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0.1 Hilbert Spaces

Consider a discrete quantum system that kasstinguishable states (e.d distinct energy states of the
electron in a Hydrogen atom). The state of such a system ig &agtor in ak dimensional complex vector
space?®. Thek distinguishable states form an orthogonal basis for théovespace - denoted by, say,
{\1> ey |k> . Here we are using the standard inner-product &eto define orthogonality. Recall that the
inner-product of two vectorp) = 3 ai|i) and|y) =5 Bi) is 3; aif3.

Dirac's Bra-ket Notation

We have already introduced the ket notation for vectors. etk by<(p\ (pronouncedora(g)) the row
vector (a7 --- 0). i.e. the conjugate transpose|gf) . In this notation, the inner-product ¢p) and|y) is

just (| |y).

To demonstrate the utility of this notation, le} be a vector of norm 1. Defin@ = |v)(v|. Then for anyw)
we haveP|w) = |v)(v|w), soP is the projection operator onta) (see diagram.) Note th&8 = |v) (v|v)(v| =
P since|v) has norm 1.

More abstractly, the state of a quantum system is a unit vecta Hilbert space. A Hilbert space is a
complex vector space endowed with an inner-product andhwikicomplete under the induced norm. The
last condition will not be of much concern for us since we wilthstly be concerned with finite dimensional
Hilbert spaces.

02 Tensor Products

Consider two quantum systems - the first wktdistinguishable (classical) states (associated Hillgate
%%, and the second withdistinguishable states (associated Hilbert spdlde What is the Hilbert space as-
sociated with the composite system? We can answer thisiguest follows: the number of distinguishable
states of the composite systenkis— since for each distinct choice of basis (classical) s{ﬁat(mf the first
system and basis staJt¢> of the second system, we have a distinguishable state obtheasite system.
Thus the Hilbert space associated with the composite syistéfH.

The tensor product is a general construction that shows baye from two vector spacés andW of di-
mensiork andl to a vector spacé @ W (pronouncedV tensotW”) of dimensionkl. Fix basegvi), ..., |vk)
and|wy),...,|w) for V,W respectively. Then a basis faro W is given by

{vy®wj) :1<i<kl<j<l},

so that dinfV @ W) =kl. So a typical element of @ W will be of the form ¥;; aij(|vi) ® |wj)). We can
define an inner product oh W by

(Jve) ® [wr), [V2) @ [W2)) = (|va), |V2)) - (|wa), [W2)),

which extends uniquely to the whole spateW.
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For example, consid&f = 42 ®%2. V is a Hilbert space of dimension 4, ¥o= . So we can writé00)
alternatively as0) ® |0). More generally, fon qubits we havé&s?® --- (ntimes)®--- €2 = ¢?". A typical
element of this space is of the form

Ox|X).
xe{0,1}"

0.3 The Signiﬁcanee of Tensor Products

Classically, if we put together a subsystem that stérb#s of information with one that stordsbits of
information, the total capacity of the composite systerk-sl bits. Or put another way, K bits of infor-
mation are required to describe the state of the first subsyand bits to describe the second, thien-|
bits suffice to describe the composite system.

From this viewpoint, the situation with quantum systemsxsemmely paradoxical. We neddcomplex
numbers to describe the state of a k-level quantum systenv.ddosider a system that consists of a k-level
subsystem and an I-level subsystem. To describe the coramysitem we neekd complex numbers. If
the state of the system was known to be a tensor product|mh® |Lp> then onlyk+ I complex numbers
would suffice. It follows that most states of the compositetem are not tensor product states. They are
entangled states. This brings up another question: onetmwighder where nature finds the extra storage
space when we put these two subsystems together.

An extreme case of this phenomenon occurs when we considemahbit quantum system. The Hilbert
space associated with this system is the n-fold tensor ptaxfi’? = 42", Thus nature must “remember”
of 2" complex numbers to keep track of the state ofnagubit system. For modest values obf a few
hundred, 2 is larger than estimates on the number of elementary pestinlthe Universe.

This is the fundamental property of quantum systems thagas in quantum information processing.

Finally, note that when we actually a measurenaqubit quantum state, we see only rubit string - so we
can recover from the system omyrather than 2, bits of information.

0.4 Unitary Operators

The final postulate of quantum physics states that the ewalof a quantum system is necessarily unitary.
Intuitively, a unitary transformation is a rigid body rdtat (or reflection) of the Hilbert space, thus resulting
in a transformation of the state vector that doesn’t chatsgemgth.

Suppose we havelkastate quantum system. Then a unitary transformation desspace is a linear transfor-
mation that can be specified bya k matrixU with complex entries that satisfies = U . For example,
for an op erator o2,
: _
U=(E3)=VU"=(Ga -

It is easily verified that the composition of two unitary tséormations is also unitary (Prodfl,V unitary,
thenUV)"=VvTUT=v-U-1=(UV)™?).

Some properies of a unitary transformatldn

e The rows ofU form an orthonormal basis.

e The columns ofJ form an orthonormal basis.
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» U preserves inner products, i.e. the inner product betv}m)eand|v> is the same as the inner product
betweerU |u) andU |v). The latter quantity can be written 48| U U |w) = (v|w). ThereforeU
preserves norms and angles (up to sign).

« The eigenvalues af are all of the forme!® (sinceU is length-preserving, i.e(y,v) = (UV,UV)).

» U can be diagonalized into the form

gt o0 ... 0
o . .0
0O ... 0 db&

05 Quantum Gates

We give some examples of simple unitary transforms, or “tuargates.”

Some quantum gates with one qubit:

« Hadamard Gate. Can be viewed as a reflection arari®l or a rotation aroundtr/4 followed by a
reflection.

o L(1 1
S Vv2\1 -1

The Hadamard Gate is one of the most important gates. NoteHtha= H — sinceH is real and
symmetric —andH? =1.

» Rotation Gate. This rotates the planefy
_ [ cos@ —sinB
~\ sin@ cosB
* NOT Gate. This flips a bit from 0 to 1 and vice versa.
0 1
vor (99
» Phase Flip.
1 0
2~(0 %)

The phase flip is a NOT gate acting in the ) = %(\O> +|1)),]-) = \%(\O> —|1)) basis. Indeed,
Z|+) =|-)andz|-) =|+).

And a two-qubit quantum gate:
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» Controlled Not (CNQOT).

o

[
L OoOOoOOo
oOr oo

The first bit of a CNOT gate is the “control bit;” the secondhs t'target bit.” The control bit never
changes, while the target bit flips if and only if the contritli® 1.

The CNOT gate is usually drawn as follows, with the contrdldn top and the target bit on the
bottom:

0.6 Tensor product of operators

Suppose we have two quantum systemk-state system with associated Hilbert sp&cand al-state
system with associated Hilbert spate Suppose we apply a unitary transformatismo the first system
andB to the second system. What is the resulting transformatioth® combined system@W? To figure
this out, let us first see how the combined transformatios antbasis states &f @ W. Consider a basis
state|i) @ {ketj where 0<i <k—1and 0< j <|—1. SinceA s only acting orV andB only onW, this
state is transformed i) ® B|j).

Suppos¢v> and\w> are unentangled states @' and¢™", respectively. The state of the combined systemis
[v) ® |w) on€™. If the unitary operatoA is applied to the first subsystem, aBdo the second subsystem,
the combined state becomal/) @ B|w).

In general, the two subsystems will be entangled with eabbrpso the combined state is not a tensor-
product state. We can still appl to the first subsystem ariéi to the second subsystem. This gives the
operatorA® B on the combined system, defined on entangled states by ljir@eending its action on
unentangled states.

(For example(A® B)(|0) ©|0) ) = A|0) ®B|0). (A®B)(|1) ®|1)) = A|1) ®B|1). Therefore, we define
(A®B)(75|00) +75|11)) to be 75 (A® B)[00) + 25 (A® B)[11) = 7 (A|0) ® B|0) +A|1) ®B|1)).)
Let|e1),...,|em) be a basis for the first subsystem, and whte y["_; aj|e)(ej| (thei,jth element ofA

is ajj). Let|f1),...,|fa) be abasis for the second subsystem, and Brite;,_ b | fic)( fi|. Then a basis
for the combined system |3> ® \ fj> ,fori=1,....mandj=1,...,n. The operatoA® Bis

(sl ) o (gmolmcal)

— i%a”bk||a><ej|®\fk><fl‘
= Y aiba(la) 9[f))((e]@(f]) .

AxB

Therefore the(i k), (j,1)th element ofA® B is ajjby. If we order the basise) @ |f;) lexicographically,
then the matrix foA® B is
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a]_]_B alzB
ang ang

in thei, jth subblock, we multiplyg;j by the matrix forB.

0.7 Bell States

The following simple quantum circuit on two qubits outputgeof the four Bell basis states as the inputs
range over the two bit strings.

FIGURE of quantum circuit with Hadamard gate followed by CNO
The four Bell basis states are denoted:

|ot) = %(\o@ +[11))

|®7) = 5(/00) —[11))

W+) = 75(/02) +[10))

¥7) = 75(/01) —[10))

The statédd—, also called the singlet state, has the special propertyttisanvariant under a unitary change
of basis of the two qubits (same change of basis for both gjubit

1 Bell’s Inequahty

Let us return to the proof of the Bell inequality from last &mThe experiment we described there was the
following:

Alice and Bob share a Bell state, sghi ™). Alice is given as input a random bif and Bob a random bit

xg. Alice applies a rotation of-17/16 to her qubit ifxa = 0 and 31/6 if x, = 1. Bob applies a rotation of
11/16 to his qubit ifxg = 0 and—371/6 if xg = 1. Both then measure their qubits in the standard basis and
output their results.

We wish to determine the probability of the eveat xg = a+ b mod 2.

To make the calculation easier, assume instead that Ald@ab share the Bell staté—, and Bob outputs
the complement of the bit that he measures. Now, by the ooi@tsymmetry ofP—, it follows that if Alice
rotates bya and Bob byg, then the probability that they measure different valuesl therefore output the
same value) i£os’(a — B). In the three cases wherg - xg = 0, |a — 3| = 11/8, and so the chance that
a=bora+b=0mod 2 iscos’r/8. In the case that wheoey-xg = 1, |a — 3| = 3r/8. But now the
chance that # b or a-+b = 1 mod 2 issin?37/8 = cos’1t/8. Therefore in all four cases the chance that
Xa - Xg = a+ b mod 2 iscos’11/8.
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