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Spring 2007 Lecture 12

In this lecture we will describe Kitaev’'s phase estimatitgoathm, and use it to obtain an alternate derivation of a
guantum factoring algorithm. We will also use this tech®ido design quantum circuits for computing the Quantum
Fourier Transform modulo an arbitrary positive integer.

0.1 Phase Estimation Technique

In this section, we define the phase estimation problem asctitbe an efficient quantum circuit for it.

Let U be aN x N unitary transformationU has an orthonormal basis of eigenvectfs), |ys),...,|[¢n) with
eigenvaluedy, Ay, ..., Ay, Whereh; = €% for some®.

Proof: U, being unitary, maps unit vectors to unit vectors and heti¢teeaeigenvalues have unit magnitude, i.e. they
are of the forme?™? for somef. Let ](,UJ-> and\wk> be two distinct eigenvectors with distinct eigenvaldgsindAy.

We have thaf ({;, i) = (Aj@;, Y) = U Wj, d) = (@5, U ) = (P, A ) = Ay, Yi). SinceAj # A, the inner
product(y;, Yx) is 0, i.e. the eigenvectohq) and|tpk> are orthonormal. ]

Given a unitary transformatidd, and one of its eigenvect@qtq) , we want to figure out the corresponding eigenvalue
Aj (or, equivalentlyg;). This is the phase estimation problem.

For any unitary transformatiod, let C-U stand for a “controlled U” circuit which conditionally traforms]gU) to
U|y) as shown in FigureQ.1.

w1 v [ )

if b=0then|y’) = |¢)
else ifb =1 then|y’) =U|y)

Figure 0.1: Controlled U Circuit

Assume that we have a circuit which implements the conaldléransformation (We will see later in the course how
to construct a circuit that implements a controllédransformation given a circuit that implemet3. The phase
estimation circuit in FigurEQl 2 can be used to estimate &heevofo.

The phase estimation circuit performs the following seqeeanf transformations:
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Figure 0.2: Phase Estimation Circuit
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Note that after th€-U transformation, the eigenvector remains unchanged wrelbave been able to patinto the
phase of the first qubit. A Hadamard transform on the first iqubi transform this information into the amplitude
which we will be able to measure.
H 1+A 1-A
— —10)+—|1
=2

Let P(0) andP(1) be the probability of seeing a zero and one respectively omsaréng the first qubit. If we write
A = €9 we have:

1+cos2m0 +isin2m0|?> 1+ cos210
V2 2

P(1) = 1—cos2mb —isin2r0 2_ 1-— cos2nb
— 7 — 5

There is a bias o% cos 216 in the probability of seeing a 0 or 1 upon measurement. Hameaan hope to estimate
6 by performing the measurement several times. Howevertim&® cos 216 within m bits of accuracy, we need to

performQ(2™) measurements. This follows from the fact that estimatiegdilas of a coin to withir with probability

atleast - o requirese('ogg#) samples.

We will now see how to estimati@ efficiently. Suppose we can implement thg-U transformation as defined below.

For any unitary transformatidd, let C,-U stand for a “k-controlled U” circuit which implements themisformation
k) @ |@) — |k) @UX|y) as shown in FigureD.3.

Estimating@ within mbits of accuracy is equivalent to estimating integ’;,e:vherezim is the closest approximation to
6. LetM = 2" andwy = e
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Figure 0.3: m-Controlled U Circuit
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Figure 0.4: Efficient Phase Estimation Circuit

The circuit in FiguréQJ4 performs the following sequencérafsformations:

H®m

e (s ) ele)
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Note that the first register now contains the Fourier Tramsfimod M of j and if we apply the reverse of the Fourier
Transform mod M (note that quantum circuits are reversjble)will get backj.

QF Tyt
—

i) ©|w)

If 6= zim then clearly the circuit outputs If 8 ~ zj_m then the circuit outputg with high probability (Exercise!).

0.2 Kitaev's Factoring Algorithm

In this section, we will see how to use the phase estimati@uitito factor a number.
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Figure 0.5: Order Finding Circuit (Kitaev’s)

Recall that the problem of factoring reduces to the problémrder finding. To factoiN, it is sufficient to pick a
random numbea and compute the minimum positivesuch thae’ = 1 modN. With reasonable probability,is even
anda'/? # + modN and hencé\ | & — 1,i.e.N | (@/24 1)(a"/?>—1). SinceN does not divida'/2+ 1, it must be the
case that a part of it divide®/? + 1 and hencgcd(N,a/? + 1) is a non-trivial factor oN.

We now reduce the problem of order finding to the phase estmatroblem. Consider the unitary transformation
Ma: [X) — [xamodN). Its eigenvectors argji) = \% (\1> +wKa) +...+ w’k(r*1)|a'*1>), wherew = 21/":

Ma| i) = % (\a> +w @) +...+ w*k(’*l)\ar>)
_ wk% (1) + @ ¥a) ...+ Dfar 1))
= o)

It follows that] L,Uk> is an eigenvector dfl, with eigenvaluev®. Hence, if we can implement ti@,-M, transformation
and construct the eigenvectgy for some suitabl&, we can use the phase estimation circuit to obtain an appetion
to the eigenvalueX and therefore reconstructas follows: wK = €29 for 8 = k/r. Recall that phase estimation
reconstruct® ~ -, wherej is the output of the phase estimation procedure carriedoomthits of precision. Thus

with high probabilityzj—m is a very close approximation l%h Assuming thak is relatively prime tar (which we will
ensure with high probability) we can estimatasing the method of continued fractions if we chobse: N2.

Lets look carefully at the&C-M, transformation. It transformkk) ]x) — \xak modN>. But this is precisely the
transformation that does modular exponentiation. Theigt®a classical circuit that performs this transformation
O(|x|?|k|) time, and thus we can construct a quantum circuit that imptesitheC-M, transformation.

It is not obvious how to obtain an eigenvectqu> for somek, but it is easy to obtain the uniform superposition of
r-1

the eigenvectorifip), |1) ... |r—1). Note that\% Y |W) =|1). Hence, if we us¢l) as the second input to the
k=0

phase estimation circuit, then we will be able to measurendom eigenvalueX, wherek is chosen u.a.r. from the
set{0,...,r —1}. Note thatk = 0 is completely useless for our purposes. Butill be relatively prime tor with
reasonable probability.

With these observations, it is easy to see that the circiigure[0.5 output$j> with high probability, wherezl—'m is
the closest approximation ﬂbfor some randork. Note that with reasonable probabilikis relatively prime ta and
if that be the case, then we can estimatesing the method of continued fractions if we chobse: N2.

Though the thinking and the analysis behind the Kitaev's@imol’s order-finding algorithm are different, it is intetres
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ing to note that the two circuits are almost identical. Fefl® describes the Shor’s circuit wif Tg transformation
replaced byH®Y since both act in an identical manner m> The quantitieg), Q andx in the Shor’s algorithm
correspond tan, M anda in the Kitaev’s algorithm. Also, note that raisimgto some power is same as performing
controlled multiplication.

measure

|0%) T He®d QFTo [

X X<('modN)

Figure 0.6: Order Finding Circuit (Shor’s)

0.0 QFT mod Q

In this section, we will present Kitaev's quantum circuit fmmputing Fourier Transform over an arbitrary positive
integerQ, not necessarily a power of 2. Letbe such that? ! < Q < 2™ and letM = 2™

Recall that the Fourier Transform m@isends
1 Q1! ab let
lamodQ) — 75 bzow b) = |Xa)

wherew = €¥/Q. Note that{\xa> |a=0,1,...,Q—1} forms an orthonormal basis, so we may regard the Fourier
Transform as a change of basis.

Consider the following sequence of transformations, wigimmputes something close to the Fourier Transform mod

Q:
R10) — [ 55 5 1) — [0 25 5 o) = ) & o)

Q-1
We can implement the circuit that sed@ — % S ]b) efficiently in the following two ways:
Qo

1. Perform the following sequence of transformations.

S W0 =2 S 0

Note that since we can efficiently decide whether onnptQ classically, we can also do so quantum mechan-
ically. Now take measurement on the second register. Ifdlaltis a 0, the first register contains a uniform
superposition ove|rO — > If not, we repeat the experiment. At each trial, we succedu pvobability

Q/M > 2m-1/om — 1/2

o) jo) 2 L7
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2. If we pick a number u.a.r. in the range 0Qo- 1, the most significant bit of the number is 0 with probability
2™-1/Q. We can therefore set the first bit of our output to be the sagsétion:

2m— 1 2m— 1

o |0+ 151

If the first bit is 0, then the remaining— 1 bits may be chosen randomly and independently, which spored
to the output oH®™ 1 on \Om*1> . If the first bit is 1, we need to pick the remainimg- 1 bits to correspond to

a uniformly chosen random number between 0 @d2™ 1, which we can do recursively.

The second transformatida) |b) — w®|a)|b) can be made using the controlled phase shift circuit.

This gives us an efficient quantum circuit fiar) |0) — |a) |xa), but what we really want is a circuit fda) — | Xa).

In particular, for application to factoring, we need a cit¢bat “forgets” the inpu@ in order to have interference in
the superposition ove*p(a> .

What we would like is a quantum circuit that transforfas| xa) — |0) | xa) . If we could find a unitary transformation

U with eigenvecto*xa> and eigenvalue?™/Q, then we could use phase estimation to implement the tremsfion
|O> |Xa> — \a) |Xa> . By reversing the quantum circuit for phase estimation ¢ivlwe could do since quantum circuits
are reversible), we have an efficient quantum circuit for

[@)[0) — [a) [Xa) = [0) [Xa)

which is what we need. Note that the phase estimation civathitm bits of precision outputg such thatzlm ~ %. So
if we take 2" >> Q?, we can use continued fractions to reconsteuas required above.

To see that the requirdd exists, considel : [x) — [x—1 modQ). Then,
Q-1 Q-1 Q
U(xa) =U Z wab|b> — Z wab|b— 1> — W z O‘)a(bfl)|b_ 1> — Wy,
b=0 b=0 =1

In addition, note that/¥ can be efficiently computed with a classical circuit, and itemefore be both efficiently and
reversibly computed with a quantum circuit. The overakgit to computeQF T modQ is shown in Figur€Ql7 (The
circuit should be read from right to left).

— ] Hem QFT, [ Ja |a)
E— Controlled
Phase
Shift <_
U Xa H®m ‘0m>

Figure 0.7: Using Reverse Phase Estimation Circuit to do @iBd Q for arbitrary Q
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