
CS 294-2 Simon’s Algorithm + QFT 2/7/07
Spring 2007 Lecture 7

0.1
Recall that our basic primitive for designing quantum algorithms is fourier sampling: prepare some quantum
state

∣

∣ψ
〉

= ∑x αx
∣

∣x
〉

on n qubits; perform a Hadamard transform, resulting in the superposition∑x βx
∣

∣x
〉

;
now measure to samplex with probability |βx|2. The point is that classically it is difficult to simulate the
effects of the quantum interference, and therefore to determine for which stringsx there is constructive
interference and are therefore output with high probability.

Today we will see two introduce two innovations that will prepare us for the quantum algorithm for factoring.

1) A more sophisticated method for preparing the initial superposition
∣

∣ψ
〉

= ∑x αx
∣

∣x
〉

?

2) Generalizing the fourier transform from the Hadamard transform (which is a fourier transform over the
groupZn

2 to the groupZN .

0.2 Setting up a random pre-image state
Suppose we’re given a classical circuit for ak−1 function f : {0,1}n →{0,1}n.

We will show how to set up the quantum state
∣

∣φ
〉

= 1/
√

k ∑x: f (x)=a

∣

∣x
〉

. Herea is uniformly random among
all a in the image off .

The algorithm uses two registers, both withn qubits. The registers are initialized to the basis state
|0· · ·0〉 |0· · ·0〉. We then perform the Hadamard transformH2n on the first register, producing the su-
perposition

1

2n/2 ∑
x∈{0,1}n

|x〉 |0· · ·0〉 .

Then, we computef (x) through the oracleC f and store the result in the second register, obtaining the state

1

2n/2 ∑
x∈{0,1}n

|x〉 | f (x)〉 .

The second register is not modified after this step. Thus we may invoke the principle of safe storage and
assume that the second register is measured at this point.

Let a be the result of measuring of the second register. Thena is a random element in the range off , and
according to rules of partial measurement, the state of the first register is a superposition over exactly those
values ofx that are consistent with those contents for the second register. i.e.

∣

∣φ
〉

= 1/
√

k ∑
x: f (x)=a

∣

∣x
〉

0.3 Simon’s Algorithm
Suppose we are given function 2−1 f : {0,1}n → {0,1}n, specified by a black box, with the promise that
there is ana ∈ {0,1}n with a 6= 0n such that

CS 294-2, Spring 2007, Lecture 7 1

|0n〉

|0n〉

H2n

C f

| f (x)〉

H2n |y〉

Figure 1: Simon’s algorithm

• For all x f (x+ a) = f (x).

• If f (x) = f (y) then eitherx = y or y = x+ a.

The challenge is to determinea. It is intuitively obvious that this is a difficult task for a classical probabilistic
computer. We will show an efficient quantum algorithm.

0.4 Simon’s Algorithm
1. Use f to set up random pre-image state

φ = 1/
√

2
∣

∣z
〉

+1/
√

2
∣

∣z+ a
〉

wherez is a randomn-bit string.

2. Perform a Hadamard transformH⊗n.

After step 2 we obtain a superposition

∑
y∈{0,1}n

αy |y〉

where

αy =
1√
2

1

2n/2
(−1)y·z +

1√
2

1

2n/2
(−1)y·(z⊕a) =

1

2(n+1)/2
(−1)y·z [1+(−1)y·a] .

There are now two cases. For eachy, if y ·a = 1, thenαy = 0, whereas ify ·a = 0, then

αy =
±1

2(n−1)/2
.

So when we observe the first register, with certainty we’ll see ay such thaty · a = 0. Hence, the output
of the measurement is a randomy such thaty · a = 0. Furthermore, eachy such thaty · a = 0 has an equal
probability of occurring. Therefore what we’ve managed to learn is an equation

y1a1⊕·· ·⊕ ynan = 0 (1)

wherey = (y1, . . . ,yn) is chosen uniformly at random from{0,1}n. Now, that isn’t enough information to
determinea, but assuming thaty 6= 0, it reduces the number of possibilities fora by half.

CS 294-2, Spring 2007, Lecture 7 2

It should now be clear how to proceed. We run the algorithm over and over, accumulating more and more
equations of the form in (1). Then, once we have enough of these equations, we solve them using Gaussian
elimination to obtain a unique value ofa. But how many equations is enough? From linear algebra, we
know thata is uniquely determined once we haven− 1 linearly independent equations—in other words,
n−1 equations

y(1) ·a ≡ 0(mod2)
...

y(n−1) ·a ≡ 0(mod2)

such that the set
{

y(1), . . . ,y(n−1)
}

is linearly independent in the vector spaceZn
2. Thus, our strategy will be

to lower-bound the probability that anyn−1 equations returned by the algorithm are independent.

Suppose we already havek linearly independent equations, with associated vectorsy(1), . . . ,y(k). The vectors
then span a subspaceS ⊆ Zn

2 of size 2k, consisting of all vectors of the form

b1y(1) + · · ·+ bky(k)

with b1, . . . ,bk ∈ {0,1}. Now suppose we learn a new equation with associated vectory(k+1). This equation
will be independent of all the previous equations provided that y(k+1) lies outside of S, which in turn has
probability at least(2n − 2k)/2n = 1− 2k−n of occurring. So the probability that anyn equations are
independent is exactly the product of those probabilities.

(

1− 1
2n

)

×
(

1− 1
2n−1

)

×·· ·×
(

1− 1
4

)

×
(

1− 1
2

)

.

Can we lower-bound this expression? Trivially, it’s at least

∞

∏
k=1

(

1− 1
2k

)

≈ 0.28879;

the infinite product here is related to something in analysiscalled a q-series. Another way to look at the
constant 0.28879. . . is this: it is the limit, asn goes to infinity, of the probability that ann×n random matrix
overZ2 is invertible.

But we don’t need heavy-duty analysis to show that the product has a constant lower bound. We use the
inequality (1− a)(1− b) = 1− a− b + ab > 1− (a + b), if a,b ∈ (0,1). We just need to multiply the
product out, ignore monomials involving two or more1

2k terms multiplied together (which only increase the
product), and observe that the product is lower-bounded by

[

1−
(

1
2n +

1
2n−1 + · · ·+ 1

4

)]

· 1
2
≥ 1

4
.

We conclude that we can determinea with constant probability of error after repeating the algorithm O(n)
times. So the number of queries tof used by Simon’s algorithm isO(n). The number of computation
steps, though, is at least the number of steps needed to solvea system of linear equations, and the best
known upper bound for this isO

(

n2.376
)

, due to Coppersmith and Winograd.

CS 294-2, Spring 2007, Lecture 7 3

0.5 Classical solution
We are going to prove that any probabilistic algorithm needsan exponential time to solve this problem.
Suppose thata is chosen uniformly at random from{0,1}n −{0n}. Now consider a classical probabilistic
algorithm that’s already madek queries, to inputsx1, . . . ,xk. We want to know how much information the
algorithm could have obtained abouta, given those queried pairs(xi, f (xi)).

On the one hand, there might be a pair of inputsxi,x j (with 1≤ i, j ≤ k) such thatf (xi) = f (x j). In this
case, the algorithm already has enough information to determinea: a = xi ⊕ x j.

On the other hand, suppose no such pairf (xi), f (x j) exists. Then the queriedf (xi)’s are distinct anda is

none of

(

k
2

)

valuesxi ⊕ x j.

The probability that the next query will succeed is at most

k

2n −1−
(

k
2

)

because there are at least 2n−1−
(

k
2

)

possible values of u for choosing at the(k+1)-th query. Andf (xk+1)

should be equal to one of the prior observedf (xi), i ∈ [1,k].

Taking the sum over allk ∈ {1, . . . ,m}. We get

m

∑
k=1

k

2n −1−
(

k
2

) ≤
m

∑
k=1

k
2n − k2 ≤ m2

2n −m2

In order to have an constant probability, we must choosem = Ω(2n/2). Hence, any deterministic algorithm
has to run in exponential time to get a correct answer with probability larger than a constant.

Fourier transform on ZN

Let f be a complex-valued function onZN . Then its Fourier transform is

f̂ (t) =
1√
N

∑
x∈ZN

f (x)wxt

wherew = exp(2πi/N). Let B1 be the standard basis forC ZN consisting of vectorsfi(j) = δi, j. In the
standard basis the matrix for the Fourier transform is

FTN =

1 1 1 1 · · · 1
1 w w2 w3 · · · wN−1

1 w2 w4 w6 · · · w2N−2

1 w3 w6 w9 · · · w3N−3

...
...

...
...

.. .
...

1 wN−1 w2N−2 w3N−3 · · · w(N−1)(N−1)

wherei, j’th entry of FTN is wi j.

CS 294-2, Spring 2007, Lecture 7 4

identity

vv----

-

v0

FTN/2 GFED@ABC×1

JJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ
?>=<89:;+

v1

FTN/2 ONMLHIJK×w j

ttttttttttttttttttttttttttttttttttt ?>=<89:;−

multiplication byw j

gg----------------

Figure 2: A circuit for classical fast Fourier transform

Classical fast Fourier transform
Straightforward multiplication of the vectorf by FTN would takeΩ(N2) steps because multiplication off
by each row requiresN multiplications. However, there is an algorithm known as fast Fourier transform
(FFT) that performs Fourier transform inO(N logN) operations.

In our presentation of FFT we shall restrict ourselves to thecaseN = 2n. LetB2 be a basis forC ZN consisting
of vectors

fi(j) =

{

δ2i, j, i ∈ {0,1, . . . ,N/2−1},
δ2i−N+1, j, i ∈ {N/2,N/2+1, . . . ,N −1},

i.e., the vectors of the standard basis sorted by the least-significant bit. Then as a map fromB2 to B1 the
Fourier transform has the matrix representation

bit #
j

j + N/2

(

2k
w2 jk

2k +1
w2 jkw j

w2 jk w2 jkw j

)

=

(

FTN/2 w jFTN/2

FTN/2 −w jFTN/2

)

.

Hence,
(

w2 jk w2 jkw j

w2 jk w2 jkw j

)(

v0

v1

)

=

(

FTN/2v0 + w jFTN/2v1

FTN/2v0−w jFTN/2v1

)

.

This representation gives a recursive algorithm for computing the Fourier transform in timeT (N)= 2T (N/2)+
O(N) = O(N logN). As a circuit the algorithm can be implemented as

CS 294-2, Spring 2007, Lecture 7 5

n’th bit GFED@ABCRn

most
significant

bits

n−1’th bit QFTN/2 ONMLHIJKRn−1

least
significant

bit
• • H

Figure 3: Circuit for quantum Fourier transform

Quantum Fourier transform
Let N = 2n. Suppose a quantum stateα on n qubits is given as∑N−1

j=0 α j
∣

∣ j
〉

. Let the Fourier transform ofφ
beFTN

∣

∣φ
〉

= ∑N−1
j=0 β j

∣

∣ j
〉

where

FTN

α0

α1
...

αN−1

=

β0

β1
...

βN−1

.

The mapFTN =
∣

∣α
〉

7→
∣

∣β
〉

is unitary (see the proof below), and is called the quantum Fourier transform
(QFT). A natural question arises whether it can be efficiently implemented quantumly. The answer is that it
can be implemented by circuit of sizeO(log2N). However, this does not constitute an exponential speed-up
over the classical algorithm because the result of quantum Fourier transform is a superposition of states
which can be observed, and any measurement can extract at most n = logN bits of information.

A quantum circuit for quantum Fourier transform is whereRK is the controlled phase shift by angle 2π/2K

whose matrix is

RK =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 e2π/2K

.

In the circuity above the quantum Fourier transform onn− 1 bits corresponds to two Fourier transforms
on n−1 bits in the figure??. The controlled phase shifts correspond to multiplications by w j in classical
circuit. Finally, the Hadamard gate at the very end corresponds to the summation.

Properties of Fourier transform
• FTN is unitary. Proof: the inner product of thei’th and j’th column ofFTN wherei 6= j is

1
N ∑

k∈ZN

wikw jk =
1
N ∑

k∈ZN

wik− jk =
1
N ∑

k∈ZN

(wi− j)k =
1
N

wN(i− j)−1
wi− j −1

=
1
N

1−1
wi− j −1

CS 294-2, Spring 2007, Lecture 7 6

which is zero becausewi− j 6= 1 due toi 6= j. The norm ofi’th column is
√

1
N ∑

k∈ZN

wikwik =

√

1
N ∑

k∈ZN

1 = 1.

• FT−1
N is FTN with w replaced byw−1. Proof: sinceFT is unitary we haveF−1

N = FT ∗
N . SinceFTN is

symmetric and ¯w = w−1, the result follows.

• Fourier transform sends translation into phase rotation,and vice versa. More precisely, if we let
the translation beTl :

∣

∣x
〉

7→
∣

∣x + l (mod N)
〉

and rotation byPk :
∣

∣x
〉

7→ wkx
∣

∣x
〉

, thenFTNPlPk =
PlT−kFTN . Proof: by linearity it suffices to prove this for a vector of the form

∣

∣x
〉

. We have

FTNTlPk

∣

∣x
〉

= FTNwkx
∣

∣x+ l (mod N)
〉

=
1√
N

wkx ∑
y∈ZN

wy(x+l)
∣

∣y
〉

and by making the substitutiony = y′− k

=
1√
N

wy′x ∑
y′∈ZN

w(y′−k)l
∣

∣y′− k
〉

=
1√
N

PlT−k ∑
y′∈ZN

wxy
∣

∣y′
〉

= PlT−kFTN
∣

∣x
〉

.

Corollary: FTN followed by Fourier sampling is equivalent toTlFTN followed by Fourier sampling.

• Supposer | N. Let
∣

∣φ
〉

= 1√
N/r

∑N/r−1
j=0

∣

∣ jr
〉

. ThenFTN

∣

∣φ
〉

= 1√
r ∑r−1

i=0

∣

∣iN
r

〉

. Proof: the amplitude of
∣

∣iN
r

〉

is

1√
N

1
√

N/r

N/r−1

∑
j=0

w(jr)(iN/r) =

√
r

N

N/r−1

∑
j=0

1 =
1√
r

SinceFTN is unitary, the norm ofFTN
∣

∣φ
〉

has to be equal to the norm of
∣

∣φ
〉

which is 1. However
the orthogonal projection ofFTN

∣

∣φ
〉

on the space spanned by vectors of the form
∣

∣iN
r

〉

has norm 1.
ThereforeFTN

∣

∣φ
〉

lies in that space.

If we apply the corollary above to
∣

∣φ
〉

we conclude that the result of Fourier sampling ofTl

∣

∣φ
〉

=√
r√
N ∑N/r−1

j=0

∣

∣ jr + l
〉

is a random multiples ofN/r.

CS 294-2, Spring 2007, Lecture 7 7

	
	Setting up a random pre-image state
	Simon's Algorithm
	Simon's Algorithm
	Classical solution

