
CS 294-2 Phase Estimation 3/5/07
Spring 2007 Lecture 12

In this lecture we will describe Kitaev’s phase estimation algorithm, and use it to obtain an alternate derivation of a
quantum factoring algorithm. We will also use this technique to design quantum circuits for computing the Quantum
Fourier Transform modulo an arbitrary positive integer.

0.1 Phase Estimation Technique

In this section, we define the phase estimation problem and describe an efficient quantum circuit for it.

Let U be aN ×N unitary transformation.U has an orthonormal basis of eigenvectors
∣

∣ψ1
〉

,
∣

∣ψ2
〉

, . . . ,
∣

∣ψN
〉

with
eigenvaluesλ1,λ2, . . . ,λN , whereλ j = e2π iθ j for someθ j.

Proof: U , being unitary, maps unit vectors to unit vectors and hence all the eigenvalues have unit magnitude, i.e. they
are of the forme2π iθ for someθ . Let

∣

∣ψ j
〉

and
∣

∣ψk
〉

be two distinct eigenvectors with distinct eigenvaluesλ j andλk.
We have thatλ j〈ψ j,ψk〉 = 〈λ jψ j,ψk〉 = 〈Uψ j,ψk〉 = 〈ψ j,Uψk〉 = 〈ψ j,λ ψk〉 = λk〈ψ j,ψk〉. Sinceλ j 6= λk, the inner
product〈ψ j,ψk〉 is 0, i.e. the eigenvectors

∣

∣ψ j
〉

and
∣

∣ψk
〉

are orthonormal.

Given a unitary transformationU , and one of its eigenvector
∣

∣ψ j
〉

, we want to figure out the corresponding eigenvalue
λ j (or, equivalently,θ j). This is the phase estimation problem.

For any unitary transformationU , let C-U stand for a “controlled U” circuit which conditionally transforms
∣

∣ψ
〉

to
U
∣

∣ψ
〉

as shown in Figure 0.1.

∣

∣ψ
〉

U
∣

∣ψ ′
〉

b

if b = 0 then
∣

∣ψ ′
〉

=
∣

∣ψ
〉

else ifb = 1 then
∣

∣ψ ′
〉

= U
∣

∣ψ
〉

Figure 0.1: Controlled U Circuit

Assume that we have a circuit which implements the controlledU transformation (We will see later in the course how
to construct a circuit that implements a controlledU transformation given a circuit that implementsU). The phase
estimation circuit in Figure 0.2 can be used to estimate the value ofθ .

The phase estimation circuit performs the following sequence of transformations:
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∣

∣ψ
〉

U

∣

∣0
〉

MeasureH H

Figure 0.2: Phase Estimation Circuit

∣

∣0
〉∣

∣ψ
〉 H−→ s.t. (

∣

∣0
〉

+
∣

∣1
〉

)
∣

∣ψ
〉

C-U−→ s.t.
∣

∣0
〉∣

∣ψ
〉

+ s.t.
∣

∣1
〉

λ
∣

∣ψ
〉

= ( s.t.
∣

∣0
〉

+
λ√
2

∣

∣1
〉

)⊗
∣

∣ψ
〉

Note that after theC-U transformation, the eigenvector remains unchanged while we have been able to putλ into the
phase of the first qubit. A Hadamard transform on the first qubit will transform this information into the amplitude
which we will be able to measure.

H−→ 1+ λ√
2

∣

∣0
〉

+
1−λ√

2

∣

∣1
〉

Let P(0) andP(1) be the probability of seeing a zero and one respectively on measuring the first qubit. If we write
λ = e2π iθ , we have:

P(0) =

∣

∣

∣

∣

1+cos2πθ + isin2πθ√
2

∣

∣

∣

∣

2

=
1+cos2πθ

2

P(1) =

∣

∣

∣

∣

1−cos2πθ − isin2πθ√
2

∣

∣

∣

∣

2

=
1−cos2πθ

2

There is a bias of12 cos2πθ in the probability of seeing a 0 or 1 upon measurement. Hence,we can hope to estimate
θ by performing the measurement several times. However, to estimate cos2πθ within m bits of accuracy, we need to
performΩ(2m) measurements. This follows from the fact that estimating the bias of a coin to withinε with probability

at least 1− δ requiresΘ( log(1/δ )

ε2 ) samples.

We will now see how to estimateθ efficiently. Suppose we can implement theCm-U transformation as defined below.

For any unitary transformationU , let Ck-U stand for a “k-controlled U” circuit which implements the transformation
∣

∣k
〉

⊗
∣

∣ψ
〉

−→
∣

∣k
〉

⊗Uk
∣

∣ψ
〉

as shown in Figure 0.3.

Estimatingθ within m bits of accuracy is equivalent to estimating integerj, where j
2m is the closest approximation to

θ . Let M = 2m andwM = e
2πi
M .

CS 294-2, Spring 2007, Lecture 12 0-2



∣

∣ψ
〉

U Uk(
∣

∣ψ
〉

)

k
(m bits)

k ∈ {0,1, . . . ,2m−1}

Figure 0.3: m-Controlled U Circuit

∣

∣ψ
〉

U

∣

∣0m
〉

∣

∣ j
〉

QFT−1
MH⊗m

Figure 0.4: Efficient Phase Estimation Circuit

The circuit in Figure 0.4 performs the following sequence oftransformations:

∣

∣0m〉
∣

∣ψ
〉 H⊗m

−→
(

1√
M

M−1

∑
k=0

∣

∣k
〉

)

⊗
∣

∣ψ
〉

Cm-U−→
(

1√
M

M−1

∑
k=0

λ k
∣

∣k
〉

)

⊗
∣

∣ψ
〉

=

(

1√
M

M−1

∑
k=0

ω jk
m

∣

∣k
〉

)

⊗
∣

∣ψ
〉

Note that the first register now contains the Fourier Transform mod M of j and if we apply the reverse of the Fourier
Transform mod M (note that quantum circuits are reversible), we will get backj.

QFT−1
M−→

∣

∣ j
〉

⊗
∣

∣ψ
〉

If θ = j
2m , then clearly the circuit outputsj. If θ ≈ j

2m , then the circuit outputsj with high probability (Exercise!).

0.2 Kitaev’s Factoring Algorithm
In this section, we will see how to use the phase estimation circuit to factor a number.
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∣

∣1
〉

Ma

∣

∣0m
〉

∣

∣ j
〉

QFT−1
MH⊗m

Figure 0.5: Order Finding Circuit (Kitaev’s)

Recall that the problem of factoring reduces to the problem of order finding. To factorN, it is sufficient to pick a
random numbera and compute the minimum positiver such thatar ≡ 1 modN. With reasonable probability,r is even
andar/2 6≡ ±modN and henceN | ar−1, i.e.N | (ar/2+1)(ar/2−1). SinceN does not dividear/2±1, it must be the
case that a part of it dividesar/2 +1 and hencegcd(N,ar/2 +1) is a non-trivial factor ofN.

We now reduce the problem of order finding to the phase estimation problem. Consider the unitary transformation

Ma :
∣

∣x
〉

→
∣

∣xa modN
〉

. Its eigenvectors are
∣

∣ψk
〉

= 1√
r

(

∣

∣1
〉

+ ω−k
∣

∣a
〉

+ . . .+ ω−k(r−1)
∣

∣ar−1
〉

)

, whereω = e2π i/r:

Ma
∣

∣ψk
〉

=
1√
r

(

∣

∣a
〉

+ ω−k
∣

∣a2〉 + . . .+ ω−k(r−1)
∣

∣ar〉
)

= ωk 1√
r

(

∣

∣1
〉

+ ω−k
∣

∣a
〉

+ . . .+ ω−k(r−1)
∣

∣ar−1〉
)

= ωk
∣

∣ψk
〉

It follows that
∣

∣ψk
〉

is an eigenvector ofMa with eigenvalueωk. Hence, if we can implement theCm-Ma transformation
and construct the eigenvectorψk for some suitablek, we can use the phase estimation circuit to obtain an approximation
to the eigenvaluewk and therefore reconstructr as follows: wk = e2π iθ for θ = k/r. Recall that phase estimation
reconstructsθ ≈ j

2m where j is the output of the phase estimation procedure carried out to m bits of precision. Thus
with high probability j

2m is a very close approximation tokr . Assuming thatk is relatively prime tor (which we will
ensure with high probability) we can estimater using the method of continued fractions if we chooseM ≈ N2.

Lets look carefully at theCm-Ma transformation. It transforms
∣

∣k
〉
∣

∣x
〉

→
∣

∣xak modN
〉

. But this is precisely the
transformation that does modular exponentiation. There exists a classical circuit that performs this transformationin
O(|x|2|k|) time, and thus we can construct a quantum circuit that implements theCm-Ma transformation.

It is not obvious how to obtain an eigenvector
∣

∣ψk
〉

for somek, but it is easy to obtain the uniform superposition of

the eigenvectors
∣

∣ψ0
〉

,
∣

∣ψ1
〉

. . .
∣

∣ψr−1
〉

. Note that 1√
r

r−1
∑

k=0

∣

∣ψk
〉

=
∣

∣1
〉

. Hence, if we use
∣

∣1
〉

as the second input to the

phase estimation circuit, then we will be able to measure a random eigenvaluewk, wherek is chosen u.a.r. from the
set{0, . . . ,r− 1}. Note thatk = 0 is completely useless for our purposes. Butk will be relatively prime tor with
reasonable probability.

With these observations, it is easy to see that the circuit inFigure 0.5 outputs
∣

∣ j
〉

with high probability, where j
2m is

the closest approximation tokr for some randomk. Note that with reasonable probability,k is relatively prime tor and
if that be the case, then we can estimater using the method of continued fractions if we chooseM ≈ N2.

Though the thinking and the analysis behind the Kitaev’s andShor’s order-finding algorithm are different, it is interest-
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ing to note that the two circuits are almost identical. Figure 0.6 describes the Shor’s circuit withQFTQ transformation
replaced byH⊗q since both act in an identical manner on

∣

∣0q
〉

. The quantitiesq, Q andx in the Shor’s algorithm
correspond tom, M anda in the Kitaev’s algorithm. Also, note that raisinga to some power is same as performing
controlled multiplication.

x xk( modN)

∣

∣0q
〉

measureQFTQH⊗q

Figure 0.6: Order Finding Circuit (Shor’s)

0.3 QFT mod Q
In this section, we will present Kitaev’s quantum circuit for computing Fourier Transform over an arbitrary positive
integerQ, not necessarily a power of 2. Letm be such that 2m−1 < Q≤ 2m and letM = 2m.

Recall that the Fourier Transform modQ sends

∣

∣a modQ
〉

−→ 1√
Q

Q−1

∑
b=0

ωab
∣

∣b
〉 let

=
∣

∣χa
〉

whereω = e2π i/Q. Note that{
∣

∣χa
〉

| a = 0,1, . . . ,Q−1} forms an orthonormal basis, so we may regard the Fourier
Transform as a change of basis.

Consider the following sequence of transformations, whichcomputes something close to the Fourier Transform mod
Q:

∣

∣a
〉∣

∣0
〉

−→
∣

∣a
〉

⊗ 1√
Q

Q−1

∑
b=0

∣

∣b
〉

−→
∣

∣a
〉

⊗ 1√
Q

Q−1

∑
b=0

ωab
∣

∣b
〉

=
∣

∣a
〉

⊗
∣

∣χa
〉

We can implement the circuit that sends
∣

∣0
〉

−→ 1√
Q

Q−1
∑

b=0

∣

∣b
〉

efficiently in the following two ways:

1. Perform the following sequence of transformations.

∣

∣0
〉m⊗

∣

∣0
〉 H⊗m

−→ 1
M

2m−1

∑
x=0

∣

∣x
〉∣

∣0
〉 x≥Q−→ 1

M

2m−1

∑
x=0

∣

∣x
〉∣

∣x≥ Q
〉

Note that since we can efficiently decide whether or notx≥ Q classically, we can also do so quantum mechan-
ically. Now take measurement on the second register. If the result is a 0, the first register contains a uniform
superposition over

∣

∣0
〉

, . . . ,
∣

∣Q−1
〉

. If not, we repeat the experiment. At each trial, we succeed with probability
Q/M > 2m−1/2m = 1/2.
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2. If we pick a number u.a.r. in the range 0 toQ−1, the most significant bit of the number is 0 with probability
2m−1/Q. We can therefore set the first bit of our output to be the superposition:

√

2m−1

Q

∣

∣0
〉

+

√

1− 2m−1

Q

∣

∣1
〉

If the first bit is 0, then the remainingm−1 bits may be chosen randomly and independently, which correspond
to the output ofH⊗m−1 on

∣

∣0m−1
〉

. If the first bit is 1, we need to pick the remainingm−1 bits to correspond to
a uniformly chosen random number between 0 andQ−2m−1, which we can do recursively.

The second transformation
∣

∣a
〉∣

∣b
〉

→ ωab
∣

∣a
〉∣

∣b
〉

can be made using the controlled phase shift circuit.

This gives us an efficient quantum circuit for
∣

∣a
〉∣

∣0
〉

→
∣

∣a
〉∣

∣χa
〉

, but what we really want is a circuit for
∣

∣a
〉

→
∣

∣χa
〉

.
In particular, for application to factoring, we need a circuit that “forgets” the inputa in order to have interference in
the superposition over

∣

∣χa
〉

.

What we would like is a quantum circuit that transforms
∣

∣a
〉∣

∣χa
〉

→
∣

∣0
〉∣

∣χa
〉

. If we could find a unitary transformation
U with eigenvector

∣

∣χa
〉

and eigenvaluee2π ia/Q, then we could use phase estimation to implement the transformation
∣

∣0
〉∣

∣χa
〉

→
∣

∣a
〉∣

∣χa
〉

. By reversing the quantum circuit for phase estimation (which we could do since quantum circuits
are reversible), we have an efficient quantum circuit for

∣

∣a
〉∣

∣0
〉

→
∣

∣a
〉∣

∣χa
〉

→
∣

∣0
〉∣

∣χa
〉

which is what we need. Note that the phase estimation circuitwith m bits of precision outputsj such that j
2m ≈ a

Q . So

if we take 2m >> Q2, we can use continued fractions to reconstructa as required above.

To see that the requiredU exists, considerU :
∣

∣x
〉

→
∣

∣x−1 modQ
〉

. Then,

U(χa) = U

(

Q−1

∑
b=0

ωab
∣

∣b
〉

)

=
Q−1

∑
b=0

ωab
∣

∣b−1
〉

= ωa
Q

∑
b=1

ωa(b−1)
∣

∣b−1
〉

= ωaχa.

In addition, note thatUk can be efficiently computed with a classical circuit, and cantherefore be both efficiently and
reversibly computed with a quantum circuit. The overall circuit to computeQFT modQ is shown in Figure 0.7 (The
circuit should be read from right to left).

U

QFT−1
MH⊗m

H⊗m
∣

∣0m
〉

∣

∣a
〉

Controlled
Phase
Shift

∣

∣a
〉

χa

←−

Figure 0.7: Using Reverse Phase Estimation Circuit to do QFTmod Q for arbitrary Q
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