
CS 294-2 Quantum Complexity theory 1/31/07
Spring 2007 Lecture 5

1 Quantum Circuits
A quantum circuit implements a unitary operator in a HilbertspaceC2n

, given as primitive a (usually finite)
collection of gates each of which implements a unitary operator on k qubits for some smallk. Unitarity
implies that quantum circuits have the same number of inputsand outputs. The picture of a quantum circuit
is as follows:
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where the quantum gates belong to some universal family of quantum gates.

We will define our complexity classes in terms of circuits. Let us start by defining the classP of polynomial
time computable decision procedures or languages.

1.1 Class P - Polynomial Time
A definition of the class P in terms of circuits is the following:

L ∈ P iff there is a familyF = {Cn}n∈N of circuits such that:

• |Cn| ≤ poly(n),∀n ∈ N

• Uniformity The description of the circuitCn can be computed in time polynomial inn (by a Turing
Machine).

• if |x| = n thenCn(x) = (c ∈ L?)
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1.2 Class BPP - Bounded Error Probabilistic Polynomial Time
In the seventies it was realized that randomness can sometimes speed up computation. Accordingly the class
of efficiently solvable computational problems was expanded to probabilistic polynomial time with small
probability of error.

A definition of the class BPP in terms of circuits is the following:

L ∈ BPP iff there is a familyF = {Cn}n∈N of circuits such that:

• every circuitCn has an inputx of |x| = n bits and a random inputr of |r| = O(poly(n)) bits

• |Cn| ≤ poly(n),∀n ∈ N

• Uniformity The description of the circuitCn can be computed in time polynomial inn (by a Turing
Machine).

• moreover:

– if x ∈ L and|x| = n thenPr[Cn(x,r) = ”yes” ] ≥ 2/3

– if x /∈ L and|x| = n thenPr[Cn(x,r) = ”no” ] ≥ 2/3
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1.3 Class BQP - Bounded Error Quantum Polynomial Time
A definition of the class BQP in terms of circuits is the following:

L ∈ BQP iff there is a familyF = {Cn ∈ SU(n)}n∈N of quantum circuits (unitary operators) such that:

• every circuitCn has an inputx of |x| = n bits andm = O(poly(n)) additional inputs of value|0 >

• the output of the computation is considered to be the outcome of the measurement on the first output
of the circuit

• |Cn| ≤ poly(n),∀n ∈ N

• Uniformity The description of the circuitCn can be computed in time polynomial inn (by a Turing
Machine).

• moreover:

– if x ∈ L and|x| = n thenPr[measure = 1] ≥ 2/3

– if x /∈ L and|x| = n thenPr[measure = 0] ≥ 2/3
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1.4 Reversibility and P ⊆ BQP
The construction from the last lecture showing how to convert any classical circuit withn inputs andm gates
into a reversible circuit withO(n+ m) inputs andO(n+ m) gates shows thatP ⊆ BQP. This is because any
reversible circuit can be implemented as a quantum circuit which has the same behavior when the input is a
computational basis state.

2 BPP ⊆ BQP
We will show that any circuit in BPP can be simulated in BQP by first generating random qubits and then
simulating the corresponding polynomial circuit.

2.1 Review: BPP
BPP stands for bounded error probabilistic polynomial time. As an example, consider the language PRIMES
consisting of prime numbers. There exists a polynomial sizecircuit C which takes as inputx and some
random bitsr and outputs 1 for ACCEPT and 0 for REJECT.
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We say PRIMES∈BPP if

x ∈ PRIMES ⇒ Pr{C(x,r) = 1} ≥ 2/3,

x 6∈ PRIMES ⇒ Pr{C(x,r) = 0} ≥ 2/3.

2.2 Simulating BPP
The main difference between a P circuit and a BPP circuit is the additional input ofr random bits. We
have already shown that any circuit in P can be simulated in BQP. We want to show that it is possible to
generate random qubits from
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inputs. A simple solution is to apply the Hadamard gate to each
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then measure. The Hadamard gate converts
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. Measuring will result is either
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with equal probability.
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If we generate random bits like this and then run the corresponding quantum circuit to C, we get the straight-
forward circuit below.
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Measurement can be tricky in the intermediate stages of a quantum circuit. Why not skip the measurement
and get a superposition of states? Well, if a Hadamard gate occurs in the circuit, we have a problem. The
desired outcome is one of these two possibilities with probability 1/2:
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No interference occurs here. Unfortunately, interferencecan lead to the following undesirable situation in
which the randomness disappears:
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Measurement prevents quantum interference. But, by the principle of deferred measurement, we can post-
pone the measurement and get the same result. In fact, we can post the measurement indefinitely and not
perform it at all.

much later
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We now need twice as many qubits as before. Half of them are passed through Hadamard gates and con-
nected by CNOT gates to the other half. This fixes the first halfof the qubits to either
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or
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, even
though no measurement was made. It is important to note, however, that since the second half of the qubits
are now entangled with the first half, we must be certain not tomake any measurements on them either.
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3 BQP ⊆ PSPACE

Theorem 5.1: P ⊆ BPP ⊆ BQP ⊆ P#P ⊆ PSPACE.

We give a sketch of the proof thatBQP ⊆ P#P. We assume without loss of generality that all the transition
amplitudes specified in the transition functionδ are real (exercise). The action of a quantum circuit may
be described by a tree, each node is labelled with a computational basis state, i.e. a bit string. The root
of the tree corresponds to the input
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and applying a gate to any node yields a superposition of basis
states represented by the children of that node. We label theedge to each child by the corresponding
amplitude. Let us assume that the quantum circuit accepts orrejects depending upon whether the first qubit,
when measured in the computational basis is 0 or 1. Thus each leaf of the tree is either an accepting or
rejecting node depending on whether the first bit of the string labeling it is 0 or 1. The amplitude of a pathp
from the root to a leaf of the tree,βp, is just the product of the branching amplitudes along the path, and is
computable to within 1/2j in time polynomial inj. Several paths may lead to the same configurationc. Thus
the amplitude ofc after application ofT gates is the following sum over allT length pathsp: αc = ∑p to c βp.
The probability that quantum circuit accepts is∑accepting c |αc|2. Letap = max(βp,0) andbp = max(−βp,0).
Then|αc|2 can be written as|αc|2 = ∑p to c(ap −bp)

2 = ∑p to c a2
p +b2

p −∑p,p′ to c 2apbp. It follows that the
acceptance probability of the quantum circuit can be written as the difference between the two quantities
∑accepting c ∑p to c a2

p +b2
p, and∑accepting c ∑p,p′ to c 2apbp′ . Since each of these quantities is easily seen to be

in P#P, it follows thatBQP ⊆ P#P.

In view of this theorem, we cannot expect to prove thatBQP strictly containsBPP without resolving the
long standing open question in computational complexity theory, namely, whether or notP = PSPACE.
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