CS 294-2 Quantum Complexity theory 1/31)07
Spring 2007 Lecture )

| Quantum Circuits

A quantum circuit implements a unitary operator in a HiltsgaceC?", given as primitive a (usually finite)
collection of gates each of which implements a unitary deran k qubits for some smak. Unitarity

implies that quantum circuits have the same number of ingutisoutputs. The picture of a quantum circuit
is as follows:
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where the quantum gates belong to some universal family arfitygun gates.

We will define our complexity classes in terms of circuitst us start by defining the clagsof polynomial
time computable decision procedures or languages.

11 Class P - Polynomial Time

A definition of the class P in terms of circuits is the follogin
L € Piff there is a familyg = {Cy }nen Of circuits such that:
* |Ca| < poly(n),¥neN

» Uniformity The description of the circuf€, can be computed in time polynomial m(by a Turing
Machine).

* if [x =nthenCy(x) = (c€ L?)

X1 0/1

X3 Cn

CS 294-2, Spring 2007, Lecture 5

[EEY



1.2 Class BPP - Bounded Error Probabilistic Polynomial Time

In the seventies it was realized that randomness can soggetipeed up computation. Accordingly the class
of efficiently solvable computational problems was expantieprobabilistic polynomial time with small
probability of error.

A definition of the class BPP in terms of circuits is the follog:
L € BPP iff there is a familyg = {C, }new Of circuits such that:

* every circuitC, has an inpuk of |x| = n bits and a random inputof |r| = O(poly(n)) bits
* [Cal < poly(n),vn e N

» Uniformity The description of the circuft, can be computed in time polynomial m(by a Turing
Machine).

* moreover:

— if xe L and|x| = nthenPr[Cy(x,r) ="yes’] > 2/3
— if x¢ L and|x| = nthenPr[Cy(X,r) ="no"] >2/3

X | 0/1
X2
input x X3 Cn
x| =n Xn—1
Xn
§!
random string T,
Ir|=m=0O(poly(n) _:

1.3 Class BQP - Bounded Error Quantum Polynomial Time

A definition of the class BQP in terms of circuits is the foliogy:
L € BQP iff there is a familyg = {C,, € J (n) }new Of quantum circuits (unitary operators) such that:
* every circuitC, has an inpuk of |x| = n bits andm = O(poly(n)) additional inputs of valu¢0 >

* the output of the computation is considered to be the outcohthe measurement on the first output
of the circuit

¢ |Cy| < poly(n),Vne N

» Uniformity The description of the circuft, can be computed in time polynomial m(by a Turing
Machine).

* moreover:

— if xe L and|x| = nthenPr[measure=1] > 2/3
— if x¢ L and|x| = nthenPr[measure= 0] > 2/3

CS 294-2, Spring 2007, Lecture 5 2



0/1

N

inputx X3 | Cn
X =n :

14 Reversi]oility and P - BQP

The construction from the last lecture showing how to caramry classical circuit witlm inputs andn gates
into a reversible circuit wittD(n+ m) inputs andO(n-+ m) gates shows thd& C BQP. This is because any
reversible circuit can be implemented as a quantum circhithvhas the same behavior when the input is a
computational basis state.

2 BPP < BQP

We will show that any circuit in BPP can be simulated in BQP lbstfgenerating random qubits and then
simulating the corresponding polynomial circuit.

2.1 Review: BPP

BPP stands for bounded error probabilistic polynomial tilkgan example, consider the language PRIMES
consisting of prime numbers. There exists a polynomial sireuit C which takes as input and some
random bitg and outputs 1 for ACCEPT and O for REJECT.
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We say PRIMES BPP if

X

x€ PRIMES = Pr{C(x,r) =1} >2/3,
x¢ PRIMES = Pr{C(x,r) =0} >2/3.

2.2 Simulating BPP

The main difference between a P circuit and a BPP circuit esatiditional input ofr random bits. We
have already shown that any circuit in P can be simulated i®.B&e want to show that it is possible to
generate random qubits frofﬁ> inputs. A simple solution is to apply the Hadamard gate tdn¢a}2 and
then measure. The Hadamard gate convi@sto %|0> + \%|1> Measuring will result is eithe0) or

|1) with equal probability.
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If we generate random bits like this and then run the cormegipg quantum circuit to C, we get the straight-
forward circuit below.
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Measurement can be tricky in the intermediate stages of atgunacircuit. Why not skip the measurement
and get a superposition of states? Well, if a Hadamard gaigr®dn the circuit, we have a problem. The
desired outcome is one of these two possibilities with podita 1 /2:
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No interference occurs here. Unfortunately, interferecere lead to the following undesirable situation in
which the randomness disappears:

2510 +—5[1) — [ —10)

Measurement prevents quantum interference. But, by timeipté of deferred measurement, we can post-
pone the measurement and get the same result. In fact, weostithp measurement indefinitely and not
perform it at all.

0) —| H 10) +551)
}0> & much later Ul

We now need twice as many qubits as before. Half of them arsedabrough Hadamard gates and con-
nected by CNOT gates to the other half. This fixes the first bfithe qubits to eithe¢0> or |1> even
though no measurement was made. It is important to note,Jewdhat since the second half of the qubits
are now entangled with the first half, we must be certain nata@e any measurements on them either.
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3 BQP C PSPACE

Theorem 5.1 P C BPP C BQP C P*P C PSPACE.

We give a sketch of the proof thBQP C P, We assume without loss of generality that all the transitio
amplitudes specified in the transition functidrare real (exercise). The action of a quantum circuit may
be described by a tree, each node is labelled with a compngdtbasis state, i.e. a bit string. The root
of the tree corresponds to the inqun} and applying a gate to any node yields a superposition ofbasi
states represented by the children of that node. We labetdge to each child by the corresponding
amplitude. Let us assume that the quantum circuit acceptjants depending upon whether the first qubit,
when measured in the computational basis is 0 or 1. Thus eaftof the tree is either an accepting or
rejecting node depending on whether the first bit of the gtidibeling it is 0 or 1. The amplitude of a pgth
from the root to a leaf of the tre@,,, is just the product of the branching amplitudes along tth,@nd is
computable to within 12} in time polynomial inj. Several paths may lead to the same configuratidrhus

the amplitude ot after application ofl gates is the following sum over dlllength pathgy: ac =3 1o ¢ Bp-

The probability that quantum circuit acceptSigeping ¢ |0c|?. Letap = max(Bp, 0) andb, = max(—fp,0).
Then|ac|? can be written afc|? = 3 1o o(@p — bp)? = T p1o ¢85+ D5 — Ty to c 2apbp. It follows that the
acceptance probability of the quantum circuit can be writie the difference between the two quantities
¥ accepting ¢ ¥ p to ¢85 + D3, @NAY accepting ¢ ¥ p.p' to ¢ 28pby. Since each of these quantities is easily seen to be
in P? | it follows thatBQP C P,

In view of this theorem, we cannot expect to prove tB&P strictly containsBPP without resolving the
long standing open question in computational complexigptl, namely, whether or nét= PSPACE.

CS 294-2, Spring 2007, Lecture 5 5



	Quantum Circuits
	Class P - Polynomial Time
	Class BPP - Bounded Error Probabilistic Polynomial Time
	Class BQP - Bounded Error Quantum Polynomial Time
	 Reversibility and P  BQP

	BPP  BQP
	Review: BPP
	Simulating BPP

	BQP PSPACE

