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0.0.1 NP—Completeness

Consider SAT, the prototypical example of an NP-completbfam. An instance of this problem consists of a
Boolean functionf (xi,...,Xn) = C1 A ... A Cm; the SAT problem asks you to determine whether there existt-a
isfying assignment—that is, an inp{#y, ...,a,) such thatf (as,...,an) = 1. UNIQUE-SAT is a variant of SAT that
poses the same problem with the restriction thatust have zero or one satisfying assignments, but no moré. As
turns out, there is a randomized reduction from SAT to UNIQEMT; thus, the two problems are equally hard.

We'll use the black box model when considering this problemthis model, we know that eithdr= 0 or there exists
exactly onea such thatf (a) = 1, wherea is chosen uniformly at random. That isjs treated as a black box; we can
make queries td, but we have no access to the Boolean formula itself. EgeiiBl we can represeritby a table

of N = 2" entries where either none or exactly one entry is 1. Idea#lywant a quantum algorithm that solves this
problem in timeO(poly(n)) = O(poly —log(n)).

Can a quantum computer solve this problem by going into arpagéion of all exponentially many possible truth
assignments? To answer this question precisely, let usedbfinblack box query model:

002 The quantum blaCl{ IDOX model

Here’s the problem: You are given a boolean functfon{1,...,N} — {0,1}, and are promised that for exactly one
ac{1,...,N}, f(a) = 1. Think of this as a table of si2¢, where exactly one element has value 1, and all the others
are 0. Since we assunfecan be computed classically in polynomial time, we can atsopute it in superposition:

3 [0 ~ 0 10)

Another way we can implemeritis put the answer register in superposition:

Now, we might as well assumé is a black box or oracle. All we need to do is design an algorithat finds
a:f(a)=1.

0.0.3 The Hy]orid Argument

For the purposes of this discussion, we want to separataudrgtgm algorithm itself from the functioh We assume
that the quantum algorithm is infinitely powerful (i.e., #&rcdo any computation in one step) and focus instead on the
number of queries it must make fo All queries tof occur in superposition; that is, a single querypmx\x> |O>
yields the outpufy, ax|x) | f(x)) .

Theorem 10.1: In the black box model, any quantum algorithm for determining whether there exist X1, ..., X, such
that f(xg,...,%) = 1 must make Q(+/N) queriesto f.

Pr oof:

Consider any quantum algorithfnfor solving this search problem. First do a test ruafn the functionf = 0. Let
T be the number of queries thaimakes tof, and letay; be the amplitude with whichA queriesc at timet (that is, the
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query at time is 5, Ot ]x) ). Now, define the query magnitudexfo bey, |ax:|?. The expectation value of the query
magnitude of is Ex (3 |ax¢|?) = T/N. Thus min (3¢ |axt|?) < T/N. Letz be the input at which this minimum
occurs; then by the Cauchy-Schwarz inequalitya,:| < T/vN.H

Let ]m) be the states d&; after thet-th step. Now run the algorith@ on the functiorg such thag(z) = 1 and for all
y# z g(y) = 0. Suppose the final state A is | ). By the claim that follows|¢r) — |¢r) = |[Eo) +...+ |Er_1)
where|||E) || < V2|az¢|. Using the triangle inequality and the inequality provedwad we have||gr) — [yr) | <
Sel[E) | < V23 |az < T+/2/N. This implies that the two states can be distinguished witbability at most
O(T /+/N) by any measurement. Thus any quantum algorithm that disighgsf from g with constant probability of
success must make(y/N) queries.

]
|@r) =|or) +|Eo) + |E1) +...+|Er—1), where|||E) || < V2az|.
Pr oof:

Consider two runs of the algorithiy, which differ only on the-th step. The first run queries the functiéron the
firstt steps and querigsfor the remainingl —t steps; the second run querie®n the firstt — 1 steps and for the
remainingT —t + 1 steps. After the first— 1 steps, both runs are in stdtﬂ>. On thet-th step, one run queries
and the other querigs The outputs of these queries differ only on the amplitudineftwo basis vectorﬁ) \0> and
|)|1), so overall the output vectors differ by at maé2|a,;|. Thus, at the end of thteth step, the state of the first run
is |@) , whereas the state of the second ruf$ + |R), where|||R) || < v/2|az|. Now if U is the unitary transform
describing the remaining —t steps (of both runs), then the final state afesteps for the two runs até]qq> and
U(|@) +|R)), respectively. The latter state can be writterldsi) + |E;), where|E;) = U|R). Since unitary
transformations preserve length, we know thi ) || < v/2|az|. Thus, the effect of switching the queried function
only on thet-th step can be described by an “err¢i) in the final state of the algorithm, wheliéE; ) || < v/2|arz.

We can transform the rufis to Aq by a succession df changes of the kind described above. Overall, the diffexrenc
between the final states 8¢ andAg is |Eo) + |E1) +...+ |Er—1), where|||E) || < V2|az|.

Finally, it is useful to consider where this factor ¢fN comes from. In the worst case, we querwith amplitude
1/v/N at each time step. The vectors that indicate the differeateach step could all be orthogonal, in which case
the total distance is the sum of the squares of each vectam(gh, which is aboull. However, if all vectors are in
the same direction, the total distance is the sum of the feafjeach vector, which is approximatelyN. Grover’s
algorithm, which we will describe next, demonstrates th# possible to align all of these vectors and achieve the
factor of/N.

Something about relativization, as well as about invertiagnutations.
Vaidman’s Bomb

To illustrate some of the concepts behind Grover’s algorjtive’ll briefly consider a problem known as Vaidman’s
bomb. In this problem, we have a package that may or may néacoabomb. However, the bomb is so sensitive that
simply looking to see if the bomb exists will cause it to exqdo So, can we determine whether the package contains
a bomb without setting it off? Paradoxically, quantum medtsisays that we can. In particular, we will demonstrate
that there is a sequence Mfmeasurements such that if the package contains a bomb, Weatkilwith probability

1/N, and if the package does not contain a bomb, we will look wetHainty.

The Quantum Zeno Effect

The Cauchy-Schwarz inequality says that for two vectoamdb of lengthT, (3 ab)® < (3, af) (3 bf). If we letby = 1 for all t, then we
have(s;a)? < Tya2. Thus, ifs; |az|2 < T/N, then(S; |az])? < TZ/N.
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Figure 0.1: This figure shows the circuit used for finding a boffhere aréN steps, and in each step we rotate the
control bit and rurJ.

To achieve this goal, we'll take advantage of a phenomenomwkras the Quantum Zeno Effect (also referred to as
the “watched pot” or the “watchdog” effect). Consider a cuam state consisting of a single qubit. This qubit starts
at|0), and at every step we will rotate it towaftl) by 6 = 71/2N. After one rotation, we havgp) = a|0) + B|1),
wheref8 =sinf ~ 1/N. After N steps, the state will b)a) , SO any measurement will retuh]> with high probability.

Now what if we decide to measure the state after each rofa#dter the first rotation, we will measurfé) with high
probability, but this measurement collapses the state back to \0) Thus, each measurement has a high probability of
yielding |O>; the probability of getting‘l) by the end is approximately,\l—l2 = % as opposed to the extremely high
probability in the previous case.

Essentially, the Quantum Zeno Effect says that if we haveaatjum state that is in transition toward a different state,
making frequent measurements can delay that transitiorfgatedly collapsing the qubit back to its original state.

Looking for the Bomb

To determine whether Vaidman’s bomb exists without acydatiking at it, we want to take advantage of the Quantum
Zeno Effect. We'll have a control qubit that indicates whestbr not we plan to look at the contents of the package,
and we’ll have a measurement that collapses this qubit tm|cﬂ§tin the case that a bomb is present.

We'll assume that we have a device that can measure whethemb Is present. We will model this device as a
guantum circuit) that has one input (the control quljx'p)) and one output (a qubit that \i$> if a bomb is definitely
present). If there is no bomb, thehmaps|@) |0) — |@)|0); in other wordsy behaves as the identity. If there is a
bomb, therlJ maps|0)|0) — |0) |0) (there’s a bomb, but we didn't look) arjd) |0) — |1)|1) (we looked at the
bomb); that islJ behaves as a CNOT gate.

We want to figure out whether there is a bomb (i.e., we wantgttés behavior) without setting off the bomb very
often. Figuré QM shows the circuit we will use. We initialthe control qubiﬁqo) to \O) . In each step of the algorithm,
we rotate the control qubit towa¢d> by 6 and then rutJ; we’'ll execute the algorithm faX steps.

Consider the case where there is no bomb; our initial inp‘ﬂ>i$0>. If we rotate the control qubit bg, the input to
the firstU gate is(a|0) + B|1))|0), and the output ob is the same state (sinteis the identity). Measuring the
output qubit always return\@) and doesn't alter the state; thus, each step rotates thefqethier until 3 = 1 at the
last measurement.

Now consider the case where there is a bomb. Once again,iGat imput is \OO) . After the first rotation, the input
toU is (a|0) + B|1))|0), and the output ot is a|0)|0) + B|1)|1). When we measure the last qubit, we have a
B2~ 1/N? probability of looking at the bomb and setting it off. Othésa, we measurh)) for the output qubit, which
means we didn’t look at the bomb. Howeviis measurement collapses the state back to ]0> \0> . Thus, subsequent
steps in the algorithm will simply repeat this process. @llewe only have al3? ~ 1/N chance of actually looking
at the bomb.

Vaidman and Grover

To see the relationship to Grover’s algorithm, consider @iqdarly unfortunate case where we hadepackages,
N — 1 of which contain bombs. We want to find the one package thed dot contain a bomb, though we don’t mind
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setting off a few of the bombs in the process. Grover’s athorihas a property similar to Vaidman’s method where
the amplitude of one target basis vector is amplified whilethlers are constantly diminished or reset.

The important thing to note is that it's highly counteririivé to be able to search N steps. By querying in
superposition, we manage to search using fewer steps teemdbe locations to search!
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