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0.1 Tensor Products
Consider two quantum systems - the first withk distinguishable (classical) states (associated Hilbert space
C k), and the second withl distinguishable states (associated Hilbert spaceC l). What is the Hilbert space as-
sociated with the composite system? We can answer this question as follows: the number of distinguishable
states of the composite system iskl — since for each distinct choice of basis (classical) state

∣

∣i
〉

of the first
system and basis state

∣

∣ j
〉

of the second system, we have a distinguishable state of the composite system.
Thus the Hilbert space associated with the composite systemis C kl.

The tensor product is a general construction that shows how to go from two vector spacesV andW of di-
mensionk andl to a vector spaceV ⊗W (pronounced “V tensorW ”) of dimensionkl. Fix bases|v1〉, . . . , |vk〉
and|w1〉, . . . , |wl〉 for V,W respectively. Then a basis forV ⊗W is given by

{|vi〉⊗ |w j〉 : 1≤ i ≤ k,1≤ j ≤ l},

so that dim(V ⊗W) = kl. So a typical element ofV ⊗W will be of the form∑i j αi j(|vi〉⊗ |w j〉). We can
define an inner product onV ⊗W by

(|v1〉⊗ |w1〉, |v2〉⊗ |w2〉) = (|v1〉, |v2〉) · (|w1〉, |w2〉),

which extends uniquely to the whole spaceV ⊗W .

For example, considerV = C 2⊗C 2. V is a Hilbert space of dimension 4, soV ∼= C 4. So we can write|00〉
alternatively as|0〉⊗ |0〉. More generally, forn qubits we haveC 2⊗·· · (n times)⊗·· ·C 2 ∼= C 2n

. A typical
element of this space is of the form

∑
x∈{0,1}n

αx|x〉.

0.2 Measurements
Let
∣

∣φ
〉

∈C k be the quantum state of a k-state system. Then a measurement of
∣

∣φ
〉

is a process that specifies
an orthonormal basis{

∣

∣v j
〉

} for C k, and associates a real numberr j with each basis vector. In the case that
the r j ’s are distinct, the outcome of the measurement isr j with probability |

〈

v j

∣

∣

∣

∣φ
〉

|2, and in that case
the new state is

∣

∣v j
〉

. If the r j ’s are not distinct, then consider the subspace spanned by all ketv j ’s with
associated real numberr j = r, and letP be the projection operator that projects into this subspace. Then the

measurement outcome isr with probability |P
∣

∣φ
〉

|2, and in that case the new state is
P
∣

∣φ
〉

|P
∣

∣φ
〉

|
.

Another way of describing an orthogonal measurement is by a Hermitian operatorM. Such an operator
has an orthogonal set of eigenspaces, each with a real eigenvalue. These provide the measurement basis
together with the associated real numbers. The Hermitian operator corresponding to the above orthogonal
measurement is just∑ j r j

∣

∣v j
〉〈

v j
∣

∣ .
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0.3 Quantum Gates
Recall the examples of simple unitary transforms, or “quantum gates.” These include the single qubit gates
such as the hadamard gateH, the NOT gateX , the controlled phase gateZ, the rotation byθ gateRθ , as
well as the two qubit gateCNOT .

Certain families of quantum gates are universal in the sensethat any unitary transformation onk qubits
can be closely approximated by a quantum circuit using only quantum gates from the family. Of course,
the number of quantum gates in the circuit must scale exponentially in k. Examples of universal families
of quantum gates include CNOT and all single qubit gates (actually any single qubit gate other than the
Hadamard).

0.4 Tensor product of operators
Suppose we have two quantum systems: ak-state system with associated Hilbert spaceV and al-state
system with associated Hilbert spaceW . Suppose we apply a unitary transformationA to the first system
andB to the second system. What is the resulting transformation on the combined systemV ⊗W? To figure
this out, let us first see how the combined transformation acts on basis states ofV ⊗W . Consider a basis
state

∣

∣i
〉

⊗{ket j where 0≤ i ≤ k−1 and 0≤ j ≤ l −1. SinceA is only acting onV andB only onW , this
state is transformed toA

∣

∣i
〉

⊗B
∣

∣ j
〉

.

Suppose
∣

∣v
〉

and
∣

∣w
〉

are unentangled states onC m andC n, respectively. The state of the combined system is
∣

∣v
〉

⊗
∣

∣w
〉

onC mn. If the unitary operatorA is applied to the first subsystem, andB to the second subsystem,
the combined state becomesA

∣

∣v
〉

⊗B
∣

∣w
〉

.

In general, the two subsystems will be entangled with each other, so the combined state is not a tensor-
product state. We can still applyA to the first subsystem andB to the second subsystem. This gives the
operatorA⊗B on the combined system, defined on entangled states by linearly extending its action on
unentangled states.

(For example,(A⊗B)(
∣

∣0
〉

⊗
∣

∣0
〉

) = A
∣

∣0
〉

⊗B
∣

∣0
〉

. (A⊗B)(
∣

∣1
〉

⊗
∣

∣1
〉

) = A
∣

∣1
〉

⊗B
∣

∣1
〉

. Therefore, we define
(A⊗B)( 1√

2

∣

∣00
〉

+ 1√
2

∣

∣11
〉

) to be 1√
2
(A⊗B)

∣

∣00
〉

+ 1√
2
(A⊗B)

∣

∣11
〉

= 1√
2

(

A
∣

∣0
〉

⊗B
∣

∣0
〉

+ A
∣

∣1
〉

⊗B
∣

∣1
〉)

.)

Let
∣

∣e1
〉

, . . . ,

∣

∣em
〉

be a basis for the first subsystem, and writeA = ∑m
i, j=1 ai j

∣

∣ei
〉〈

e j

∣

∣ (the i, jth element ofA
is ai j). Let

∣

∣ f1
〉

, . . . ,

∣

∣ fn
〉

be a basis for the second subsystem, and writeB = ∑n
k,l=1 bkl

∣

∣ fk
〉〈

fl

∣

∣. Then a basis
for the combined system is

∣

∣ei
〉

⊗
∣

∣ f j
〉

, for i = 1, . . . ,m and j = 1, . . . ,n. The operatorA⊗B is

A⊗B =

(

∑
i j

ai j

∣

∣ei
〉〈

e j

∣

∣

)

⊗
(

∑
kl

bkl

∣

∣ fk
〉〈

fl

∣

∣

)

= ∑
i jkl

ai jbkl
∣

∣ei
〉〈

e j
∣

∣⊗
∣

∣ fk
〉〈

fl
∣

∣

= ∑
i jkl

ai jbkl(
∣

∣ei
〉

⊗
∣

∣ fk
〉

)(
〈

e j
∣

∣ ⊗
〈

fl
∣

∣ ) .

Therefore the(i,k),( j, l)th element ofA⊗B is ai jbkl . If we order the basis
∣

∣ei
〉

⊗
∣

∣ f j
〉

lexicographically,
then the matrix forA⊗B is







a11B a12B · · ·
a21B a22B · · ·

...
...

. . .






;
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in the i, jth subblock, we multiplyai j by the matrix forB.

0.5 Bell States
The following simple quantum circuit on two qubits outputs one of the four Bell basis states as the inputs
range over the two bit strings.

FIGURE of quantum circuit with Hadamard gate followed by CNOT.

The four Bell basis states are denoted:
∣

∣Φ+
〉

= 1√
2
(
∣

∣00
〉

+
∣

∣11
〉

)
∣

∣Φ−〉 = 1√
2
(
∣

∣00
〉

−
∣

∣11
〉

)
∣

∣Ψ+
〉

= 1√
2
(
∣

∣01
〉

+
∣

∣10
〉

)
∣

∣Ψ−〉 = 1√
2
(
∣

∣01
〉

−
∣

∣10
〉

)

The stateΨ−, also called the singlet state, has the special property that it is invariant under a unitary change
of basis of the two qubits (same change of basis for both qubits).

1 Superdense Coding
Suppose Alice and Bob have aquantum communications channel, over which Alice can send qubits toBob.
However, Alice just wants to send a regular classical letter(sequence of bits). One way to send her message
is to encode a 0 as

∣

∣0
〉

and a 1 as
∣

∣1
〉

. But can she do better than sending as many qubits as bits in her
message?

Intuitively, since quantum systems are more complex than classical systems, they can hold information – so
maybe Alice can do better. But quantum information is hard toaccess; when you measure a quantum state,
it looks classical – so maybe she can’t.

In fact, if Alice and Bob share a Bell state, then she can send two classical bits of information using only
one qubit.

Say Alice and Bob share
∣

∣Φ+
〉

= 1√
2
(
∣

∣00
〉

+
∣

∣11
〉

). Depending on the message Alice wants to send, she
applies a gate to her qubit, then sends it to Bob. If Alice wants to send 00, then she does nothing to her qubit,
just sends it to Bob. If Alice wants to send 01, she applies thephase flipZ to her qubit, changing the quantum
state to 1√

2
(
∣

∣00
〉

−
∣

∣11
〉

) =
∣

∣Φ−〉 . To send 10, she applies the NOT gate, giving1√
2
(
∣

∣10
〉

+
∣

∣01
〉

) =
∣

∣Ψ+
〉

.

To send 11, she applies bothNOT andZ, giving 1√
2
(
∣

∣01
〉

−
∣

∣10
〉

) =
∣

∣Ψ−〉 .

After receiving the qubit from Alice, Bob has one of the four mutually orthogonal Bell states. He can
therefore apply a measurement to distinguish between them with certainty, and determine Alice’s message.
In practice, the way he’ll make this measurement is by running the circuit we saw in Lecture 2 backwards
(i.e., applying(H ⊗ I)◦CNOT ), then measuring in the standard basis.

Note that Alice really did use two qubits total to send the twoclassical bits. After all, Alice and Bob
somehow had to start with a shared Bell state. However, the first qubit – Bob’s half of the Bell state – could
have been sent well before Alice had decided what message shewanted to send. Perhaps only much later
did she decide on her message and send over the second qubit.

One can show that it is not possible to do any better. Two qubits are necessary to send two classical bits.
Superdense coding allows half the qubits to be sent before the message has been chosen.
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1.1 Another Example: Quantum Teleportation
The No Cloning Theorem states that no quantum system can copy a qubit; that is, thereis no transform
sending|ψ〉⊗ |0〉 7→ |ψ〉⊗ |ψ〉. However, if we are willing to destroy the original, we can transmit a qubit,
even to a remote location.

SupposeA has access to a quantum state|ψ〉 = a0|0〉+a1|1〉, which she wants to transmit to a remote party
B. She can accomplish this by transmitting only classical bits of information, providedA andB share the
entangled two-qubit state

|φ〉 =
1√
2
(|00〉+ |11〉).

The technique is known asquantum teleportation.

The basic idea is this.A controls|ψ〉 and the first qubit of|φ〉. A’s strategy, roughly speaking, is to forcibly
entangle|ψ〉 with the first qubit|φ〉. A then measures the first qubit of|φ〉, resolving it completely, and
hopes this will cause|ψ〉 to become entangled with thesecond qubit of |φ〉. Presumably,B could then
transfer|ψ〉 to the second qubit of|φ〉.
As a first try, consider the following diagram. The top line represents|ψ〉; the bottom two represent the two
qubits of|φ〉.

t

d M

That is,A passes|ψ〉 and the first qubit of|φ〉 through a CNOT gate, and then measures the first qubit of
|φ〉. Now the input into the system as a whole is

|φ〉⊗ |ψ〉 = ∑
i=0,1

ai|i〉⊗ ∑
j=0,1

1√
2
| j, j〉.

After passing through the CNOT gate this becomes

∑
i, j

ai
∣

∣i, i⊕ j, j
〉

.

Now A measures the middle qubit. Suppose it is measured asl; thenl = i⊕ j. The state is now

∑
j

a j⊕l
∣

∣ j⊕ l, j
〉

.

Next, A transmitsl to B. If l = 0, B takes no action, while ifl = 1, thenB performs a bit flip on his qubit

(the bottom qubit in the diagram.) A bit flip is just the transformation

(

0 1
1 0

)

. Thus we have

∑
j

a j⊕l
∣

∣ j, j
〉

.

Finally, B does a phase flip on his qubit, yielding

∑
j

a j
∣

∣ j, j
〉

.
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This is almost exactly what we want. The only problem is that now, the qubit corresponding to|ψ〉 is
entangled withB’s qubit. The entanglement that was necessary to get the whole process started is now a
liability. One way to disentangle them would be forA to measure her remaining qubit. But this would
destroyB’s qubit as well.

The ideal solution would be to send the entangle qubits through a CNOT gate—butA controls the first
qubit andB controls the second. This would require quantum communication betweenA andB, which is
prohibited.

The correct solution is to go back and modify the original diagram, inserting a Hadamard gate and an
additional measurement:

t

d M

H M

Now the algorithm proceeds exactly as before. HoweverA’s application of the Hadamard gate now induces
the transformation

∑
j

a j
∣

∣ j, j
〉

−→ ∑
i j

a j(−1)i j
∣

∣i, j
〉

.

Finally A measuresi and sends the measurement toB. The state is now:

∑
j

a j(−1)i j| j〉.

If i = 0 then we are done; ifi = 1 thenB applies a phase flip. In either case the state is nowa0|0〉+ a1|1〉.
SoA has transported the quantum state toB simply by sending two classical bits.
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