CS 294-2 Abelian HSP + Discrete Log 2/14/07
Spring 2007 Lecture Y

Abelian Hidden Subgroup Problem + Discrete Log

1 Fourier transforms over finite abelian groups

Let G be a finite abelian group. The characterssadre homomorphismg; : G — C. There are exactyG|
characters, and they form a group, called the dual groupdandted byG. The Fourier transform over the
groupG is given by:

ﬁ;x;(g)\w

Consider, for exampl€& = Zy. The characters are defined jp(1) = w! and;(k) = w!*. And the Fourier
transform is given by the familiar matrix, with Fj x = ﬁwlk.

In general, lelG = Zy, x Zy, x --- x Zy;, SO that anyg € G can be written equivalently asy,ap,....q),
whereg; € Zy,. Now, for each choice dfy, ...,k we have a character given by the mapping:
koap kay

OJNZ OJNI

kiag

Xio,.k (81,82, &) = W
Finally, the Fourier transform dfy,ay,...,&) can be defined as

1
(ag,ap,...,8) — ——— Z w&alwhiaz wllglw‘kl...m

2 Subgroups and Cosets

Corresponding to each subgrokpC G, there is a subgroupl: C G, defined aH* = {k e G | k(h) =

1VvheH}, whereG is the dual group ofz. |Ht| = % The Fourier transform oved maps an equal

superposition o to an equal superposition ovilr’:
Claim

Sz ”G\ﬁezmm

Proof The amplitude of each elemeht H+ is VI But sincelH| = 18 the sum

\/lg\/lqiheH k(h) = Ve G

of squares of these amplitudes is 1, and therefore the amdetitof elements not id - is 0.
The Fourier transform oves treats equal superpositions over cosetbl @most as well:
Claim
1 FTs | |H|
- ha) — /!

heH

Z Xg(k)‘k>

keHL

[EnY

CS 294-2, Spring 2007, Lecture 9

Proof This follows from the convolution-multiplication propgrof Fourier transforms. An equal superpo-
sition on the coseHg can be obtained by convolving the equal superposition dwerstbgroupH with

a delta function ay. So after a Fourier transform, we get the pointwise muttation of the two Fourier
transforms: namely, an equal superposition d¥er andxy.

Since the phasgqy(k) has no effect on the probability of measurih@, Fourier sampling on an equal
superposition on a coset Hfwill yield a uniformly random elemerkc H+. This is a fundamental primitive
in the quantum algorithm for the hidden subgroup problem.

Claim Fourier sampling performed de) = gives a uniformly random elemektc H-.

\/\W 2 heH |hg>
3 The hidden subgroup problem

Let G again be a finite abelian group, aRdC G be a subgroup o&. Given a functionf : G — Swhich
is constant on cosets &f and distinct on distinct cosets (i.d(g) = f(g') iff there is anh € H such that
g = hd), the challenge is to finH.

The quantum algorithm to solve this problem is a distillatad the algorithms of Simon and Shor. It works
in two stages:

Stage | Setting up a random coset state:

Start with two quantum registers, each large enough to stor@lement of the grou@. Initialize each of
the two registers t@} . Now compute the Fourier transform of the first register, #ueh store in the second
register the result of applyin§to the first register. Finally, measure the contents of ticerse register. The
state of the first register is now a uniform superpositionr @endom coset of the hidden subgrddip

measure 2nd reg 1

Fleel i1
O i Lzl T s

Stage || Fourier sampling:

Compute the Fourier transform of the first register and meadBy the last claim of the previous section,
this results in a random elementlidf-. i.e. randonk : k(h) = 0 Yh € H. By repeating this process, we can
get a number of such random constraintdhrwhich can then be solved to obtaih

Example Simon’s Algorithm: In this cas& = Z9, andH = {0,s}. Stage | sets up a random coset state
1/\/§|x> + 1/\@|x+ s>. Fourier sampling in stage Il gives a randéng Z) such thatk - s= 0. Repeat-
ing thisn— 1 times givesn— 1 random linear constraints an With probability at least Ze these linear
constraints have full rank, and therefares the unique non-zero solution to these simultaneousrlioea:
straints.

4 Factoring and discrete log

Recall that factoring is closely related to the problenomfer finding.To define this problem, recall that:

The set of integers that are relatively primeNtddorm a group under the operation of multiplication modulo
N: Zy = {x€ Zy : gcd(x,N) = 1}.

Letx € Z{;. The order ok (denoted byordy (x)) is min.>1x" = 1 modN.

The task of factorind\ can be reduced to the task of computing the order of a giverZy. Recall that
|Z,| = ®(N), where®(N) is the Euler Phi function. IN = p*--- p then@(N) = (p1 — 1)p - (px —

CS 294-2, Spring 2007, Lecture 9 2

1)p . Clearly,ordy (x)|®(N).

Consider the functiorf : Zo) — Zn, Where f(a) = x* modN. Then f(a) =1 if a € (r), wherer =
ordy(x), and(r) denotes the subgroup @f; generated by. Similarly if a € (r) +k, a coset of(r), then
f(a) = x* modN. Thusf is constant on cosets bf = (r).

The quantum algorithm for finding the ordeor x first usesf to set up a random coset state, and then does
Fourier sampling to obtain a random element frem. Notice that the random element will have the form

ks PN

wheresis picked randomly from{0,...,r — 1}. If gcd(s,r) = 1 (which holds for randors with reasonably
high probability), gcdk, ¢(N)) = @(N)/r. From this it is easy to recover There is no problem discarding
bad runs of the algorithm, since the correct value cén be used to splil into non-trivial factors.

Here we assumed that we knam(N) or at least a multiple of it. However, give\d computing@(N) is as

hard as factoring\. Shor’s factoring algorithm relies on the fact that the lestidoing a fourier transform
over Zy may be closely approximated by carrying out the fourier sfarm overZy for M >> N and

reinterpreting results.

Discrete Log Problem:

Computing discrete logarithms is another fundamentallprobn modern cryptography. Its assumed hard-
ness underlies the Diffie-Helman cryptosystem.

In the Discrete Log problem is the following: given a prirpea generatog of Z; (Z; is cyclic if pis a
prime), and an elemente Z¥; find r such thag' = x mod p.

Definef : Zy_1 x Z,_1 — Z; as follows: f (a,b) = g " mod p.

Notice thatf (a,b) = 1 exactly whera = br. Equivalently, wher{a,b) € ((r,1)), where((r,1)) denotes the
subgroup o%Z,_1 x Z,_1 generated byr,1).

Similarly, f(a,b) = g« for (a,b) € {(r,1)) + (k,0). Therefore,f is constant on cosets bf = ((r,1)).

Again the quantum algorithm first uségo set up a random coset state, and then does Fourier sarmpling
obtain a random element frokii. i.e. (c,d) such thatrc +d = 0 mod p— 1. For a random such choice of
(c,d), with reasonably high probabilitgcd(c, p— 1) = 1, and therefore = —dc™! mod p— 1. Once again,
it is easy to check whether we have a good run, by simply coimgpgt mod p and checking to see whether
it is equal tox.

CS 294-2, Spring 2007, Lecture 9 3

