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Spring 2007 Lecture 13

In this lecture, we will discuss the basics of quantum information theory. In particular, we will discuss mixed
quantum states, density matrices, von Neumann entropy and the trace distance between mixed quantum
states.

1 Mixed Quantum State
So far we have dealt withpure quantum states

|ψ〉 = ∑
x

αx|x〉.

This is not the most general state we can think of. We can consider a probability distribution of pure states,
such as|0〉 with probability 1/2 and|1〉 with probability 1/2. Another possibility is the state

{

|+〉 = 1√
2
(|0〉+ |1〉) with probability 1/2

|−〉 = 1√
2
(|0〉− |1〉) with probability 1/2

In general, we can think ofmixed state{pi, |ψi〉} as a collection of pure states|ψi〉, each with associated
probability pi, with the conditions 0≤ pi ≤ 1 and∑i pi = 1. One context in which mixed states arise
naturally is in quantum protocols, where two players share an entangled (pure) quantum state. Each player’s
view of their quantum register is then a probability distribution over pure states (achieved when the other
player measures their register). Another reason we consider such mixed states is because the quantum states
are hard to isolate, and hence often entangled to the environment.

2 Density Matrix
Now we consider the result of measuring a mixed quantum state. Suppose we have a mixture of quantum
states|ψi〉 with probability pi. Each|ψi〉 can be represented by a vector inC 2n

, and thus we can associate
the outer product|ψi〉〈ψi| = ψiψ∗

i , which is an 2n ×2n matrix










a1

a2
...

aN











(

ā1 ā2 · · · āN
)

=











a1ā1 a1ā2 · · · a1āN

a2ā2 a1ā2 · · · a2āN
...

...
aN ā1 aN ā2 · · · aN āN











.

We can now take the average of these matrices, and obtain thedensity matrix of the mixture{pi, |ψi〉}:

ρ = ∑
i

pi|ψi〉〈ψi|.

We give some examples. Consider the mixed state|0〉 with probability of 1/2 and|1〉 with probablity 1/2.
Then

|0〉〈0| =
(

1
0

)

(

1 0
)

=

(

1 0
0 0

)

,
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and

|1〉〈1| =
(

0
1

)

(

0 1
)

=

(

0 0
0 1

)

.

Thus in this case

ρ =
1
2
|0〉〈0|+ 1

2
|1〉〈1| =

(

1/2 0
0 1/2

)

.

Now consider another mixed state, this time consisting of|+〉 with probability 1/2 and|−〉 with probability
1/2. This time we have

|+〉〈+| = (1/2)

(

1
1

)

(

1 1
)

=
1
2

(

1 1
1 1

)

,

and

|−〉〈−| = (1/2)

(

1
−1

)

(

1 −1
)

=
1
2

(

1 −1
−1 1

)

.

Thus in this case the offdiagonals cancel, and we get

ρ =
1
2
|+〉〈+|+ 1

2
|−〉〈−| =

(

1/2 0
0 1/2

)

.

Note that the two density matrices we computed are identical, even though the mixed state we started out
was different. Hence we see that it is possible for two different mixed states to have the same density matrix.

Nonetheless, the density matrix of a mixture completely determines the effects of making a measurement
on the system:

Theorem 13.1: Suppose we measure a mixed state {p j, |ψ j〉} in an orthonormal bases |βk〉. Then the
outcome is |βk〉 with probability 〈βk|ρ |βk〉.
Proof: We denote the probability of measuring|βk〉 by Pr[k]. Then

Pr[k] = ∑
j

p j|〈ψ j|βk〉|2

= ∑
j

p j〈βk|ψ j〉〈ψ j|βk〉

=

〈

βk

∣

∣

∣

∣

∣

∑
j

p j|ψ j〉〈ψ j|
∣

∣

∣

∣

∣

βk

〉

= 〈βk|ρ |βk〉.

2

We list several properties of the density matrix:

1. ρ is Hermitian, so the eigenvalues are real and the eigenvectors orthogonal.

2. If we measure in the standard basis the probability we measure i, P[i] = ρi,i. Also, the eigenvalues of
ρ are non-negative. Suppose thatλ and|e〉 are corresponding eigenvalue and eigenvector. Then if we
measure in the eigenbasis, we have

Pr[e] = 〈e|ρ |e〉 = λ 〈e|e〉 = λ .
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3. trρ = 1. This is because if we measure in the standard basisρi,i = Pr[i] but also∑i Pr[i] = 1 so that
∑i ρi,i = ∑i Pr[i] = 1.

Consider the following two mixtures and their density matrices:

cosθ |0〉+sinθ |1〉 w.p. 1/2 = 1
2

(

cθ
sθ

)

(

cθ sθ
)

= 1
2

(

c2θ cθsθ
cθsθ s2θ

)

cosθ |0〉−sinθ |1〉 w.p. 1/2 = 1
2

(

cθ
−sθ

)

(

cθ −sθ
)

= 1
2

(

c2θ −cθsθ
−cθsθ s2θ

)















=

(

cos2θ 0
0 sin2 θ

)

|0〉 w.p.cos2θ = cos2
(

1
0

)

(

1 0
)

= cos2
(

1 0
0 0

)

|1〉 w.p. sin2θ = sin2θ
(

0
1

)

(

0 1
)

= sin2
(

0 0
0 1

)















=

(

cos2θ 0
0 sin2 θ

)

Thus, since the mixtures have identical density matrices, they are indistinguishable.

3 Von Neumann Entropy
We will now show that if two mixed states are represented by different density measurements, then there is
a measurement that distinguishes them. Suppose we have two mixed states, with density matricesA andB
such thatA 6= B. We can ask, what is a good measurement to distinguish the twostates? We can diagonalize
the differenceA−B to getA−B = EΛE∗, whereE is the matrix of orthogonal eigenvectors. Then ifei is
an eigenvector with eigenvalueλi, thenλi is the difference in the probability of measuringei:

PrA[i]−PrB[i] = λi.

We can define the distance between two probability distributions (with respect to a basisE) as

|DA −DB|E = ∑ (PrA[i]−PrB[i]) .

If E is the eigenbasis, then

|DA −DB|E = ∑
i

|λi| = tr|A−B|= ‖A−B‖tr,

which is called the trace distance betweenA andB.

Claim Measuring with respect to the eigenbasisE (of the matrixA− B) is optimal in the sense that it
maximizes the distance|DA −DB|E between the two probability distributions.

Before we prove this claim, we introduce the following definition and lemma without proof.

Definition Let {ai}N
i=1 and{bi}N

i=1 be two non-increasing sequences such that∑i ai = ∑i bi. Then the se-
quence{ai} is said to majorize{bi} if for all k,

k

∑
i=1

ai ≥
k

∑
i=1

bi.
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Lemma[Schur] Eigenvalues of any Hermitian matrix majorizes the diagonal entries (if both are sorted in
nonincreasing order).

Now we can prove claim 3.

Proof Since we can reorder the eigenvectors, we can assumeλ1 ≥ λ2 ≥ ·· · ≥ λn. Note that tr(A−B) = 0,
so we must have∑i λi = 0. We can split theλi’s into two groups: positive ones and negative ones, we must
have

∑
λi>0

=
1
2
‖A−B‖tr ∑

λi<0

= −1
2
‖A−B‖tr.

Thus

max
k

k

∑
i=1

λi =
1
2
‖A−B‖tr.

Now consider measuring in another basis. Then the matrixA−B is represented asH = F(A−B)F∗, and let
µ1 ≥ µ2 ≥ ·· · ≥ µn be the diagonal entries ofH. Similar argument shows that

max
k

k

∑
i=1

µi =
1
2

n

∑
i=1

|µi| =
|DA −DB|F

2
.

But by Schur’s lemma theλi’s majorizesµi’s, so we must have

|DA −DB|F ≤ |DA −DB|E = ‖A−B‖tr.

Let H(X) be theShannon Entropy of a random variable X which can take on statesp1 . . . pn.

H({pi}) = ∑
i

pi log
1
pi

In the quantum world, we define an analogous quantity,S(ρ), the Von Neumann entropy of a quantum
ensemble with density matrixρ with eigenvaluesλ1, . . . ,λn:

S(ρ) = H{λ1, . . . ,λn} = ∑
i

λi log
1
λi

4 Two open questions related to NRM
Liquid NMR (Nuclear Magnetic Resonance) quantum computershave successfully implemented 7 qubits
and performed a stripped down version of quantum factoring on the number 15. In liquid NMR, the quantum
register is composed of the nuclear spins in a suitably chosen molecule - the number of qubits is equal to the
number of atoms in the molecule. We can think of the computer as consisting of about 1016 such molecules
(a macroscopic amount of liquid), each controlled by the same operations simultaneously. Thus we will
have 1016 copies of our state, each consisting of say 7 qubits. We assume that we can address the qubits
individually, so that for example, we could preform an operation such asCNOT on the 2nd and 4th qubit
(simultaneously on each copy).
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The catch in liquid NMR quantum computing is that initializing the register is hard. Each qubit starts out in
state|0〉 with probability 1/2+ε and in state|1〉 with probability 1/2−ε . Hereε depends upon the strength
of the magnetic field that the liquid sample is placed in. Using very strong magnets in the NMR apparatus,
the polarizationε is still about 10−5.

If ε = 0 then the density matrix describing the quantum state of theregister isρ = 1
2n I. This means that if

we apply a unitary transformationU , the density matrix of the resulting state isI →U UIU† = I. So you
cannot perform any meaningful computation.

The way NMR quantum computation works is this: the initial mixed state (withε = 10−5) is preprocessed
(through a sequence of quantum gates) to obtain a new mixed state which is maximally mixed (12n I) with
probability 1−δ and|0000000〉 with probabilityδ . Now, if we apply a unitary transformation to this state,
we get 1

2n I with probability 1− δ andU |0000000〉 with probability δ . Thus if we measure the state, we
obtain a coin flip with biasδ 2 towards the correct answer. Another way of thinking about this is that the
1
2n I gives no net signal in the measurement, while theδ 2 signal gets amplified by the 1016 copies of the
computation being carried out simultaneously. The problemis thatδ is exponentially small inn the number
of qubits. Therefore liquid NMR quantum computation cannotscale beyond 10-20 qubits.

Question 1: Say we have a single clean bit (andn maximally mixed qubits), what can we do with this?

We can do at least one quantum computation, phase estimationto approximate the trace of a unitary matrix.
Use the single clean qubit as the control bit and apply the (controlled) unitary to then maximally mixed
qubits. We can think of then qubits as being a uniform mixture over the eigenvectors of the unitary! (see
previous lecture for details).

Is there anything else that we can do with just one qubit? Can you prove limits on what can be done with
one clean qubit.

Question 2

Let ρ be a density matrix for a mixed state which takes on|x〉 with probability(1/2+ε)#0(1/2−ε)#1 where
#0 and #1 are the number of 0s and 1s in|x〉 respectively. Therefore,ρ can be written as a probability
distribution over unentangled states. Such mixed states are called separable mixed states. It turns out, that
if the density matrixρ ′ is sufficiently close to the identity matrixI then there always exists some such
decomposition into a distribution over unentangled states. Using the bound 10−5 for the polarization of
qubits in liquid NMR, it turns out that forn ≤ 10 the initial state of ann-qubit NMR register is a separable
mixed state.

So if we apply a unitary transformationU to ρ , we get a new density matrixρ ′ = UρU† which is also close
to I and thus is also a separable mixed state.

Given that there is no entanglement, can we simulate such a quantum computation efficiently? We don’t
know how, since to write the state as a separable mixture we might have to perform a change of basis after
each quantum gate. On the other hand, we don’t know how to obtain any quantum speedup in this model
either.
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