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Abstract –
Memory caches continue to be a critical component

to many systems. In recent years, there has been larger
amounts of data into main memory, especially in shared
environments such as the cloud. The nature of such en-
vironments requires resource allocations to provide both
performance isolation for multiple users/applications and
high utilization for the systems. We study the problem of
fair allocation of memory cache for multiple users with
shared files. We find that, surprisingly, no memory al-
location policy can provide all three desirable proper-
ties (isolation-guarantee, strategy-proofness and Pareto-
efficiency) that are typically achievable by other types of
resources, e.g., CPU or network. We also show that there
exist policies that achieve any two of the three proper-
ties. We find that the only way to achieve both isolation-
guarantee and strategy-proofness is through blocking,
which we efficiently adapt in a new policy called Fair-
Ride. We implement FairRide in a popular memory-
centric storage system using an efficient form of block-
ing, named as expected delaying, and demonstrate that
FairRide can lead to better cache efficiency (2.6× over
isolated caches) and fairness in many scenarios.

1 Introduction
Caches are a crucial component of most computer sys-
tems, characterized by two features: their impact on ap-
plication performance, and their limited size compared
to the total amount of data. With in-memory caches
increasingly being used for large-scale data processing
clusters [4, 26] in addition to databases and key-value
stores [19, 37, 10, 30, 8], caches also play a key role in
today’s multi-tenant cloud environments. In a shared en-
vironment with multiple users, however, the problem of
managing caches becomes harder: how should a provider
allocate space across multiple users, each of which wants
to keep their own datasets in memory?

Unfortunately, traditional caching policies do not pro-
vide a satisfactory answer to this problem. Most cache
management algorithms (e.g., LRU, LFU) have focused
on global efficiency of the cache (Figure 1a): they aim to
maximize the overall hit rate. Regardless of being com-
monly used in today’s cache systems for cloud serving
(Redis [9], Memcached [7]) and big data storage (HDFS
Caching [5]), this has two problems in a shared environ-
ment. First, users who read data at long intervals may
gain little or no benefit from the cache, simply because
their data is likely to be evicted out of the memory. Sec-
ond, applications can also easily abuse such systems by
making spurious accesses to increase their access rate.
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Figure 1: Different schemes. Global: single memory
pool, agnostic of users or applications; Isolation: static
allocations of memory among multiple users, possibly
under-utilization (blank cells), no sharing; Sharing: al-
lowing dynamic allocations of memory among users, and
one copy of shared files (stripe cells).

There is no incentive to dissuade users from doing this
in a cloud environment, and moreover, such shifts in the
cache allocation can happen even with non-malicious ap-
plications. We show later that a strategic user can out-
perform a non-strategic user by 2.9×, simply by making
spurious accesses to her files.

The other common approach is to have isolated caches
for each user (Figure 1b). This gives each user perfor-
mance guarantees and there are many examples in prac-
tice, e.g., hypervisors that set up separate buffer caches
for each of its guest VMs, web hosting platforms that
launch a separate memcached instance to each tenant.
However, providing such performance guarantees comes
at the cost of inefficient utilization of the cache.

This inefficiency is not only due to users not fully
utilizing their allocated cache, but also because that a
cached file can be accessed by multiple users at a time
and isolating cache leads to multiple copies of such
shared files. We find such non-exclusive sharing to be a
defining aspect of cache allocation, while other resources
are typically exclusively shared, e.g., a CPU time slice or
a communication link can be only used by a single user
at a time. In practice, there are a significant number of
files shared across users in many workloads, e.g., we ob-
serve more than 30% files are shared by at least two users
from a production HDFS log. Such sharing is likely to
increase as more workloads move to multi-tenant envi-
ronments.

In this paper, we study how to share cache space be-
tween multiple users that access shared files. To frame
the problem, we begin by identifying desirable proper-
ties that we’d like an allocation policy to have. Building
on common properties used in sharing of CPU and net-
work resources [20], we identify three such properties:
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Isolation Strategy- Pareto-
Guarantee Proofness Efficiency

global (e.g., LRU) 7 7 3

max-min fairness 3 7 3

FairRide 3 3 near-optimal
None Exist 3 3 3

Table 1: Summary of various memory allocation policies
against three desired properties.

• Isolation Guarantee: no user should receive less
cache space than she would have had if the cache
space were statically and equally divided between
all users (i.e., assuming n users and equal shares,
each one would get 1/n of the cache space). This
also implies that the user’s cache performance (e.g.,
cache miss ratio) should not be worse than isolation.

• Strategy Proofness: a user cannot improve her allo-
cation or cache performance at the expense of other
users by gaming the system, e.g., through spuri-
ously accessing files.

• Pareto Efficiency: the system should be efficient, in
that it is not possible to increase one user’s cache
allocation without lowering the allocation of some
other user. This property captures operator’s desire
to achieve high utilization.

These properties are common features of allocation
policies that apply to most resource sharing schemes,
including CPU sharing via lottery or stride schedul-
ing [39, 15, 35, 40], network link sharing via max-min
fairness [28, 13, 17, 23, 33, 36], and even allocating mul-
tiple resources together for compute tasks [20]. Some-
what unexpectedly, there has been no equivalent policy
for allocation of cache space that satisfies all three prop-
erties. As shown earlier, global sharing policies (Fig-
ure 1a) lack isolation-guarantee and strategy-proofness,
while static isolation (Figure 1b) is not Pareto-efficient.

The first surprising result we find is that this deficiency
is no accident: in fact, for sharing cache resources, no
policy can achieve all three properties. Intuitively, this is
because cached data can be shared across multiple users,
allowing users to game the system by “free-riding” on
files cached by others, or optimizing usage by caching
popular files. This creates a strong trade-off between
Pareto efficiency and strategy-proofness.

While no memory allocation policy can satisfy the
three properties (Table 1), we show that there are poli-
cies that come close to achieving all three in practice.
In particular, we propose FairRide, a policy that pro-
vides both isolation-guarantee (so it always performs no
worse than isolated caches) and strategy-proofness (so
users are not incentivized to cheat), and comes within
4% of global efficiency in practice. FairRide does this
by aligning each user’s benefit-cost ratio with her private

preference, through probabilistic blocking (Section 3.4),
i.e., probabilistically disallowing a user from accessing a
cached file if the file is not cached on behalf of the user.
Our proof in Section 5 shows that blocking is required
to achieve strategy-proofness, and that FairRide achieves
the property with minimal blocking possible.

In practice, probabilistic blocking can be efficiently
implemented using expected delaying (Section 4.1) in or-
der to mitigate I/O overhead and to prevent even more
sophisticated cheating models. We implemented Fair-
Ride on Tachyon [26], a memory-centric storage system,
and evaluated the system using both cloud serving and
big data workloads. Our evaluation shows that FairRide
comes within 4% of global efficiency while preventing
strategic users, meanwhile giving 2.6× more job run-
time reduction over isolated caches. In a non-cooperative
environment when users do cheat, FairRide outperforms
max-min fairness by at least 27% in terms of efficiency.
It is also worth noting that FairRide would support plug-
gable replacement policies as it still obeys each user’s
caching preferences, which allows users to choose dif-
ferent replacement policies (e.g., LRU, LFU) that best
suit their workloads.

2 Background
Most of today’s cache systems are oblivious to the en-
tities (users) that access data: CPU caches do not care
which thread accesses data, web caches do not care
which client reads a web page, and in-memory based sys-
tems such as Spark [41] do not care which user reads a
file. Instead, these systems aim to maximize system effi-
ciency (e.g., maximize hit rate) and as a result favor users
that contribute more to improve efficiency (e.g., users ac-
cessing data at a higher rate) at the expense of the other
users.

To illustrate the unfairness of these cache systems,
consider a typical setup of a hosted service, as shown
in Figure 2a. We setup multiple hosted sites, all sharing
a single Memcached [7] caching system to speed up the
access to a back-end database. Assume the loads of A
and B are initially the same. In this case, as expected,
the mean request latencies for the two sites are roughly
the same (see left bars in Figure 2b). Next, assume that
the load of site A increases significantly. Despite the fact
that B’s load remains constant, the mean latency of its re-
quests increases significantly (2.9×) and the latency for
A’s requests surprisingly drops! Thus, an increase in A’s
load improves the performance of A, but degrades the
performance of B. This is because A accesses the data
more frequently, and in response the cache system starts
loading more results from A while evicting B’s results.

While the example is based on synthetic web work-
load, this problem is very real, as demonstrated by the
many questions posted on technical forums [6], on how
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Figure 2: (a) Typical cache setup for web servers. (b)
Site B suffers high latency because unfair cache sharing.

to achieve resource isolation across multiple sites when
using either Redis [9] or Memcached [7]. It turns out
that none of the two popular caching systems provide
any guarantee for performance isolation. This includes
customized distributions from dominant cloud service
providers, such as Amazon ElastiCache [1] and Mi-
crosoft Azure Redis Cache [3]. As we will show in Sec-
tion 7, for such caching systems, it is easy for a strategic
user to improve her performance and hurt others (with
2.9× performance gap) by making spurious access to
files.

To provide performance isolation, the default answer
in the context of cloud cache services today is to setup
a separate caching instance per user or per application.
This goes against consolidation and comes at a high cost.
Moreover, cache isolation will eliminate the possibility
of sharing cached files, which makes isolation even more
expensive as there is a growing percentage of files to be
shared. We studied a production HDFS log from a Inter-
net company and observed 31.4% of files are shared by
at least two users/applications. The shared files also tend
to be more frequently accessed compared to non-shared
files, e.g., looking at the 10% most accessed files, shared
files account for as much as 53% of the accesses. The
percentage of sharing can go even higher pair-wise: 22%
of the users have at least 50% of their files accessed by
another user. Assuming files are of equal sizes, we would
need at least 31.4% more space if we assign isolated in-
stances for each user, and even more cost on additional
cache as the percentage of shared files in the working set
is even larger.

Going back to the example in Figure 2, one possible
strategy for B to reclaim some of its cache back would
be to artificially increase its access rate. While this strat-
egy may help B to improve its performance, it can lead
to worse performance overall (e.g., lower aggregate hit
rate). Worse yet, site A may decide to do the same: arti-
ficially increase its access rate. As we will show in this
paper, this may lead to everyone losing out, i.e., everyone
getting worse performance than when acting truthfully.
Thus an allocation policy such as LRU is not strategy
proof, as it does incentivize a site to misbehave to im-
prove its performance. Furthermore, like with prisoner’s

dilemma, sites are incentivized to misbehave even if this
leads to worse performance for everyone.

While in theory users might be incentivized to misbe-
have, a natural question is whether they are actually do-
ing so in practice. The answer is “yes”, with many real-
world examples being reported in the literature. Previ-
ous works on cluster management [38] and job schedul-
ing [20] have reported that users lie about their resource
demands to game the system. Similarly, in peer-to-peer
systems, “free-riding” is a well known and wide spread
problem. In an effort to save bandwidth and storage,
“free-riders” throttle their uplink bandwidth and remove
files no longer needed, which leads to decreased over-
all performance [32]. We will show in Section 3 that
shared files can easily lead to free-riding in cache alloca-
tion. Finally, as mentioned above, cheating in the case
of caching is as easy as artificially increasing the ac-
cess rate, for example, by running an infinite loop that
accesses the data of interest, or just by making some
random access. While some forms of cheating do in-
cur certain cost or overhead (e.g., CPU cycles, access
quota), the overhead is outweighed by the benefits ob-
tained. On the one hand, a strategic user does not need
many spurious accesses for effective cheating, as we will
show in Section 7. If a caching system provides inter-
faces for users to specify file priorities or evict files in
the system, cheating would be even simpler. On the
other hand, many applications’ performances are bottle-
necked at I/O, and trading off some CPU cycles for better
cache performance is worthwhile.

In summary, we argue that any caching allocation pol-
icy should provide the following three properties: (1)
isolation-guarantee which subsumes performance isola-
tion (i.e., a user will not be worse off than under static
isolation), (2) strategy-proofness which ensures that a
user cannot improve her performance and hurt others by
lying or misbehaving, and (3) Pareto efficiency which en-
sures that resources are fully utilized.

3 Pareto Efficiency vs. Strategy Proofness
In this section we show that—under the assumption
that the isolation-guarantee property holds—there is a
strong trade-off between Pareto efficiency and strategy-
proofness, that is, it is not possible to simultaneously
achieve both in a caching system where files (pages) can
be shared across users.

Model: To illustrate the above point, in the remainder
of this section we consider a simple model where multi-
ple users access a set of files. For generality we assume
each user lets the cache system know the priorities in
which her files can be evicted, either by explicitly speci-
fying the priorities on the files or based on a given policy,
such as LFU or LRU. For simplicity, in all examples, we
assume that all files are of unit size.
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FUNC u.access( f ) // user u accessing file f
1: if ( f ∈Cache. f ileSet) then
2: return CACHED DATA;
3: else
4: return CACHE MISS;
5: end if

FUNC cache(u, f ) // cache file f for user u
6: while (Cache.availableSize < f .size) do
7: u1 = users.getUserWithLargestAlloc();
8: f 1 = u1.getFileToEvict();
9: if (u1 == u and

10: u.getPriority( f 1)> u.getPriority( f )) then
11: return CACHE ABORT;
12: end if
13: Cache. f ileSet.remove( f 1);
14: Cache.availableSize += f 1.size;
15: u.allocSize -= f 1.size;
16: end while
17: Cache. f ileSet.add( f )
18: Cache.availableSize -= f .size;
19: u.allocSize += f .size;
20: return CACHE SUCCEED;

Algorithm 1: Pseudocode for accessing and cahing a file
under max-min fairness.

Utility: We define each user’s utility function as the
expected cache hit rate. Given a cache allocation, it’s
easy to calculate a user’s expected hit rate by just sum-
ming up her access frequencies of all the files cached in
memory.

3.1 Max-min Fairness

One of the most popular solutions to achieve efficient re-
source utilization while still providing isolation is max-
min fairness.

In a nutshell, max-min fairness aims to maximize the
minimum allocation across all users. Max-min fairness
can be easily implemented in our model by evicting from
the user with the largest cache allocation, as shown in
Algorithm 1. When a user accesses a file, f , the sys-
tem checks whether there is enough space available to
cache it. If not, it repeatedly evicts the files of the users
who have the largest cache allocation to make enough
room for f . Note that the user from which we evict a
file can be the same as the user who is accessing file f ,
and it is possible for f to not be actually cached. The
latter happens when f has a lower caching priority than
any of the other user’s files that are already cached. At
line 10 from Algorithm 1, the user.getPriority() is called
to obtain priority. Note caching priority depends on the
eviction policy. In the case of LFU, priority represents
file’s access frequency, while in the case of LRU it can
represent the inverse of the time interval since it has been

accessed. Similar to access frequency, priority need not
to be static, but rather reflects an eviction policy’s instan-
taneous preference.

If all users have enough demand, max-min fairness en-
sures that each user will get an equal amount of cache,
and max-min fairness reduces to static isolation. How-
ever, if one or more users do not use their entire share,
the unused capacity is distributed across the other users.

3.2 Shared Files

So far we have implicitly assumed that each user ac-
cesses different files. However, in practice multiple users
may share the same files. For example, different users or
applications can share the same libraries, input files and
intermediate datasets, or database views.

The ability to share the same allocation across mul-
tiple users is a key difference between caching and tra-
ditional environments, such as CPU and communication
bandwidth, in which max-min fairness has been success-
fully applied so far. With CPU and communication band-
width, only a single user can access the resource that was
allocated to her: a CPU time slice can be only used by
a single process at a time, and a communication link can
be used to send a single packet of a single flow at a given
time.

A natural solution to account for shared files is to
“charge” each user with a fraction of the shared file’s
size. In particular, if a file is accessed by k users, and
that file is cached, each user will be charged with 1/k of
the size of that file. Let fi, j denote file j cached on behalf
of user i, and let k j denote the number of users that have
requested the caching of file j. Then, the total cache size
allocated to user i, alloci, is computed as

alloci = ∑
j

size( fi, j)

k j
. (1)

Consider a cache that can hold 6 files, and assume
three users. User 1 accesses files A,B,C, . . . user 2 ac-
cesses files A,B,D, . . ., and user 3 accesses files F,G, . . ..
Assuming that each file is of unit size, the following set
of cached files represent a valid max-min allocation: A,
B, C, D, F , and G, respectively. Note that since files
A and B are shared by the first two users, each of these
users is only charged with half of the file size. In par-
ticular, the cache allocation of user 1 is computed as
size(A)/2 + size(B)/2 + size(C) = 1/2 + 1/2 + 1 = 2.
The allocation of user 2 is computed in a similar man-
ner, while allocation of user 3 is simply computed as
size(F) + size(G) = 2. The important point to note
here is that while each user has been allocated the same
amount of cache as computed by Eq. 1, users 1 and 2 get
three files cached (as they get the benefit of sharing two
of them), while user 3 gets only two.
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Figure 3: Example with 2 users, 3 files and total cache
size of 2. Numbers represent access frequencies. (a). Al-
location under max-min fairness; (b). Allocation under
max-min fairness when second user makes spurious ac-
cess (red line) to file C; (c). Blocking free-riding access
(blue dotted line).

3.3 Cheating

While max-min fairness is strategy-proof when users ac-
cess different files, this is no longer the case when files
are shared. There are two types of cheating that could
break strategy-proofness: (1) Intuitively, when files are
shared, a user can “free ride” files that have been already
cached by other users. (2) A thrifty user can choose to
cache files that are shared by more users, as such files are
more economic due to cost-sharing.

Free-riding To illustrate “free riding”, consider two
users: user 1 accesses files A and B, and user 2 accesses
files A and C. Assume size of cache is 2, and that we can
cache a fraction of a file. Next, assume that every user
uses LFU replacement policy and that both users access
A much more frequently than the other files. As a result,
the system will cache file A and “charge” each user by
1/2. In addition, each user will get half of their other
files in the cache, i.e., half of file B for user 1, and file
B for user 2, as shown in Figure 3(a). Each user gets a
cache hit rate of 5×0.5+10 = 12.51 hits/sec.

Now assume user 2 cheats by spuriously accessing file
C to artificially increase its access rate such that to exceed
A’s access rate (Figure 3(b)), effectively sets the priority
of C higher than B. Since now C has the highest access
rate for user 2, while A remains the most accessed file of
user 1, the system will cache A for user 1 and C for user 2,
respectively. The problem is that user 2 will still be able
to benefit from accessing file A, which has already been
cached by user 1. At the end, user 1 gets 10 hits/sec, and
user 2 gets 15 hits/sec. In this way, user 2 free-rides on
user 1’s file A.

Thrifty-cheating To explain the kind of cheating
where a user carefully calculates cost-benefits and
then changes file priorities accordingly, we first define
cost/(hit/sec) as the amount of budget cost a user pays

1When half of a file is in cache, half of the page-level accesses to
the file will result in cache miss. Numerically, it is the equal to missing
the entire file 50% of the time. So hit rate is calculated as access rate
multiplied by percentage cached.

to get 1 hit/sec access rate for a unit file. To opti-
mize over the utility, which is defined as the total hit
rate, a user’s optimal strategy is not to cache the files
that one has highest access frequencies, but the ones
with lowest cost/(hit/sec). Compare a file of 100MB,
shared by 2 users and another file of 100MB, shared by 5
users. Even though a user access the former 10 times/sec
and the latter only 8 times/sec, it is overall economic
to cache the second file (comparing 5MB/(hit/sec) vs.
2.5MB/(hit/sec)).

The consequence of “thrift-cheating”, however, is
more complicated. As it might appear to improve
user and system performance at first glance, it doesn’t
lead to an equilibrium where all users are content
about their allocations. This can cause users to con-
stantly game the system which leads to a worse outcome.

In the above examples we have shown that due to an-
other user cheating, one can experience utility loss. A
natural question to ask is, how bad could it be? i.e. What
is the upper bound a user can lose when being cheated?
By construction, one can show that for two-user cases, a
user can lose up to 50% of cache/hit rate when all her
files are shared and “free ridden” by the other strategic
user. As the free-rider evades charges of shared files, the
honest user double pays. This can be extended to a more
general case with n (n> 2) users, where loss can increase
linearly with the number of cheating users. Suppose that
cached files are shared by n users, each user pays 1

n of the
file sizes. If n− 1 strategic users decide to cache other
files, the only honest user left has to pay the total cost.
In turn, the honest user has to evict at most ( n−1

n ) of her
files to maintain the same budget.

It is also worth mentioning that for many applications,
moderate or even minor cache loss can result in dras-
tic performance drop. For example, in many file sys-
tems with overall high cache hit ratio, the effective I/O
latency with caching could be approximated as TIO =
RatiomissLatencymiss. A slight difference in the cache
hit ratio, e.g. from 99.7% to 99.4%, means 2× I/O av-
erage latency drop! This indeed necessitates strategy-
proofness in cache policies.

3.4 Blocking Access to Avoid Cheating

At the heart of providing strategy-proofness is this ques-
tion of how free-riding can be prevented. In the previ-
ous example, user 2 was incentivized to cheat because
she was able to access the cached shared files regardless
her access patterns. Intuitively, if user 2 is blocked from
accessing files that she tries to free-ride, she will be dis-
incentivized to cheat.

Applying blocking to our previous example, user 2
will not be allowed to access A, despite the fact that user
1 has already cached A (Figure 3(c)). The system blocks
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user 2 but not user 1 because user 1 is the sole person
who pays the cache. As a result, user 2 gets only 1 cache
size with a less important file C.

As we will show in Section 5 this simple scheme is
strategy-proof. On the other hand, this scheme is unfor-
tunately not Pareto efficient by definition, as the perfor-
mance (utility) of user 2 can be improved without hurting
user 1 by simply letting user 2 access file A.

Furthermore, note that it is not necessary to have a user
cheating to arrive at the allocation in Figure 3. Indeed,
user 2 can legitimately access file C at a much higher rate
than A, In this case, we get the same allocation—file A is
cached on behalf of user 1 and file C is cached on behalf
of user 2—with no user cheating. Blocking in this case
will reduce the system utilization by punishing a well-
behaved user.

Unfortunately, the cache system cannot differentiate
between a cheating and a well-behaved user, so it is not
possible to avoid the decrease in the utilization and thus
the violation of Pareto efficiency, even when every user
in the system is well-behaved.

Thus, in the presence of shared files, with max-min
fairness allocation we can achieve either Pareto effi-
ciency or strategy-proofness, but not both. In addition,
we can trade between strategy-proofness and Pareto ef-
ficiency by blocking a user from accessing a shared file
if that file is not in the user’s cached set of files, even
though that file might have been cached by other users.

In Section 5, we will show that this trade-off is more
general. In particular, we show that in the presence of
file sharing there is no caching allocation policy that can
achieve more than two out of the three desirable proper-
ties: isolation-guarantee, strategy-proofness, and Pareto
efficiency.

4 FairRide

In this section, we describe FairRide, a caching policy
that extends max-min fairness with probabilistic block-
ing. Different from max-min fairness, FairRide provides
isolation-guarantee and strategy-proofness at the expense
of Pareto-efficiency. We use expected delaying to imple-
ment the conceptual model of probabilistic blocking, due
to several system considerations.

Figure 4 shows the control logic for a user i access-
ing file j under FairRide. We will compare it with the
pseudo-code of max-min fairness, Algorithm 1. In max-
min, a user i can directly access a cached file j, as long as
j is cached in memory. While with FairRide, there is an
chance that the user might get blocked for accessing the
cached copy. This is key to making FairRide strategy-
proof and the only difference with max-min fairness,
which we prove in Section 5. The chance of blocking
is not an arbitrary probability, but is set at 1

n j+1 , where
n j is the number of other users caching the file. We will

File	  j	  cached?	  

	  By	  user	  i	  ?	  Yes	  

No	   cache_miss	  

cache_hit	  Yes	  

No	   	  rand	  <	  	  

Yes	  

No	   cache_miss	  

cache_hit	  User	  i	  	  
accesses	  
file	  j	  

1
nj +1

?	  

wait	  	  
Delay
nj +1
,return	  data	  

Figure 4: With FairRide, a user might be blocked to ac-
cess a cached copy of file if the user does not pay the stor-
age cost. The blue box shows how this can be achieved
with probabilistic blocking. In system implementation,
we replace the blue box with the purple box, where we
instead delay the data response.

prove in Section 5 that this is the only and minimal block-
ing probability setting that will make a FairRide strategy-
proof.

Consider again the example in Figure 3. If user 2
cheats and makes spurious access to file C, file A will
be cached on behalf of user 1. In that case, FairRide
recognizes user 2 as a non-owner of the file, and user
2 has 1

2 chance to access directly from the cache. So
user 2’s total expected hit rate becomes 5+10× 1

2 = 10,
which is worse than 12.5 before without cheating. In this
way, FairRide discourages cheating and makes the policy
strategy-proof.

4.1 Expected Delaying

In real systems, probabilistic blocking could not thor-
oughly solve the problem of cheating, as now a strategic
user can make even more accesses in hope that one of the
accesses is not blocked. For example, if a user is blocked
with a probability of 1

2 , he can make three accesses so to
reduce the likelihood of being blocked to 1

8 . In addition,
blocking itself is not an ideal way to implement in a sys-
tem as it further incurs unnecessary I/O operations (disk,
network) for blocked users. To address this problem, we
introduce expected delaying to approximate the expected
effect of probabilistic blocking. When a user tries to ac-
cess an in-memory file that is cached by other users, the
system delays the data response with certain wait dura-
tion. The wait time should be set as the expected delay a
user would experience if she’s probabilistically blocked
by the system. In this way, it is impossible to get around
the delaying effect, and the system does not have to is-
sue additional I/O operations. The theoretically equiva-
lent wait time could be calculated as twait = Delaymem×
(1− pblock) + Delaydisk,network × pblock, where pblock is
the blocking probability as described above, and Delayx
being the access latency of medium x. As memory access
latency is already incurred during data read time, we sim-
ply set the wait time to be Delaydisk,newtwork× pblock. We
will detail how we measure the secondary storage delay
in Section 6.
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5 Analysis
In this section, we prove that the general trade-off be-
tween the three properties is fundamental with existence
of file sharing. Next in Section 5.2, we also show by
proof that FairRide indeed achieves strategy-proof and
isolation-guarantee, and that FairRide uses most efficient
blocking probability to achieve strategy-proofness.

5.1 The SIP theorem

We state the following SIP theorem: With file sharing,
no cache allocation policy can satisfy all three following
properties: strategy-proofness (S), isolation-guarantee
(I) and Pareto-efficiency (P).

Proof of the SIP theorem
The three properties are defined as in Section 1, and we
use total hit rate as the performance metric. Reusing the
example setup in Figure 3(a), we now examine a general
policy P. The only assumption of P is that P satisfies
isolation-guarantee and Pareto-efficiency, and we shall
prove that such policy P must not be strategy-proof, i.e.
a user can cheat to improve under P. We start with the
case when no user cheats for Figure 3(a). Let y1,y2 be
user 1 and 2’s total hit rate:

y1 = 10xA +5xB (2)

y2 = 10xA +5xC (3)

Where xA, xB, xC are fractions of the each file A,B,C
cached in memory.2 Because xA + xB + xC = 2, and y1 +
y2 = 15xA + 5(xA + xB + 5xc), it’s impossible for y1 +
y2 > 25, or, for both y1 and y2 to be greater than 12.5. As
the two users have symmetric access patterns, we assume
y2 < 12.5 without loss of generality.

Now if user 2 cheats and increases her access rate of
file C to 30, we can prove that she can get a total rate of
13.3, or y2 > 13.3. This is partly because the system has
to satisfy a new isolation guarantee:

y′2 = 10xA +30xC > 30 (4)

It must hold that xC > 2
3 , because xA ≤ 1. Also, be-

cause xC ≤ 1 and xA + xB + xC = 2, we have xA + xB ≥ 1
to achieve Pareto-efficiency. For the same reason, xA = 1
is also necessary as it’s strictly better to cache file A over
file B for both users. Plugging xA = 1,xC > 2

3 back to
user 2’s actual hit rate calculation (Equation 3), we get
y2 > 13.3.

So far, we have found a cheating strategy for a user
2 to improve her cache performance and hurt the other
user. This is done under a general policy P that assumes

2We use fractions only for simplifying the proof. The theorem holds
when we can only cache a file/block in its entirety.

only isolation-guarantee and Pareto-efficiency but noth-
ing else. Therefore, we can conclude that any policy P
that satisfies the two properties cannot achieve strategy-
proofness. In other words, no policy can achieve all three
properties simultaneously. This ends the proof for the
SIP theorem.

5.2 FairRide Properties

We now examine FairRide (as described in Section 4)
against three properties.
Theorem FairRide achieves isolation-guarantee.
Proof Even if FairRide does complete blocking, in which
each user gets strictly less memory cache, the amount
of cache a user accesses is: Cachetotal = ∑ j size( f ile j),
j for all the files the user caches. Because FairRide
splits the charges of shared files across all users, a user’s
allocation budget is spent up by: Alloc = ∑ j

size( f ile j)
n j

,
with n j being the number of users sharing f ile j.
Combining the two equations we can easily derive
that Cachetotal > Alloc. As Alloc is also what a user
can get in isolation, we can conclude that the amount
of memory a user can access is always bigger than
isolation. Likewise, we can prove the total hit rate user
gets with FairRide is greater than isolation.

Theorem FairRide is strategy-proof.
Proof We will sketch the proof using cost-benefit
analysis, following the line of reasoning in Section 3.3.
With probabilistic blocking, a user i can access a file
j without caching it with a probability of n j

n j+1 . This
means that the benefit resulted from caching is the
increased rate, equal to f reqi j

1
n j+1 . The cost is 1

n j+1
for the joining user, with n j other users already caching
it. Dividing the two, the benefit-cost ratio is equal to
f reqi j, user i’s access frequency of file j. As a user
is incentivized to cache files based on the descending
order of benefit-cost ratio, this results in caching files
based on actual access frequencies, rather than cheating.
In other words, FairRide is incentive-compatible and
allows users to perform truth-telling.

Theorem FairRide’s uses lower-bound blocking proba-
bilities for achieving strategy-proofness.
Proof Suppose a user has 2 files: f j, fk with access
frequencies of f req j and f reqk. We use p j and pk
to denote the corresponding blocking probabilities
if the user chooses not to cache the files. Then the
benefit-cost ratios for the two files are f req j p j(n j + 1)
and f reqk pk(nk + 1), n j and nk being the numbers of
other users already caching the files. For the user to
be truth-telling for whatever f req j, f reqk, n j or nk,
we must have p j

pk
= nk+1

n j+1 . Now p j and pk can still be
arbitrarily small or big, but note p j(pk) must be 1 when
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n j(nk) is 0, as no user is caching file f j( fk). Putting
p j = 1,n j = 0 into the equation we will have pk =

1
nk+1 .

Similarly, p j =
1

n j+1 . Thus we show that FairRide’s
blocking probabilities are the only probabilities that can
provide strategy-proofness in the general case (assuming
any access frequencies and sharing situations). The only
probabilities are also the lower-bound probabilities.

6 Implementation
FairRide is evaluated through both system implemen-
tation and large-scale trace simulations. We have
implemented FairRide allocation policy on top of
Tachyon [26], a memory-centric distributed storage
system. Tachyon can be used as a caching system and it
supports in-memory data sharing across different cluster
computation frameworks or applications, e.g. multiple
Hadoop Mapreduce [2] or Spark [41] applications.

Users and Shares Each application running on top of
Tachyon with FairRide allocation has a FairRide client
ID. Shares for each user can be configured. When shares
are changed during system uptime, cache allocation is
re-allocated over time, piece by piece, by evicting files
from the user who uses most atop of her share, i.e.,
argmaxi(Alloci−Capacity∗Sharei), thus converging to
the configured shares eventually.

Pluggable Policy Because FairRide obeys each user’s
individual caching preferences, it can apply a two-level
cache replacement mechanism. It first picks the user who
occupies the most cache in the system, and then finds the
least preferred file from that user to evict. This natu-
rally enables “pluggable policy”, allowing each user to
pick a replacement policy best fit for her workload. Note
this would not be possible for some global policies such
as global LRU. A user’s more frequently accessed file
could be evicted by a less frequently accessed file just be-
cause the first file’s aggregate frequency across all users
is lower than the second file. We’ve implemented “plug-
gable policy” in the system and expose a simple API for
applications to pick best replacement policy.

Client.setCachePolicy(Policy.LRU)
Client.setCachePolicy(Policy.LFU)
Client.pinFile(fileId)

Currently, our implementation of FairRide sup-
ports LRU (Least-Recently-Used) and LFU (Least-
Frequently-Used), as well as policies that are more
suited for data-parallel analytics workloads, e.g. LIFE
or LFU-F that preserves all-or-nothing properties for
cached files [12]. Another feature FairRide supports is
“pinned files”. Through a pinfile(fileId) API, a
user can override the replacement policy and prioritize

specified files.

Delaying The key to strategy-proofness in implementing
FairRide is to emulate probabilistic blocking by delaying
the read of a file which a user didn’t cache before.
Thus the amount of wait time has to approximate the
wait time as if the file is not cached, for any type
of read. We implement delaying by simply sleeping
the thread before giving a data buffer to the Tachyon
client. The delay time is calculated by size(bu f f er)

BWdisk
,

with BWdisk being the pre-measured disk bandwidth
on the node, and size(bu f f er) being the size of the
data buffer sent to the client. The measured bandwidth
is likely an over-estimate of run-time disk bandwidth
due to I/O contention when system is in operation.
This causes shorter delay, higher efficiency, and less
strategy-proofness, though a strategic user should gain
very little from this over-estimate.

Node-based Policy Enforcement
Tachyon is a distributed system comprised of multi-

ple worker nodes. We enforce allocation policies inde-
pendently at each node. This means that data is always
cached locally at the node when being read, and that
when the node is full, we evict from the user who uses up
most memory on that node. This scheme allows a node
to select an evicting user and perform cache replacement
without any global coordination.

The lack of global coordination can incur some effi-
ciency penalty, as a user is only guaranteed to get at least
1/n-th of memory on each node, but not necessarily 1/n-
th of total memory across the cluster. This happens when
users have access skew across nodes. To give an exam-
ple, suppose a cluster of two nodes, each with 40GB
memory. One user has 30GB frequently accessed data
on node 1 and 10GB on node 2, and another user has
10GB frequently accessed data on node 1 and 30GB on
node 2. Allocating 30GB on node 1 and 10GB on node
2 to the first user will outperform a 20 to 20 even allo-
cation on each node, in terms of hit ratio for both users.
Note that such allocation is still fair globally – each user
gets 40GB memory in total. Our evaluation results in
Section 7.6 will show that node-based scheme is within
3%∼4% compared to global fairness, because of the self-
balance nature of big data workloads on Tachyon.

7 Experimental Results
We evaluated FairRide using both micro- and macro-
benchmarks, by running EC2 experiments on Tachyon,
as well as large-scale simulations replaying production
workloads. The number of users in the workloads varies
from 2 to 20. We show that while non-strategy-proof
policies can cause everybody worse-off by a large mar-
gin (1.9×), FairRide can prevent user starvation within
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(a) Max-min fair allocation
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(b) FairRide
Figure 5: Miss ratio for two users. At t = 300s, user 2
started cheating. At t = 700s, user 1 joined cheating.

4% of global efficiency. It is 2.6× better than isolated
caches in terms of job time reduction, and gives 27%
higer utilization compared to max-min fairness.

We start by showing how FairRide can dis-incentivize
cheating users by blocking them from accessing files that
they don’t cache, in Section 7.1. In Section 7.2, we com-
pare FairRide against a number of schemes, including
max-min fairness using experiments on multiple work-
loads: TPC-H, YCSB and a HDFS production log. Sec-
tion 7.3 and Section 7.4 demonstrate FairRide’s benefits
with multiple users and pluggable policies. Finally, in
Section 7.5, we use Facebook traces that are collected
from a 2000-node Hadoop cluster to evaluate the perfor-
mance of FairRide in large-scale clusters.

7.1 Cheating and Blocking

In this experiment, we illustrate how FairRide can pre-
vent a user from cheating. We ran two applications on
a 5-node Amazon EC2 cluster. The cluster contains one
master node and four worker nodes, each configured with
32GB memory. Each application accessed 1000 data
blocks (128MB each), among which 500 were shared.
File access complied with Zipf distribution. We assumed
users knew a priori which files are shared, and could
cheat by making excessive accesses to non-shared files.
We used LRU as cache replacement policy for this ex-
periment.

We ran the experiment under two different schemes,
max-min fair allocation (Figure 5a) and FairRide (Fig-
ure 5b). Under both allocations, the two users got sim-
ilar average block response time (226ms under max-
min, 235ms under FairRide) at the beginning (t < 300s).
For max-min fair allocation, when user 2 started to
cheat at t = 300s, she managed to lower her miss ratio
over time (∼130ms), while user 1 got degraded perfor-

mance with 380ms. At t = 750s, user 1 also started to
cheat and both users stayed at high miss ratio (315ms).
In this particular case, there was strong incentive for
both the users to cheat at any point of time because
cheating could always decrease the cheater’s miss ratio
(226ms→130ms,380ms→315ms). Unfortunately, both
users get worse performance compared to not cheat all.
Such a prisoner’s dilemna would not happen with Fair-
Ride (Figure 5b). When user 2 cheated at t = 300s, her
response time instead increases to 305ms . Because of
this, both users would rather not cheat under FairRide
and behave truthfully.

7.2 Benchmarks with Multiple Workloads

Now we evaluate FairRide by running three workloads
on a EC2 cluster.

• TPC-H The TPC-H benchmark [11] is a set of de-
cision support queries based on those used by retail-
ers such as Amazon. The queries can be separated
into two main groups: a sales-oriented group and a
supply-oriented group. These two groups of queries
have some separate tables, but also share common
tables such as those maintaining inventory records.
We treated two query groups as from two indepen-
dent users.

• YCSB The Yahoo! Cloud Serving Benchmark pro-
vides a framework and common set of workloads
for evaluating the performance of key-value serv-
ing stores. We implemented a YCSB client and ran
multiple YCSB workloads to evaluate FairRide. We
let half of files to be shared across users.

• Production Cluster HDFS Log The HDFS log is
collected from a production Hadoop cluster at a
large Internet company. It contains detailed infor-
mation such as access timestamps and access user/-
group information. We found that more than 30%
of files are shared by at least two users.

We ran each workload under the following allocation
schemes: 1) isolation: statically partition the memory
space across users; 2) best-case: i.e. max-min fair allo-
cation and assume no user cheats; 3) FairRide: our solu-
tion which uses delaying to prevent cheating; 4) max-min
: max-min fair allocation with half users trying to game
the system. We used LRU as the default cache replace-
ment algorithm for all users and assumed cheating users
know what files are shared.

We focus on three questions: 1) does sharing the cache
improve performance significantly? (comparing perfor-
mance gain over isolation) 2) can FairRide prevent cheat-
ing with small efficiency loss? (comparing FairRide with
best-case) 3) does cheating degrade system performance
significantly? (comparing FairRide with max-min).
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To answer these questions, we plot the relative gain of
three schemes compared to isolation, as shown in Fig-
ure 6. In general, we find sharing the cache can im-
prove performance by 1.3∼3.1×, with best-case. If users
cheat, 15%∼220% of the gain will be lost. For the HDFS
workload, we also observe that cheating causes a per-
formance drop below isolation. While FairRide is very
close to best-case with 3%∼13% overhead, it prevents
the undesirable performance drop.

There are other interesting observations to note. First
of all, the overhead of FairRide, is more noticeable in the
YCSB benchmark and TPC-H than in the HDFS trace.
We find that this is because the most shared files in the
HDFS prodcution trace are among the top accessed files
for both users. Therefore, both users would cache the
shared files, resulting in less blocking/delaying. Sec-
ondly, cheating user benefits less in the HDFS trace, this
is due to fact that the access distribution across files are
highly long tailed in that trace, so that even cheating help
user gain more memory, it doesn’t show up significantly
in terms of miss ratio. Finally, there is a varied degree
of connection between miss ratio and application perfor-
mance (read latency, query time), e.g., YCSB’s read la-
tency is directly linked to miss ratio change, while TPC-
H’s query response time is relatively stable. This is be-
cause, for the latter, a query typically consists of multiple
stages of parallel tasks. As the completion time of a stage
is decided by the slowest task, caching could only help
when all tasks speed up. Therefore, a caching algorithm
that can provide all-or-nothing caching for parallel tasks
is needed to speed up query response time. We evalu-
ated the Facebook trace with such a caching algorithm in
Seciton 7.5.

7.3 Many Users

We want to understand how the effect of cheating relates
to the number of active users in the system. In this exper-
iment, we replay YCSB workloads with 20 users, where
each pair of users have a set of shared files that they ac-
cess commonly. Users can cheat by making excessive
access to their private files. We increase the number of
strategic users in different runs and plot the average miss
ratio for both the strategic user group and the truthful

user group in Figure 7. As expected, the miss ratio of the
truthful group increases when there is a growing num-
ber of strategic users. What’s interesting is that for the
strategic group, the benefit they can exploit decreases as
more and more users joining the group. With 12 strategic
users, even the strategic group has worse performance
compared to the no-cheater case. Eventually both groups
converge at a miss ratio of 74%.

7.4 Pluggable Policies

Next, we evaluated the benefit of allowing pluggable
policies. We ran three YCSB clients concurrently with
each client running a different workload. The character-
istics of the three workloads are summarized below:

User ID Workload Distribution Replacement
1 YCSB(a) zipfian LFU
2 YCSB(d) latest-most LRU
3 YCSB(e) scan priority 3

In the experiment, each YCSB client sets up the best
replacement specified in the above table with the system.
We compared our system with traditional caching sys-
tems that support only configuration of one uniform re-
placement policy, applied to all users. We ran the system
with uniform configuration three times, each time with a
different policy (LRU, LFU and priority). As shown in
Figure 8, by allowing the users to specify a best replace-
ment policy on their own, our system is able to provide
gain of the best case for each of the user among all uni-
form configurations.

7.5 Facebook workload
Our trace-driven simulator performed a detailed and
faithful replay of a task-level trace of Hadoop jobs col-
lected from a 2000-node cluster from Facebook during
the week of October 2010. Our replay preserved read
and write sizes of tasks, locations of input data as well as
job characteristics of failures, stragglers.

To make the effect of caching relevant to job com-
pletion time, we also use LIFE and LFU-F from PAC-
Man [12] as cache replacement policies. These poli-
cies performed all-or-nothing cache replacement for files
and can improve job completion time better than LRU
or LFU, as it speeds all concurrent tasks in one stage
[12]. In a nutshell, LIFE evicts files based on largest-
incomplete-file-first eviction, and LFU-F is based on
least-accessed-incomplete-file-first. We also set each

3Priority replacement means keeping a fixed set of files in cache.
Not the best policy here, but still better than LFU and LRU for the scan
workload.

4Effective miss ratio. For FairRide, we count a delayed access as
a “fractional” miss, with the fraction equal to the blocking probability,
so we can effectively compare miss ratio between FairRide and other
schemes.
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Figure 8: Pluggable policies.

job time cluster eff. eff. miss%4

u1 u2 u1 u2 u1 u2
isolation 17% 15% 23% 22% 68% 72%
global 54% 29% 55% 35% 42% 60%

best-case 42% 41% 47% 43% 48% 52%
max-min 30% 43% 35% 47% 63% 46%
FairRide 39% 40% 45% 43% 50% 55%

Table 2: Summary of simulation results on reduction in job
completion time, cluster efficiency improvement and hit ratio
under different scheme, with no caching as baseline.
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Figure 9: Overall reduction in job completion time for
Facebook trace.

node in the cluster with 20Gb of memory so miss ratio
was around 50%. The conclusion would hold for a wider
range of memory size.

We adopted a more advanced model of cheating in this
simulation. Instead of assuming users know what files
are shared a priori, a user cheats based on the cached
files she observes in the cluster. For example, for a non-
blocking scheme such as max-min fairness, a user can
figure out what shared files are cached by other users by
continuously probing the system. She would avoid shar-
ing the cost of those files and only cache files for her own
interest.

Caching improves overall performance of the system.
Table 2 provides a summary of reduction in job com-
pletion time and improvement in cluster efficiency (total
task run-time reduction) compared to a baseline with no
caching, as well as miss ratio numbers. Similar to pre-

vious experiments, isolation gave lowest gains for both
users and global improved users unevenly (compared
to best-case). FairRide suffered minimal overhead of
blocking (2% and 3% in terms of miss ratio compared
to best-case, 4% of cluster efficiency) but could prevent
cheating of user 2 that can potentially hurt user 1 by 15%
in terms of miss ratio. Similar comparisons were ob-
served in terms of job completion and cluster efficiency,
FairRide can outperform max-min by 27% in terms of ef-
ficiency and has 2.6× more improvement over isolation.

Figure 9 also shows the reduction in job completion
time across all users, plotted in median completion time
(a) and 95 percentile completion time (b) respectively.
FairRide preserved better overall reduction compared to
max-min. This was due to the fact that marginal im-
provement of the cheating user was smaller than the per-
formance drop of the cheated. FairRide also prevented
cheating from greatly increasing the tail of job comple-
tion time (95 percentile) as the metric was more domi-
nated by the slower user. We also show the improvement
of FairRide under different cache policies in (c) and (d).

7.6 Comparing Global FairRide

How much performance penalty does node-based Fair-
Ride suffer compared to global FairRide, if any? To an-
swer this question, we ran another simulation with the
Facebook trace to compare against two global FairRide
schemes. The two global schemes both select a evicting
user based on users’ global usage, but differ in how they
pick evicting blocks: a “naive” global scheme chooses
from only blocks on that node, similar to the node-based
approach, and an “optimized” global scheme chooses
from any user blocks in the cluster. We use LIFE as the
replacement policy for both users.

Cluster size 200 500 1000
Node-based FairRide 51% 44% 41%

Global FairRide, Naive 25% 21% 17%
Global FairRide, Optimized 54% 47% 44%

Table 3: Comparing against global schemes. Keep to-
tal memory size as constant while varying the number
of nodes in the cluster. Showing improvement over no
cache as in the reduction in median job completion time.

As we find out, the naive global scheme has a great
performance drop (23%∼25% improvement difference
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compared to node-based FairRide), noticeably in Table 3.
This is due to the fact that the naive scheme is unable to
allocate in favor of frequently accessing user per node.
With the naive global scheme, memory allocations on
each node quickly stabilizes based on initial user ac-
cesses. A user can get an unnecessarily large portion of
memory on a node because she accesses data earlier than
the other, although her access frequency on that node is
low in general. The optimized global scheme fixes this
issue by allowing a user to evict least preferred data in
the whole cluster and it makes sure the 1/n-th of mem-
ory allocated must store her most preferred data. We ob-
serve an increase of average hit ratio by 24% with the
optimized scheme, which reflects the access skew for the
underlying data. What’s interesting is that the optimized
global scheme is only 3%∼4% better than node-based
scheme in terms of job complete time improvement. In
addition to the fact data skew is not huge (considering
24% increase for hit ratio), the all-or-nothing property
of data-parallel caching again comes into play. Global
scheme on average increases the number of completely
cached files by only 7%, and because now memory allo-
cation is skewed across the cluster, there is an increased
chance that tasks cannot be scheduled to co-locate with
cached data, due to CPU slot limitation. Finally, we
also observe that as the number of nodes increases (while
keeping the total CPU slots and memory constant), there
is a decrease in improvement in all three schemes, due to
less tasks can be scheduled with cache locality.
8 Related Works
Management of shared resources has always been been
an important subject. Over the past decades, re-
searchers and practitioners have considered the sharing
of CPU [39, 15, 35, 40] and network bandwidth [28,
13, 17, 23, 33, 36], and developed a plethora of solu-
tions to allocate and schedule these resources. The prob-
lem of cache allocation for better isolation, quality-of-
service [24] or attack resilience [29] has also been stud-
ied under various contexts, including CPU cache [25],
disk cache [31] and caching in storage systems [34].

One of the most popular allocation policies is fair
sharing [16] or max-min fairness [27, 14]. Due to the
nice properties, it has been implemented using vari-
ous methods, such as round-robin, proportional resource
sharing [39] and fair queuing [18], and has been extended
to support multiple resource types [20] and resource con-
straints [21]. The key differentiator for our work from the
ones mentioned above, is that we consider shared data.
None of the works above identifies the impossibility of
three important properties with shared files.

There are other techniques that have been studied to
provide fairness and efficiency of shared cache. Prefetch-
ing of data into the cache before access, either through
hints from applications [31] or predication [22], can

improve the overall system efficiency. Profiling appli-
cations [25] is useful for provding application-sepcific
information. We view these techniques as orthogonal to
our work. Other techniques such as throttling access rate
requires the system to identify good thresholds.
9 Conclusions
In this paper, we study the problem of cache alloca-
tion in a multi-user environment. We show that with
data sharing, it is not possible to find an allocation pol-
icy that achieves isolation-guarantee, strategy-proofness
and Pareto-efficiency simultaneously. We propose a new
policy called FairRide. Unlike previous policies, Fair-
Ride provides both isolation-guarantee (so a user gets
better performance than on isolated cache) and strategy-
proofness (so users are not incentivized to cheat), by
blocking access from cheating users. We provide an ef-
ficient implementation of the FairRide system and show
that in many realistic workloads, FairRide can outper-
form previous policies when users cheat. The two
nice properties of FairRide come at the cost of Pareto-
efficiency. We also show that FairRide’s cost is within
4% of total efficiency in some of the production work-
loads, when we conservatively assume users don’t cheat.
Based of the appealing properties and relatively small
overhead, we believe that FairRide can be a practical pol-
icy for real-world cloud environments.
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