CS 294-2 Density Matrices, von Neumann Entropy 3 / 7/ 07
Spring 2007 Lecture 13

In this lecture, we will discuss the basics of quantum infation theory. In particular, we will discuss mixed
guantum states, density matrices, von Neumann entropytenttdce distance between mixed quantum
states.

1 Mixed Quantum State
So far we have dealt withure quantum states
W) = alx).
X

This is not the most general state we can think of. We can densi probability distribution of pure states,
such ag0) with probability 1/2 and|1) with probability 1/2. Another possibility is the state

{ l+) = L (]0)+|1))  with probability 1/2

=

2
=) =5 (10)—[1)) with probability 1/2

In general, we can think ahixed state{p;,|y;)} as a collection of pure stateg:), each with associated
probability p;, with the conditions G6< pj < 1 andy; pi = 1. One context in which mixed states arise
naturally is in quantum protocols, where two players sharerdangled (pure) quantum state. Each player’s
view of their quantum register is then a probability digttibn over pure states (achieved when the other
player measures their register). Another reason we carsigd mixed states is because the quantum states
are hard to isolate, and hence often entangled to the emvéenn

2 Density Matrix

Now we consider the result of measuring a mixed quantum.sgippose we have a mixture of quantum
states|;) with probability p;. Each|y;) can be represented by a vectordl', and thus we can associate
the outer producty ) (¢i| = i Ys*, which is an 2 x 2" matrix

a aay aap oo alan
a _ _ a2 aqd - aan

(a1 & -~ an)= .
aN avay ana; -+ anan

We can now take the average of these matrices, and obtadenéy matrix of the mixture{p;, |@)}:

p="> pilyn)(usl.

We give some examples. Consider the mixed g@jtevith probability of 1/2 and|1) with probablity /2.
Then

oo -(g)(ro)=(g0).
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and

ma=( 7)o 1)=(5 7).

Thus in this case
1 1 (12 0
p=3l00+zma-( Y2 ).

Now consider another mixed state, this time consisting+ofwith probability 1/2 and|—) with probability
1/2. This time we have

=2 (1)1 0=3(1 1)

Sie=wa () -n=3( 3 1)

Thus in this case the offdiagonals cancel, and we get

and

p=goe+3i0-1=( Vo 17 ).

Note that the two density matrices we computed are identasan though the mixed state we started out
was different. Hence we see that it is possible for two difféeimixed states to have the same density matrix.

Nonetheless, the density matrix of a mixture completelerines the effects of making a measurement
on the system:

Theorem 13.1 Suppose we measure a mixed state {p;,|;)} in an orthonormal bases |B¢). Then the
outcome is | B«) with probability (Bx|o|B«)-

Proof: We denote the probability of measurifgx) by Piik]. Then
Pk = pil(w;lB?
]
= S pi(Bdwi) (WA
]

<l3k > pilwp) (W
J
= (BulplBq)-

.

We list several properties of the density matrix:

|

1. pis Hermitian, so the eigenvalues are real and the eigemgegatthogonal.

2. If we measure in the standard basis the probability we oreasP[i] = p;i. Also, the eigenvalues of
p are non-negative. Suppose thiahnd|e) are corresponding eigenvalue and eigenvector. Then if we
measure in the eigenbasis, we have

Prie] = (elple) = Alele) = A.
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3. trp = 1. This is because if we measure in the standard tmsis Pr[i] but alsoy; Pr|i] = 1 so that
Sipii=YiPrli]=1.

Consider the following two mixtures and their density nes:

_ co c’0 cOsh
cosf|0) +sin6|1) w.p. 12 = %< <6 > ( cO sb ) = %( cosd <20 > < cog 0 0 )
cosf|0) —sinf|1) w.p.1/2 = %< _(S:g > (6 —sB) = %( _ngsg _Cesfg > 0 simo

|0) w.p.cog68 :co§<é>(1 0) :c052<(l) 8) :<c0529 0>

1) w.p. sirf@ :sin29<2>(0 1) :sin2<8 2) 0 sirfé

Thus, since the mixtures have identical density matrides; are indistinguishable.

3 Von Neumann Entropy

We will now show that if two mixed states are represented ffemdint density measurements, then there is
a measurement that distinguishes them. Suppose we haveik®d states, with density matricdsandB
such thatA # B. We can ask, what is a good measurement to distinguish thstates? We can diagonalize
the differenceA — B to getA — B = EAE*, whereE is the matrix of orthogonal eigenvectors. Themifs

an eigenvector with eigenvalug, then); is the difference in the probability of measuriag

Prafi] — Prgli] = A;.
We can define the distance between two probability disinbst(with respect to a basis) as
|Zn— Zale = ) (Prali] - Pra[i]).
If E is the eigenbasis, then
|Dn— Dl = Z |Ai| = tr|A—B| = [[A—Bllxr,
|

which is called the trace distance betweeandB.

Claim Measuring with respect to the eigenbakiqof the matrix A— B) is optimal in the sense that it
maximizes the distand&Za — Zg|e between the two probability distributions.

Before we prove this claim, we introduce the following ddfor and lemma without proof.

Definition Let {g}N ; and{bj}N ; be two non-increasing sequences such fha = S;b. Then the se-
quence{g; } is said to majorizg b } if for all k,

i—ilai - i—ilbi‘
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Lemma[Schur] Eigenvalues of any Hermitian matrix majorizes thegdnal entries (if both are sorted in
nonincreasing order).

Now we can prove clairl 3.

Proof Since we can reorder the eigenvectors, we can asayrmel, > --- > A,. Note that ttA—B) =0,
so we must havg; Aj = 0. We can split the\'s into two groups: positive ones and negative ones, we must
have

1 1
S =5lA-Ble Y =-2IA-Blu.

Ai>0 Ai<0

Thus

k
1

Z)\-:—A—B .

mkaxi: i 2” I

Now consider measuring in another basis. Then the matriB is represented &d4 = F(A— B)F*, and let
> U > --- > Up be the diagonal entries &f. Similar argument shows that

d |Zn— ZBle @B‘F

maXZlM = 2ZIMI—

But by Schur’s lemma tha;'s majorizest;’s, so we must have

|Dn— Delr < |Zan— ZBle = [|A— Bl

Let H(X) be theShannon Entropy of a random variable X which can take on stapes. . p,.

H{p}) Zp. Iog—

In the quantum world, we define an analogous quangfp), the Von Neumann entropy of a quantum
ensemble with density matrjx with eigenvalues\y,. .., An:

) =H{M, Ao} = 3 hlog -

4 Two open questions related to NRM

Liquid NMR (Nuclear Magnetic Resonance) quantum computerge successfully implemented 7 qubits
and performed a stripped down version of quantum factorintpe number 15. In liquid NMR, the quantum
register is composed of the nuclear spins in a suitably chossdecule - the number of qubits is equal to the
number of atoms in the molecule. We can think of the compg@oasisting of about £6 such molecules
(a macroscopic amount of liquid), each controlled by the essaperations simultaneously. Thus we will
have 18° copies of our state, each consisting of say 7 qubits. We assoat we can address the qubits
individually, so that for example, we could preform an opierasuch a<CNOT on the 2nd and 4th qubit
(simultaneously on each copy).
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The catch in liquid NMR quantum computing is that initiafigithe register is hard. Each qubit starts out in
state|0) with probability 1/2+ € and in statél1) with probability 1/2— €. Heree depends upon the strength
of the magnetic field that the liquid sample is placed in. gsiary strong magnets in the NMR apparatus,
the polarizatiore is still about 10°°.

If € =0 then the density matrix describing the quantum state ofabister isp = 2—1,,I. This means that if
we apply a unitary transformatidd, the density matrix of the resulting statelis-y UIUT =1. So you
cannot perform any meaningful computation.

The way NMR quantum computation works is this: the initiaked state (withe = 10~°) is preprocessed
(through a sequence of quantum gates) to obtain a new migesl\which is maximally mixedzj(;l) with
probability 1— 6 and|0000000 with probability 5. Now, if we apply a unitary transformation to this state,
we getz—lnl with probability 1— 6 andU|0000000 with probability 8. Thus if we measure the state, we
obtain a coin flip with bia®? towards the correct answer. Another way of thinking aboigt ithat the
%1 gives no net signal in the measurement, while 8esignal gets amplified by the 1®copies of the
computation being carried out simultaneously. The probkethatd is exponentially small im the number
of qubits. Therefore liquid NMR quantum computation carsaasle beyond 10-20 qubits.

Question 1 Say we have a single clean bit (andhaximally mixed qubits), what can we do with this?

We can do at least one quantum computation, phase estimatapproximate the trace of a unitary matrix.
Use the single clean qubit as the control bit and apply that{otbed) unitary to then maximally mixed
qubits. We can think of tha qubits as being a uniform mixture over the eigenvectors efuhitary! (see
previous lecture for details).

Is there anything else that we can do with just one qubit? @anpyove limits on what can be done with
one clean qubit.

Question 2

Let p be a density matrix for a mixed state which takesorwith probability (1/2+ £)#0(1/2— ) where

#0 and #1 are the number of Os and 1gxnrespectively. Thereforgy can be written as a probability
distribution over unentangled states. Such mixed statesaled separable mixed states. It turns out, that
if the density matrixp’ is sufficiently close to the identity matrik then there always exists some such
decomposition into a distribution over unentangled statdsing the bound 1 for the polarization of
qubits in liquid NMR, it turns out that fon < 10 the initial state of am-qubit NMR register is a separable
mixed state.

So if we apply a unitary transformatidh to p, we get a new density matriX = U pU T which is also close
tol and thus is also a separable mixed state.

Given that there is no entanglement, can we simulate suclastym computation efficiently? We don’t
know how, since to write the state as a separable mixture \ghtrhave to perform a change of basis after
each quantum gate. On the other hand, we don’t know how torobty quantum speedup in this model
either.
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