This lecture was given by Ashwin Nayak and is based on the paper "Search via Quantum Walk" by Magniez, Nayak, Roland, and Santha (2006).

1 Element Distinctness

The search for an item in an unsorted list can be interpreted as the search for a collision. Given a set of n numbers $\{x_1, ..., x_n\}$, a collision is a pair (i, j) so that $x_i = x_j$, $i \neq j$.

A deterministic algorithm would solve this problem as follows: First it would sort the list (time: $O(n \cdot log(n))$) and then scan it to spot a collision. This algorithm can be shown to be optimal in the number of comparisons.

1.1 Cast as a graph search algorithm

This problem can be reformulated as a search problem on a graph *G*. The vertices of *G* are all possible *r*-subsets of [n]. Two vertices are connected whenever the corresponding subsets differ in a single element (i.e. the intersection has size r-1). This graph is a Johnson Graph with parameters *n*, *r*, and r-1. The interesting vertices (called the "marked" vertices) are those that contain two indices *i* and *j* so that $i \neq j$ and $x_i = x_j$ (i.e. a collision).

Example: Let
$$n = 10$$
, $r = 3$. Then the number of vertices is $\binom{10}{3}$ and the number of edges is $\frac{1}{2} \cdot \underbrace{\binom{10}{3}}_{N} \cdot \underbrace{\text{degree}}_{r(n-r)=3\cdot7}$.

2 A random walk algorithm

Given the formulation as a graph search problem, the following classical (probabilistic) algorithm finds a collision using random walks on the graph:

- 1. Start in a uniformly random vertex (pick *r* elements from [n] and the corresponding numbers x_i from the list, sort the numbers)
- 2. Repeat for T_1 steps:
 - (a) Random Walk on the graph G for T_2 steps:
 - Pick $i \in_R S, j \in_R \overline{S}$ (where *S* is the subset corresponding to the current vertex)
 - insert j into S and x_j into the sorted list
 - delete *i* from *S* and x_i from the sorted list
 - (b) If the state reached in (a) contains a collision, stop and output the pair.
- 3. If no collision is found, output "no collision".

The algorithm starts at a node x, takes T_2 random steps leading to a new node x' and checks whether this new node contains a collision. If not, it repeats this procedure a maximum of T_1 times. Hence, it will check at most T_1 different nodes (i.e. subsets) for collisions.

Analysis of the complexity:

• Cost of 2(a): log(r) per step in the random walk (so $T_2 \cdot log(r)$ in a total)

CS 294-2, Spring 2007, Lecture 16

- $T_1 \approx$ expected number of samples of uniformely random *r*-subsets needed to locate a collision, assuming that the nodes reached are uniformely distributed. We have p = Pr[subset has a collision $] \approx \left(\frac{r}{r}\right)^2$. So, $T_1 = O(\frac{n^2}{r^2})$.
- $T_2 \approx r$ steps (roughly the time required to randomize any fixed *r*-subset by performing a random walk starting at that vertex)

2.1 Formal Analysis using Probability Transition Matrices

Let $P = (P_{XY})$ be the probability transition matrix of a random walk on a graph *G*. Assume *G* is regular, undirected, non-bipartite and connected. For the Johnson Graph we have:

$$P_{XY} = \begin{cases} \frac{1}{\text{degree}} = \frac{1}{r(n-r)} & \text{if } |X \cap Y| = r-1\\ 0 & \text{otherwise} \end{cases}$$

Properties of P:

- 1. P has a left 1-eigenvector, the uniform distribution over the vertices and this is the unique 1-eigenvector
- 2. Every other eigenvector has eigenvalue < 1 in magnitude

The *Spectral Gap* of a matrix *P* is defined as $\delta(P) = 1 - |\lambda_2(P)|$ where $\lambda_2(P)$ is the second largest eigenvalue of *P* (in magnitude). The following theorem corresponds to Proposition 1 in the original paper:

Theorem 16.1: Let *P* be a symmetric, ergodic random walk on state space *X*, with spectral gap $\delta(P) = \delta$. Let *M* be a subset of *X* (the marked elements) so that $|M| \ge \varepsilon |X| = \varepsilon N$. Then an algorithm analogous to the one above finds a marked element in time $O\left(\frac{1}{\delta\varepsilon}\right)$ with probability $\ge \frac{2}{3}$ (if one exists).

The proof shows that roughly it holds that $T_1 \approx \frac{1}{\epsilon}$ and $T_2 \approx \frac{1}{\delta}$ (the complete proof is given in the paper).

2.2 Cost of the random walk algorithm for Element Distinctness

For Element Distinctness, given a Johnson Graph with parameters n,r,r-1, where r = O(n), we have $\varepsilon \approx \frac{r^2}{n^2}$ and $\delta = \frac{1}{r}$. This gives us

Total Cost =
$$r \cdot log(r) + T_1 \cdot (T_2 \cdot log(r))$$

= $r \cdot log(r) + \frac{n^2}{r^2} \cdot (r \cdot log(r))$

Optimized over *r* this gives $O(n \cdot log(n))$ (for r = n), i.e. the same deterministic algorithm presented in the beginning. However, the random walk algorithm can be speeded up using quantum algorithms.

3 Quantum Walk

Let *P* be a symmetric, ergodic random walk on state space *X* (nodes of a graph). With W(P) we denote the corresponding quantum walk where *W* is a unitary operator (following Szegedy '04). W(P) is defined as follows:

State Space: Instead of nodes, the state space is spanned by pairs $|x,y\rangle$ where x & y are neighbours in the underlying graph (i.e. (x, y) is an edge).

Transition: For the basis state $|x,y\rangle$, a step of the quantum walk is given by $W(P) = R_2 \cdot R_1$ where

- (a) R_1 : mix the right hand point y using the Grover diffusion operator on the d neighbours of x
- (b) R_2 : if y' is the new right end point, similarly "mix" the left endpoints over neighbours of y'

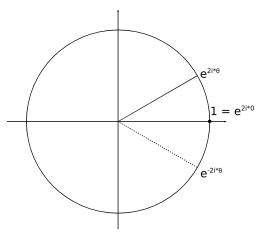
CS 294-2, Spring 2007, Lecture 16

As in the case of the classical random walk, we can extract properties of W(P). For that purpose we define $|P_x\rangle =$ $\sum_{y} \frac{1}{\sqrt{d}} |y\rangle$ (where y are neighbours of x) and let I_x be the identity over the subspace $|x\rangle\langle x|\otimes \mathbb{C}^{|X|}$.

- 1. R_1 and R_2 are reflection operators:

 - *R*₁ is the reflection through the states |x⟩ |P_x⟩: *R*₁ = Σ_x(2|x⟩ |P_x⟩ ⟨x| ⟨P_x| I_x) *R*₂ is the reflection through the states |P_y⟩ |y⟩: *R*₂ = Σ_y(2|P_y⟩ |y⟩ ⟨P_y| ⟨y| I_y)
- 2. (Spectrum of W(P))
 - (a) W(P) has a unique 1-eigenvector: $\left|\pi\right\rangle = \sum_{x \in X} \frac{1}{\sqrt{N}} \left|x\right\rangle \left|P_x\right\rangle = \sum_{y \in X} \frac{1}{\sqrt{N}} \left|P_y\right\rangle \left|y\right\rangle$
 - (b) For every eigenvalue λ of P, $|\lambda| \in [0, 1)$, W(P) has eigenvalues $e^{\pm 2i\theta}$, where $\theta = \cos^{-1}|\lambda|$.

Observation:



Hence, the phase gap of W(P) between the 1-eigenvector and the eigenvector corresponding to the second largest eigenvalue is $\delta' = |0 - \theta| = |\theta|$. Using the above derived properties we get

$$\theta = cos^{-1}|\lambda_2(P)|$$

 $cos(\theta) = \lambda_2 = 1 - \delta$

With the approximation $cos(\theta) \approx 1 - \frac{\theta^2}{2}$ we get a phase gap of $\theta \approx \sqrt{2\delta}$. This implies that we can distinguish between the 1-eigenvector and the remaining eigenvectors using phase estimation. The cost of the phase estimation is $\frac{1}{\text{phase gap}} \approx \frac{1}{\sqrt{delta}}$ applications of W(P).

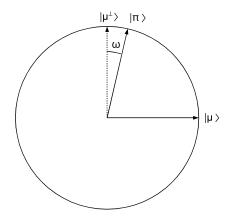
The Quantum Algorithm for Element Distinctness 4

Given the quantum walk we can modify the classical random walk algorithm. Our desired final state is $|\mu\rangle =$ $\sum_{x \in M} \frac{1}{\sqrt{N}} |x\rangle |P_x\rangle$ (normalized). As in Grovers search algorithm, the following algorithm approximates $|\mu\rangle$ by two different reflections in the 2-dimensional subspace spanned by $|\pi\rangle$ and $|\mu\rangle$:

- 1. Start with: $|\pi\rangle = \sum_{x \in X} \frac{1}{\sqrt{N}} |x\rangle |P_x\rangle$
- 2. Repeat for T steps:

CS 294-2, Spring 2007, Lecture 16

- (a) Reflection through $|\pi\rangle$:
 - for any basis vector $|x\rangle |P_x\rangle$ check if $x \in M$
 - if yes, flip phase
- (b) Reflection through $|\mu^{\perp}\rangle$:
 - run phase estimation on current state (which is a linear combination of eigenvectors)
 - if the estimate for the phase is $\neq 0$, flip the sign of that state
 - undo phase estimation



The angle ω between $|\pi\rangle$ and $|\mu^{\perp}\rangle$ is given by $sin(\omega) = \langle \pi | \mu \rangle = \sqrt{\varepsilon} = \sqrt{\frac{|M|}{N}}$. The product of the two reflections above is a rotation by an angle of 2ω . Therefore, after $T = O(1/\omega) = O(1/\sqrt{\varepsilon})$ iterations of this rotation starting with state $|\pi\rangle$, we will have approximated the target state $|\mu\rangle$.

The cost of the phase estimation in step 2(b) is $\frac{1}{\sqrt{\delta}}$. The cost of error reduction (through repetions) is $\sim log(T) \sim log\left(\frac{1}{\sqrt{\epsilon}}\right)$. Therefore, the total cost is $\frac{1}{\sqrt{\delta}} \cdot \frac{1}{\sqrt{\epsilon}} \cdot log\left(\frac{1}{\sqrt{\epsilon}}\right)$. The last term, $log\left(\frac{1}{\sqrt{\epsilon}}\right)$, can be eliminated by using a recursive version of Grover search.

4.1 Applied to Element Distinctness

When we apply this result to the problem of Element Distinctness, we get

Total Cost =
$$rlog(r) + \frac{1}{\sqrt{\varepsilon}} \left(\frac{1}{\sqrt{\delta}} \cdot log(r) \right)$$

where $\varepsilon \approx \frac{r^2}{n^2}$, $\delta = \frac{1}{r}$. Optimizing over *r* we get $r = n^{\frac{2}{3}}$ and a runtime complexity of $O(n^{\frac{2}{3}}log(n))$.