

Consider SAT, the prototypical example of an NP-complete problem. An instance of this problem consists of a
Boolean functionf (x1, . . . ,xn) = c1 ∧ . . .∧ cm; the SAT problem asks you to determine whether there exists asat-
isfying assignment—that is, an input(a1, . . . ,an) such thatf (a1, . . . ,an) = 1. UNIQUE-SAT is a variant of SAT that
poses the same problem with the restriction thatf must have zero or one satisfying assignments, but no more. Asit
turns out, there is a randomized reduction from SAT to UNIQUE-SAT; thus, the two problems are equally hard.

We’ll use the black box model when considering this problem.In this model, we know that eitherf ≡ 0 or there exists
exactly onea such thatf (a) = 1, wherea is chosen uniformly at random. That is,f is treated as a black box; we can
make queries tof , but we have no access to the Boolean formula itself. Equivalently we can representf by a table
of N = 2n entries where either none or exactly one entry is 1. Ideally we want a quantum algorithm that solves this
problem in timeO(poly(n)) = O(poly− log(n)).

Can a quantum computer solve this problem by going into a superposition of all exponentially many possible truth
assignments? To answer this question precisely, let us define the black box query model:

0.0.2 The quantum black box model

Here’s the problem: You are given a boolean functionf : {1, . . . ,N} → {0,1}, and are promised that for exactly one
a ∈ {1, . . . ,N}, f (a) = 1. Think of this as a table of sizeN, where exactly one element has value 1, and all the others
are 0. Since we assumef can be computed classically in polynomial time, we can also compute it in superposition:

∑
x

αx
∣

∣x
〉
∣

∣0
〉

→ ∑
x

αx
∣

∣x
〉
∣

∣ f (x)
〉

Another way we can implementf is put the answer register in superposition:

Now, we might as well assumef is a black box or oracle. All we need to do is design an algorithm that finds
a : f (a) = 1.

0.0.3 The Hybrid Argument

For the purposes of this discussion, we want to separate the quantum algorithm itself from the functionf . We assume
that the quantum algorithm is infinitely powerful (i.e., it can do any computation in one step) and focus instead on the
number of queries it must make tof . All queries to f occur in superposition; that is, a single query on∑x αx

∣

∣x
〉
∣

∣0
〉

yields the output∑x αx
∣

∣x
〉∣

∣ f (x)
〉

.

Theorem 10.1: In the black box model, any quantum algorithm for determining whether there exist x1, . . . ,xn such
that f (x1, . . . ,xn) = 1 must make Ω(

√
N) queries to f .

Proof:

Consider any quantum algorithmA for solving this search problem. First do a test run ofA on the functionf ≡ 0. Let
T be the number of queries thatA makes tof , and letαx,t be the amplitude with whichA queriesx at timet (that is, the

CS 294-2, Spring 2007, Lecture 10 0-1

query at timet is ∑x αx,t
∣

∣x
〉

). Now, define the query magnitude ofx to be∑t |αx,t |2. The expectation value of the query
magnitude ofx is Ex

(

∑t |αx,t |2
)

= T/N. Thus minx
(

∑t |αx,t |2
)

≤ T/N. Let z be the input at which this minimum
occurs; then by the Cauchy-Schwarz inequality,∑t |αz,t | ≤ T/

√
N. 1

Let
∣

∣φt
〉

be the states ofA f after thet-th step. Now run the algorithmA on the functiong such thatg(z) = 1 and for all
y 6= z, g(y) = 0. Suppose the final state ofAg is

∣

∣ψT
〉

. By the claim that follows,
∣

∣φT
〉

−
∣

∣ψT
〉

=
∣

∣E0
〉

+ . . .+
∣

∣ET−1
〉

where||
∣

∣Et
〉

|| ≤
√

2|αz,t |. Using the triangle inequality and the inequality proved above, we have||
∣

∣φT
〉

−
∣

∣ψT
〉

|| ≤
∑t ||

∣

∣Et
〉

|| ≤
√

2∑t |αz,t | ≤ T
√

2/N. This implies that the two states can be distinguished with probability at most
O(T/

√
N) by any measurement. Thus any quantum algorithm that distinguishesf from g with constant probability of

success must makeΩ(
√

N) queries.

∣

∣ψT
〉

=
∣

∣φT
〉

+
∣

∣E0
〉

+
∣

∣E1
〉

+ . . .+
∣

∣ET−1
〉

, where||
∣

∣Et
〉

|| ≤
√

2|αz,t |.

Proof:

Consider two runs of the algorithmA, which differ only on thet-th step. The first run queries the functionf on the
first t steps and queriesg for the remainingT − t steps; the second run queriesf on the firstt −1 steps andg for the
remainingT − t + 1 steps. After the firstt −1 steps, both runs are in state

∣

∣φt
〉

. On thet-th step, one run queriesf
and the other queriesg. The outputs of these queries differ only on the amplitude ofthe two basis vectors

∣

∣z
〉∣

∣0
〉

and
∣

∣z
〉∣

∣1
〉

, so overall the output vectors differ by at most
√

2|αz,t |. Thus, at the end of thet-th step, the state of the first run
is

∣

∣φt
〉

, whereas the state of the second run is
∣

∣φt
〉

+
∣

∣Ft
〉

, where||
∣

∣Ft
〉

|| ≤
√

2|αz,t |. Now if U is the unitary transform
describing the remainingT − t steps (of both runs), then the final state afterT steps for the two runs areU

∣

∣φt
〉

and
U(

∣

∣φt
〉

+
∣

∣Ft
〉

), respectively. The latter state can be written asU
∣

∣φt
〉

+
∣

∣Et
〉

, where
∣

∣Et
〉

= U
∣

∣Ft
〉

. Since unitary
transformations preserve length, we know that||

∣

∣Et
〉

|| ≤
√

2|αz,t |. Thus, the effect of switching the queried function
only on thet-th step can be described by an “error”

∣

∣Et
〉

in the final state of the algorithm, where||
∣

∣Et
〉

|| ≤
√

2|αz,t |.

We can transform the runA f to Ag by a succession ofT changes of the kind described above. Overall, the difference
between the final states ofA f andAg is

∣

∣E0
〉

+
∣

∣E1
〉

+ . . .+
∣

∣ET−1
〉

, where
∥

∥

∣

∣Et
〉∥

∥ ≤
√

2|αz,t |.

Finally, it is useful to consider where this factor of
√

N comes from. In the worst case, we queryz with amplitude
1/

√
N at each time step. The vectors that indicate the differencesat each step could all be orthogonal, in which case

the total distance is the sum of the squares of each vector’s length, which is aboutN. However, if all vectors are in
the same direction, the total distance is the sum of the length of each vector, which is approximately

√
N. Grover’s

algorithm, which we will describe next, demonstrates that it is possible to align all of these vectors and achieve the
factor of

√
N.

Something about relativization, as well as about invertingpermutations.

Vaidman’s Bomb

To illustrate some of the concepts behind Grover’s algorithm, we’ll briefly consider a problem known as Vaidman’s
bomb. In this problem, we have a package that may or may not contain a bomb. However, the bomb is so sensitive that
simply looking to see if the bomb exists will cause it to explode. So, can we determine whether the package contains
a bomb without setting it off? Paradoxically, quantum mechanics says that we can. In particular, we will demonstrate
that there is a sequence ofN measurements such that if the package contains a bomb, we will look with probability
1/N, and if the package does not contain a bomb, we will look with certainty.

The Quantum Zeno Effect

1The Cauchy-Schwarz inequality says that for two vectorsa andb of lengthT , (∑t atbt)
2 ≤

(

∑t a2
t

)(

∑t b2
t

)

. If we let bt = 1 for all t, then we

have(∑t at)
2 ≤ T ∑t a2

t . Thus, if∑t |αz,t |2 ≤ T/N, then(∑t |αz,t |)2 ≤ T 2/N.

CS 294-2, Spring 2007, Lecture 10 0-2

(φpts.) =(0pts.)Rθ

(0pts.)
U

M

Rθ

(0pts.)
U

M

Figure 0.1: This figure shows the circuit used for finding a bomb. There areN steps, and in each step we rotate the
control bit and runU .

To achieve this goal, we’ll take advantage of a phenomenon known as the Quantum Zeno Effect (also referred to as
the “watched pot” or the “watchdog” effect). Consider a quantum state consisting of a single qubit. This qubit starts
at

∣

∣0
〉

, and at every step we will rotate it toward
∣

∣1
〉

by θ = π/2N. After one rotation, we have
∣

∣φ
〉

= α
∣

∣0
〉

+ β
∣

∣1
〉

,
whereβ = sinθ ≈ 1/N. After N steps, the state will be

∣

∣1
〉

, so any measurement will return
∣

∣1
〉

with high probability.

Now what if we decide to measure the state after each rotation? After the first rotation, we will measure
∣

∣0
〉

with high
probability,but this measurement collapses the state back to

∣

∣0
〉

. Thus, each measurement has a high probability of
yielding

∣

∣0
〉

; the probability of getting
∣

∣1
〉

by the end is approximatelyN 1
N2 = 1

N , as opposed to the extremely high
probability in the previous case.

Essentially, the Quantum Zeno Effect says that if we have a quantum state that is in transition toward a different state,
making frequent measurements can delay that transition by repeatedly collapsing the qubit back to its original state.

Looking for the Bomb

To determine whether Vaidman’s bomb exists without actually looking at it, we want to take advantage of the Quantum
Zeno Effect. We’ll have a control qubit that indicates whether or not we plan to look at the contents of the package,
and we’ll have a measurement that collapses this qubit back to

∣

∣0
〉

in the case that a bomb is present.

We’ll assume that we have a device that can measure whether a bomb is present. We will model this device as a
quantum circuitU that has one input (the control qubit

∣

∣φ
〉

) and one output (a qubit that is
∣

∣1
〉

if a bomb is definitely
present). If there is no bomb, thenU maps

∣

∣φ
〉∣

∣0
〉

7→
∣

∣φ
〉∣

∣0
〉

; in other words,U behaves as the identity. If there is a
bomb, thenU maps

∣

∣0
〉
∣

∣0
〉

7→
∣

∣0
〉
∣

∣0
〉

(there’s a bomb, but we didn’t look) and
∣

∣1
〉
∣

∣0
〉

7→
∣

∣1
〉
∣

∣1
〉

(we looked at the
bomb); that is,U behaves as a CNOT gate.

We want to figure out whether there is a bomb (i.e., we want to testU ’s behavior) without setting off the bomb very
often. Figure 0.1 shows the circuit we will use. We initialize the control qubit

∣

∣φ
〉

to
∣

∣0
〉

. In each step of the algorithm,
we rotate the control qubit toward

∣

∣1
〉

by θ and then runU ; we’ll execute the algorithm forN steps.

Consider the case where there is no bomb; our initial input is
∣

∣0
〉∣

∣0
〉

. If we rotate the control qubit byθ , the input to
the firstU gate is(α

∣

∣0
〉

+ β
∣

∣1
〉

)
∣

∣0
〉

, and the output ofU is the same state (sinceU is the identity). Measuring the
output qubit always returns

∣

∣0
〉

and doesn’t alter the state; thus, each step rotates the qubit further untilβ = 1 at the
last measurement.

Now consider the case where there is a bomb. Once again, our initial input is
∣

∣00
〉

. After the first rotation, the input
to U is (α

∣

∣0
〉

+ β
∣

∣1
〉

)
∣

∣0
〉

, and the output ofU is α
∣

∣0
〉∣

∣0
〉

+ β
∣

∣1
〉∣

∣1
〉

. When we measure the last qubit, we have a
β 2 ≈ 1/N2 probability of looking at the bomb and setting it off. Otherwise, we measure

∣

∣0
〉

for the output qubit, which
means we didn’t look at the bomb. However,this measurement collapses the state back to

∣

∣0
〉∣

∣0
〉

. Thus, subsequent
steps in the algorithm will simply repeat this process. Overall, we only have aNβ 2 ≈ 1/N chance of actually looking
at the bomb.

Vaidman and Grover

To see the relationship to Grover’s algorithm, consider a particularly unfortunate case where we haveN packages,
N −1 of which contain bombs. We want to find the one package that does not contain a bomb, though we don’t mind

CS 294-2, Spring 2007, Lecture 10 0-3

setting off a few of the bombs in the process. Grover’s algorithm has a property similar to Vaidman’s method where
the amplitude of one target basis vector is amplified while all others are constantly diminished or reset.

The important thing to note is that it’s highly counterintuitive to be able to search in
√

N steps. By querying in
superposition, we manage to search using fewer steps than there are locations to search!

CS 294-2, Spring 2007, Lecture 10 0-4

	NP-Completeness
	The quantum black box model
	The Hybrid Argument

