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Abelian Hidden Subgroup Problem + Discrete Log

1 Fourier transforms over finite abelian groups
Let G be a finite abelian group. The characters ofG are homomorphismsχ j : G→ C. There are exactly|G|
characters, and they form a group, called the dual group, anddenoted byĜ. The Fourier transform over the
groupG is given by:

∣

∣g
〉

7→ 1
√

|G| ∑j

χ j(g)
∣

∣ j
〉

Consider, for exampleG = ZN. The characters are defined byχ j(1) = ω j andχ j(k) = ω jk. And the Fourier
transform is given by the familiar matrixF, with Fj,k = 1√

N
ω jk.

In general, letG∼= ZN1 ×ZN2 ×·· ·×ZNl , so that anyg∈ G can be written equivalently as(a1,a2, . . . ,al ),
whereai ∈ ZNi . Now, for each choice ofk1, . . . ,kl we have a character given by the mapping:

χk1,...,kl (a1,a2, . . . ,al ) = ωk1a1
N1

·ωk2a2
N2

· · · · ·ωkl al
Nl

Finally, the Fourier transform of(a1,a2, . . . ,al ) can be defined as

(a1,a2, . . . ,al ) 7→
1

√

|G| ∑
(k1,...,kl )

ωk1a1
N1

ωk2a2
N2

· · · · ·ωkl al
Nl

∣

∣k1 · · ·kl
〉

2 Subgroups and Cosets
Corresponding to each subgroupH ⊆ G, there is a subgroupH⊥ ⊆ Ĝ, defined asH⊥ = {k ∈ Ĝ | k(h) =

1 ∀h ∈ H}, whereĜ is the dual group ofG. |H⊥| = |G|
|H| . The Fourier transform overG maps an equal

superposition onH to an equal superposition overH⊥:

Claim

1
√

|H| ∑
∣

∣h
〉 FTG7→

√

|H|
|G| ∑

k∈H⊥

∣

∣k
〉

Proof The amplitude of each elementk∈ H⊥ is 1√
|G|
√

|H| ∑h∈H k(h) =

√
|H|√
|G|

. But since|H⊥|= |G|
|H| , the sum

of squares of these amplitudes is 1, and therefore the amplitudes of elements not inH⊥ is 0.

The Fourier transform overG treats equal superpositions over cosets ofH almost as well:

Claim

1
√

|H| ∑
h∈H

∣

∣hg
〉 FTG7→

√

|H|
|G| ∑

k∈H⊥
χg(k)

∣

∣k
〉
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Proof This follows from the convolution-multiplication property of Fourier transforms. An equal superpo-
sition on the cosetHg can be obtained by convolving the equal superposition over the subgroupH with
a delta function atg. So after a Fourier transform, we get the pointwise multiplication of the two Fourier
transforms: namely, an equal superposition overH⊥, andχg.

Since the phaseχg(k) has no effect on the probability of measuring
∣

∣k
〉

, Fourier sampling on an equal
superposition on a coset ofH will yield a uniformly random elementk∈H⊥. This is a fundamental primitive
in the quantum algorithm for the hidden subgroup problem.

Claim Fourier sampling performed on
∣

∣Φ
〉

= 1√
|H| ∑h∈H

∣

∣hg
〉

gives a uniformly random elementk∈ H⊥.

3 The hidden subgroup problem
Let G again be a finite abelian group, andH ⊆ G be a subgroup ofG. Given a functionf : G → S which
is constant on cosets ofH and distinct on distinct cosets (i.e.f (g) = f (g′) iff there is anh∈ H such that
g = hg′), the challenge is to findH.

The quantum algorithm to solve this problem is a distillation of the algorithms of Simon and Shor. It works
in two stages:

Stage I Setting up a random coset state:

Start with two quantum registers, each large enough to storean element of the groupG. Initialize each of
the two registers to

∣

∣0
〉

. Now compute the Fourier transform of the first register, andthen store in the second
register the result of applyingf to the first register. Finally, measure the contents of the second register. The
state of the first register is now a uniform superposition over a random coset of the hidden subgroupH:

∣

∣0
〉∣

∣0
〉 FTG⊗I−→ 1

√

|G| ∑
a∈G

∣

∣a
〉 ∣

∣0
〉 f−→ 1

√

|G| ∑
a∈G

∣

∣a
〉 ∣

∣ f (a)
〉 measure 2nd reg−→ 1

√

|H| ∑
h∈H

∣

∣hg
〉

Stage II Fourier sampling:

Compute the Fourier transform of the first register and measure. By the last claim of the previous section,
this results in a random element ofH⊥. i.e. randomk : k(h) = 0 ∀h∈ H. By repeating this process, we can
get a number of such random constraints onH, which can then be solved to obtainH.

Example Simon’s Algorithm: In this caseG = Zn
2, andH = {0,s}. Stage I sets up a random coset state

1/
√

2
∣

∣x
〉

+ 1/
√

2
∣

∣x+ s
〉

. Fourier sampling in stage II gives a randomk ∈ Zn
2 such thatk · s= 0. Repeat-

ing this n− 1 times givesn− 1 random linear constraints ons. With probability at least 1/e these linear
constraints have full rank, and therefores is the unique non-zero solution to these simultaneous linear con-
straints.

4 Factoring and discrete log
Recall that factoring is closely related to the problem oforder finding.To define this problem, recall that:

The set of integers that are relatively prime toN form a group under the operation of multiplication modulo
N: Z∗

N = {x∈ ZN : gcd(x,N) = 1}.

Let x∈ Z∗
N. The order ofx (denoted byordN(x)) is minr≥1xr ≡ 1 modN.

The task of factoringN can be reduced to the task of computing the order of a givenx ∈ Z∗
N. Recall that

|Z∗
N| = Φ(N), whereΦ(N) is the Euler Phi function. IfN = pe1

1 · · · pek
k thenφ(N) = (p1−1)pe1−1

1 · · · (pk−
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1)pek−1
k . Clearly,ordN(x)|Φ(N).

Consider the functionf : ZΦ(N) → ZN, where f (a) = xa modN. Then f (a) = 1 if a ∈ 〈r〉, wherer =
ordN(x), and〈r〉 denotes the subgroup ofZ∗

N generated byr. Similarly if a ∈ 〈r〉+ k, a coset of〈r〉, then
f (a) = xk modN. Thus f is constant on cosets ofH = 〈r〉.
The quantum algorithm for finding the orderr or x first usesf to set up a random coset state, and then does
Fourier sampling to obtain a random element fromH⊥. Notice that the random element will have the form

k = s· φ(N)

r

wheres is picked randomly from{0, . . . , r −1}. If gcd(s, r) = 1 (which holds for randoms with reasonably
high probability), gcd(k,φ(N)) = φ(N)/r. From this it is easy to recoverr. There is no problem discarding
bad runs of the algorithm, since the correct value ofr can be used to splitN into non-trivial factors.

Here we assumed that we knowφ(N) or at least a multiple of it. However, givenN computingφ(N) is as
hard as factoringN. Shor’s factoring algorithm relies on the fact that the result of doing a fourier transform
over ZN may be closely approximated by carrying out the fourier transform overZM for M >> N and
reinterpreting results.

Discrete Log Problem:

Computing discrete logarithms is another fundamental problem in modern cryptography. Its assumed hard-
ness underlies the Diffie-Helman cryptosystem.

In the Discrete Log problem is the following: given a primep, a generatorg of Z∗
p (Z∗

p is cyclic if p is a
prime), and an elementx∈ Z∗

p; find r such thatgr ≡ x mod p.

Define f : Zp−1×Zp−1 → Z∗
p as follows: f (a,b) = gax−b mod p.

Notice that f (a,b) = 1 exactly whena = br. Equivalently, when(a,b) ∈ 〈(r,1)〉, where〈(r,1)〉 denotes the
subgroup ofZp−1×Zp−1 generated by(r,1).

Similarly, f (a,b) = gk for (a,b) ∈ 〈(r,1)〉+(k,0). Therefore,f is constant on cosets ofH = 〈(r,1)〉.
Again the quantum algorithm first usesf to set up a random coset state, and then does Fourier samplingto
obtain a random element fromH⊥. i.e. (c,d) such thatrc+d = 0 modp−1. For a random such choice of
(c,d), with reasonably high probabilitygcd(c, p−1) = 1, and thereforer =−dc−1 mod p−1. Once again,
it is easy to check whether we have a good run, by simply computing gr mod p and checking to see whether
it is equal tox.
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