
CS 294-2 Hilbert Spaces, Tensor Products, Quantum Gates, Bell
States 1/22/07
Spring 2007 Lecture 2

0.1 Hilbert Spaces
Consider a discrete quantum system that hask distinguishable states (e.g.k distinct energy states of the
electron in a Hydrogen atom). The state of such a system is a unit vector in ak dimensional complex vector
spaceC k. The k distinguishable states form an orthogonal basis for the vector space - denoted by, say,
{
∣

∣1
〉

, . . . ,
∣

∣k
〉

. Here we are using the standard inner-product overC k to define orthogonality. Recall that the
inner-product of two vectors

∣

∣φ
〉

= ∑i αi
∣

∣i
〉

and
∣

∣ψ
〉

= ∑i βi
∣

∣i
〉

is ∑i ᾱiβi.

Dirac’s Bra-ket Notation

We have already introduced the ket notation for vectors. We denote by
〈

φ
∣

∣ (pronouncedbra(φ)) the row
vector(α1 · · ·αk). i.e. the conjugate transpose of

∣

∣φ
〉

. In this notation, the inner-product of
∣

∣φ
〉

and
∣

∣ψ
〉

is
just

〈

φ
∣

∣

∣

∣ψ
〉

.

To demonstrate the utility of this notation, let|v〉 be a vector of norm 1. DefineP = |v〉〈v|. Then for any|w〉
we haveP|w〉= |v〉〈v|w〉, soP is the projection operator onto|v〉 (see diagram.) Note thatP2 = |v〉〈v|v〉〈v| =
P since|v〉 has norm 1.

More abstractly, the state of a quantum system is a unit vector in a Hilbert space. A Hilbert space is a
complex vector space endowed with an inner-product and which is complete under the induced norm. The
last condition will not be of much concern for us since we willmostly be concerned with finite dimensional
Hilbert spaces.

0.2 Tensor Products
Consider two quantum systems - the first withk distinguishable (classical) states (associated Hilbert space
C k), and the second withl distinguishable states (associated Hilbert spaceC l). What is the Hilbert space as-
sociated with the composite system? We can answer this question as follows: the number of distinguishable
states of the composite system iskl — since for each distinct choice of basis (classical) state

∣

∣i
〉

of the first
system and basis state

∣

∣ j
〉

of the second system, we have a distinguishable state of the composite system.
Thus the Hilbert space associated with the composite systemis C kl.

The tensor product is a general construction that shows how to go from two vector spacesV andW of di-
mensionk andl to a vector spaceV ⊗W (pronounced “V tensorW ”) of dimensionkl. Fix bases|v1〉, . . . , |vk〉
and|w1〉, . . . , |wl〉 for V,W respectively. Then a basis forV ⊗W is given by

{|vi〉⊗ |w j〉 : 1≤ i ≤ k,1≤ j ≤ l},

so that dim(V ⊗W) = kl. So a typical element ofV ⊗W will be of the form∑i j αi j(|vi〉⊗ |w j〉). We can
define an inner product onV ⊗W by

(|v1〉⊗ |w1〉, |v2〉⊗ |w2〉) = (|v1〉, |v2〉) · (|w1〉, |w2〉),

which extends uniquely to the whole spaceV ⊗W .
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For example, considerV = C 2⊗C 2. V is a Hilbert space of dimension 4, soV ∼= C 4. So we can write|00〉
alternatively as|0〉⊗ |0〉. More generally, forn qubits we haveC 2⊗·· · (n times)⊗·· ·C 2 ∼= C 2n

. A typical
element of this space is of the form

∑
x∈{0,1}n

αx|x〉.

0.3 The Significance of Tensor Products
Classically, if we put together a subsystem that storesk bits of information with one that storesl bits of
information, the total capacity of the composite system isk + l bits. Or put another way, ifk bits of infor-
mation are required to describe the state of the first subsystem andl bits to describe the second, thenk + l
bits suffice to describe the composite system.

From this viewpoint, the situation with quantum systems is extremely paradoxical. We needk complex
numbers to describe the state of a k-level quantum system. Now consider a system that consists of a k-level
subsystem and an l-level subsystem. To describe the composite system we needkl complex numbers. If
the state of the system was known to be a tensor product state

∣

∣φ
〉

⊗
∣

∣ψ
〉

then onlyk + l complex numbers
would suffice. It follows that most states of the composite system are not tensor product states. They are
entangled states. This brings up another question: one might wonder where nature finds the extra storage
space when we put these two subsystems together.

An extreme case of this phenomenon occurs when we consider ann qubit quantum system. The Hilbert
space associated with this system is the n-fold tensor product of C 2 ≡ C 2n

. Thus nature must “remember”
of 2n complex numbers to keep track of the state of ann qubit system. For modest values ofn of a few
hundred, 2n is larger than estimates on the number of elementary particles in the Universe.

This is the fundamental property of quantum systems that is used in quantum information processing.

Finally, note that when we actually a measure ann-qubit quantum state, we see only ann-bit string - so we
can recover from the system onlyn, rather than 2n, bits of information.

0.4 Unitary Operators
The final postulate of quantum physics states that the evolution of a quantum system is necessarily unitary.
Intuitively, a unitary transformation is a rigid body rotation (or reflection) of the Hilbert space, thus resulting
in a transformation of the state vector that doesn’t change its length.

Suppose we have ak-state quantum system. Then a unitary transformation over the space is a linear transfor-
mation that can be specified by ak×k matrixU with complex entries that satisfiesU−1 = U†. For example,
for an op erator onC 2,

U =
(

a b
c d

)

⇒U† =
( ā c̄

b̄ d̄

)

.

It is easily verified that the composition of two unitary transformations is also unitary (Proof:U,V unitary,
then(UV )† = V †U† = V−1U−1 = (UV )−1).

Some properies of a unitary transformationU :

• The rows ofU form an orthonormal basis.

• The columns ofU form an orthonormal basis.
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• U preserves inner products, i.e. the inner product between
∣

∣u
〉

and
∣

∣v
〉

is the same as the inner product
betweenU

∣

∣u
〉

andU
∣

∣v
〉

. The latter quantity can be written as
〈

v
∣

∣U†U
∣

∣w
〉

=
〈

v
∣

∣w
〉

. Therefore,U
preserves norms and angles (up to sign).

• The eigenvalues ofU are all of the formeiθ (sinceU is length-preserving, i.e.,(~v,~v) = (U~v,U~v)).

• U can be diagonalized into the form












eiθ1 0 · · · 0

0
... .. . 0

...
. . . . . .

...
0 · · · 0 eiθk













0.5 Quantum Gates
We give some examples of simple unitary transforms, or “quantum gates.”

Some quantum gates with one qubit:

• Hadamard Gate. Can be viewed as a reflection aroundπ/8, or a rotation aroundπ/4 followed by a
reflection.

H =
1√
2

(

1 1
1 −1

)

The Hadamard Gate is one of the most important gates. Note that H† = H – sinceH is real and
symmetric – andH2 = I.

• Rotation Gate. This rotates the plane byθ .

U =

(

cosθ −sinθ
sinθ cosθ

)

• NOT Gate. This flips a bit from 0 to 1 and vice versa.

NOT =

(

0 1
1 0

)

• Phase Flip.

Z =

(

1 0
0 −1

)

The phase flip is a NOT gate acting in the
∣

∣+
〉

= 1√
2
(
∣

∣0
〉

+
∣

∣1
〉

),
∣

∣−
〉

= 1√
2
(
∣

∣0
〉

−
∣

∣1
〉

) basis. Indeed,

Z
∣

∣+
〉

=
∣

∣−
〉

andZ
∣

∣−
〉

=
∣

∣+
〉

.

And a two-qubit quantum gate:
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• Controlled Not (CNOT).

CNOT=









1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0









The first bit of a CNOT gate is the “control bit;” the second is the “target bit.” The control bit never
changes, while the target bit flips if and only if the control bit is 1.

The CNOT gate is usually drawn as follows, with the control bit on top and the target bit on the
bottom:

t

d

0.6 Tensor product of operators
Suppose we have two quantum systems: ak-state system with associated Hilbert spaceV and al-state
system with associated Hilbert spaceW . Suppose we apply a unitary transformationA to the first system
andB to the second system. What is the resulting transformation on the combined systemV ⊗W? To figure
this out, let us first see how the combined transformation acts on basis states ofV ⊗W . Consider a basis
state

∣

∣i
〉

⊗{ket j where 0≤ i ≤ k−1 and 0≤ j ≤ l −1. SinceA is only acting onV andB only onW , this
state is transformed toA

∣

∣i
〉

⊗B
∣

∣ j
〉

.

Suppose
∣

∣v
〉

and
∣

∣w
〉

are unentangled states onC m andC n, respectively. The state of the combined system is
∣

∣v
〉

⊗
∣

∣w
〉

onC mn. If the unitary operatorA is applied to the first subsystem, andB to the second subsystem,
the combined state becomesA

∣

∣v
〉

⊗B
∣

∣w
〉

.

In general, the two subsystems will be entangled with each other, so the combined state is not a tensor-
product state. We can still applyA to the first subsystem andB to the second subsystem. This gives the
operatorA⊗B on the combined system, defined on entangled states by linearly extending its action on
unentangled states.

(For example,(A⊗B)(
∣

∣0
〉

⊗
∣

∣0
〉

) = A
∣

∣0
〉

⊗B
∣

∣0
〉

. (A⊗B)(
∣

∣1
〉

⊗
∣

∣1
〉

) = A
∣

∣1
〉

⊗B
∣

∣1
〉

. Therefore, we define
(A⊗B)( 1√

2

∣

∣00
〉

+ 1√
2

∣

∣11
〉

) to be 1√
2
(A⊗B)

∣

∣00
〉

+ 1√
2
(A⊗B)

∣

∣11
〉

= 1√
2

(

A
∣

∣0
〉

⊗B
∣

∣0
〉

+ A
∣

∣1
〉

⊗B
∣

∣1
〉)

.)

Let
∣

∣e1
〉

, . . . ,
∣

∣em
〉

be a basis for the first subsystem, and writeA = ∑m
i, j=1 ai j

∣

∣ei
〉〈

e j
∣

∣ (the i, jth element ofA
is ai j). Let

∣

∣ f1
〉

, . . . ,
∣

∣ fn
〉

be a basis for the second subsystem, and writeB = ∑n
k,l=1 bkl

∣

∣ fk
〉〈

fl
∣

∣. Then a basis
for the combined system is

∣

∣ei
〉

⊗
∣

∣ f j
〉

, for i = 1, . . . ,m and j = 1, . . . ,n. The operatorA⊗B is

A⊗B =

(

∑
i j

ai j
∣

∣ei
〉〈

e j
∣

∣

)

⊗
(

∑
kl

bkl
∣

∣ fk
〉〈

fl
∣

∣

)

= ∑
i jkl

ai jbkl
∣

∣ei
〉〈

e j
∣

∣⊗
∣

∣ fk
〉〈

fl
∣

∣

= ∑
i jkl

ai jbkl(
∣

∣ei
〉

⊗
∣

∣ fk
〉

)(
〈

e j
∣

∣ ⊗
〈

fl
∣

∣ ) .

Therefore the(i,k),( j, l)th element ofA⊗B is ai jbkl . If we order the basis
∣

∣ei
〉

⊗
∣

∣ f j
〉

lexicographically,
then the matrix forA⊗B is
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





a11B a12B · · ·
a21B a22B · · ·

...
...

. . .






;

in the i, jth subblock, we multiplyai j by the matrix forB.

0.7 Bell States
The following simple quantum circuit on two qubits outputs one of the four Bell basis states as the inputs
range over the two bit strings.

FIGURE of quantum circuit with Hadamard gate followed by CNOT.

The four Bell basis states are denoted:
∣

∣Φ+
〉

= 1√
2
(
∣

∣00
〉

+
∣

∣11
〉

)
∣

∣Φ−〉 = 1√
2
(
∣

∣00
〉

−
∣

∣11
〉

)
∣

∣Ψ+
〉

= 1√
2
(
∣

∣01
〉

+
∣

∣10
〉

)
∣

∣Ψ−〉 = 1√
2
(
∣

∣01
〉

−
∣

∣10
〉

)

The stateΨ−, also called the singlet state, has the special property that it is invariant under a unitary change
of basis of the two qubits (same change of basis for both qubits).

1 Bell’s Inequality
Let us return to the proof of the Bell inequality from last time. The experiment we described there was the
following:

Alice and Bob share a Bell state, say
∣

∣Phi+
〉

. Alice is given as input a random bitxA and Bob a random bit
xB. Alice applies a rotation of−π/16 to her qubit ifxA = 0 and 3π/6 if xA = 1. Bob applies a rotation of
π/16 to his qubit ifxB = 0 and−3π/6 if xB = 1. Both then measure their qubits in the standard basis and
output their results.

We wish to determine the probability of the eventxA · xB = a+ b mod 2.

To make the calculation easier, assume instead that Alice and Bob share the Bell stateΨ−, and Bob outputs
the complement of the bit that he measures. Now, by the rotational symmetry ofΨ−, it follows that if Alice
rotates byα and Bob byβ , then the probability that they measure different values (and therefore output the
same value) iscos2(α − β ). In the three cases wherexA · xB = 0, |α − β | = π/8, and so the chance that
a = b or a + b = 0 mod 2 iscos2π/8. In the case that wherexA · xB = 1, |α − β | = 3π/8. But now the
chance thata 6= b or a + b = 1 mod 2 issin23π/8 = cos2π/8. Therefore in all four cases the chance that
xA · xB = a+ b mod 2 iscos2π/8.
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