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1 Reversible Computation
Quantum computation is unitary. A quantum circuit corresponds to a unitary operatorU acting onn qubits.
Being unitary meansUU† =U†U = I. A quantum circuit which performs a unitary operationU has a mirror
image circuit which performs the corresponding operationU†.
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The circuits forU andU† are the same size and have mirror image gates. Examples:

H = H†

CNOT = CNOT†

Rθ = R†
−θ

2 Simulating Classical Circuits
Quantum computation originally (in the late 70s and early 80s) tried to understand whether unitary constraint
on quantum evolution provided limits beyond those exploredin classical computation. A unitary transfor-
mation taking basis states to basis states must be a permutation. (Indeed, ifU
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.) Therefore quantum mechanics imposes the constraint thatclassically it must be
reversible computation.

How can a classical circuitC which takes ann bit input x and computesf (x) be made into a reversible
quantum circuit that computes the same function? We can never lose any information, so in general the
circuit must output both the inputx and the outputf (x). In addition, the quantum circuit may need some
additional scratch qubits during the computation since individual gates can’t lose any information either.
The consequence of these constraints is illustrated below.
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How is this done? Recall that any classical AND and OR gates can be simulated with a C-SWAP gate and
some scratch

∣
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qubits.
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If we construct the corresponding reversible circuit RC, wehave a small problem. The CSWAP gates end
up converting input scratch bits to garbage. How do we restore the scratch bits to 0 on output? We use the
fact that RC is a reversible circuit. The sequence of steps for the overall circuit is

(x,0k,0m,0k,1)
C′
−→ (x,y,garbagex,0

k,1)
copyy−→ (x,y,garbagex,y,1)

(C′)−1

−→ (x,0k,0m,y,1) .

Overall, this gives us a clean reversible circuitĈ corresponding toC.
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3 Is Quantum Computation Digital?
There is an issue as to whether or not quantum computing is digital. We need only look at simple gates such
as the Hadamard gate or a rotation gate to find real values.
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When we implement a gate, how accurate does it need to be? Do weneed infinite precision to build this
gate properly? A paper by Shamir, “How To Factor On Your Calculator,” shows that if we assume infinite
precision arithmetic, then some NP complete problems can besolved in polynomial time. However, we
obviously cannot have infinite precision, so we must digitize quantum computation in order to approximate
values such as 1/

√
2. It turns out that logn bits of precision are necessary.

Suppose we want to build a gate that rotates the input byθ , but the best accuracy we can actually build is
rotation byθ ±∆θ (finite precision). LetU1, . . . ,Um be a set of ideal gates that implement an exact rotation
by θ . Let V1, . . . ,Vm be a set of actual (constructible) gates that implement rotation by θ ±∆θ . Let
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The closer
∣

∣ψ
〉

and
∣

∣ψ ′〉 are to each other, the better the approximation. If we can approximate each gate
to within ε = O(1/m), then we can approximate the entire circuit with small constant error.

Theorem 4.1: If ‖Ui −Vi‖ ≤ ε
4m for 1≤ i ≤ m, then ‖
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Proof:Consider the two hybrid states
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Since the unitary transformations don’t change the norm of the vector, the only term we need to consider is
Uk+1−Vk+1. But we have an upper bound on this, so we can conclude that
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Another way to see this is the following picture. Applying unitary transformations toUm

∣

∣φ
〉

andVm

∣

∣φ
〉

preserves the angle between them, which is defined to be the norm.

∣

∣φ
〉

U1 · · ·Um−1Um
∣

∣φ
〉

U1 · · ·Um−1Vm
∣

∣φ
〉

Vm
∣

∣φ
〉 Um

∣

∣φ
〉

ε

ε

CS 294-2, Spring 2007, Lecture 4 3



We use the triangle inequality to finish to proof.
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