
print
first

hello h

11 Recursive Operations

A Simple Substitution Cipher

output effect.

cipher code

195

print first "hello

qwertyuiopasdfghjklzxcvbnm

So far, the recursive procedures we’ve seen have all been commands, not operations.
Remember that an operation is a procedure that has an rather than an In
other words, an operation computes some value that is then used as the input to some
other procedure. In the instruction

is a command, because it does something: It prints its input (whatever that may
be) on the screen. But is an operation, because it computes something: With the
word as input, it computes the letter , which is the first letter of the input.

I’m going to write a program to produce secret messages. The program will take an
ordinary English sentence (in the form of a Logo list) and change each letter into some
other letter. For example, we can decide to replace the letter E with the letter J every
time it occurs in the message. The program will need two inputs: the message and the
correspondence between letters. The latter will take the form of a word of 26 letters,
representing the coded versions of the 26 letters in alphabetical order. For example, the
word

indicates that the letter A in the original text will be represented by Q in the secret
version, B will be represented by W, and so on.

In order to encipher a sentence, we must go through it word by word. (Strictly
speaking, what we’re doing is called a rather than a because the latter is a

The Lord
of the Rings.

196 Chapter 11 Recursive Operations

Codelet

codelet

Codelet
codematch

codematch

output
codelet codematch
codelet

codematch

first codematch first

codematch equalp true
codematch :code

codematch

Codematch

to codelet :letter :code
output codematch :letter "abcdefghijklmnopqrstuvwxyz :code
end

to codematch :letter :clear :code
if emptyp :clear [output :letter] ; punctuation character
if equalp :letter first :clear [output first :code]
output codematch :letter butfirst :clear butfirst :code
end

if equalp :letter first :clear ...

system that substitutes something for an entire word at a time, like a foreign language,
whereas we’re substituting for a single letter at a time, like the Elvish alphabet in

) In order to encipher a word we must go through it letter by letter. So I’ll
begin by writing a procedure to translate a single letter to its coded form.

is an operation that takes two inputs. The first input must be a single-letter
word, and the second must be a code, that is, a word with the 26 letters of the alphabet
rearranged. The output from is the enciphered version of the input letter. (If
the first input is a character other than a letter, such as a punctuation mark, then the
output is the same as that input.)

itself is a very simple procedure. It simply passes its two inputs on to
a subprocedure, , along with another input that is the alphabet in normal
order. The idea is that will compare the input letter to each of the letters in
the regular alphabet; when it finds a match, it will output the letter in the corresponding
position in the scrambled alphabet. Be sure you understand the use of the
command in ; it says that whatever outputs should become the
output from as well.

The job of is to go through the alphabet, letter by letter, looking for the
particular letter we’re trying to encode. The primary tool that Logo provides for looking
at a single letter in a word is . So uses to compare its input
letter with the first letter of the input alphabet:

If the first input to is the letter A, then will output and
will output the first letter of (Q in the example I gave earlier). But

suppose the first input isn’t an A. Then has to solve a smaller subproblem:
Find the input letter in the remaining 25 letters of the alphabet. Finding a smaller, similar
subproblem means that we can use a recursive solution. invokes itself, but

A Simple Substitution Cipher 197

butfirst

codematch

codematch

first
butfirst

codelet codematch

codelet

codeword

codematch "e "abcdefghijklmnopqrstuvwxyz "qwertyuiopasdfghjklzxcvbnm
codematch "e "bcdefghijklmnopqrstuvwxyz "wertyuiopasdfghjklzxcvbnm

codematch "e "cdefghijklmnopqrstuvwxyz "ertyuiopasdfghjklzxcvbnm
codematch "e "defghijklmnopqrstuvwxyz "rtyuiopasdfghjklzxcvbnm

codematch "e "efghijklmnopqrstuvwxyz "tyuiopasdfghjklzxcvbnm
codematch outputs "t

codematch outputs "t
codematch outputs "t

codematch outputs "t
codematch outputs "t

to codelet :letter :code ;; command version
codematch :letter "abcdefghijklmnopqrstuvwxyz :code
end

to codematch :letter :clear :code ;; command version
if emptyp :clear [print :letter stop]
if equalp :letter first :clear [print first :code stop]
codematch :letter butfirst :clear butfirst :code
end

for its second and third inputs it uses the s of the original inputs because the
first letter of the alphabet (A) and its corresponding coded letter (Q) have already been
rejected.

Here is a trace of an example of at work, to help you understand what’s
going on.

The fifth, innermost invocation of succeeds at matching its first input (the
letter E) with the first letter of its second input. That invocation therefore outputs the
first letter of its third input, the letter T. Each of the higher-level invocations outputs the
same thing in turn.

The pattern of doing something to the of an input, then invoking the same
procedure recursively with the as the new input, is a familiar one from
recursive commands. If we only wanted to translate single letters, we could have written

and as commands, like this:

You may find this version a little easier to understand, because it’s more like the recursive
commands we’ve examined in the past. But making an operation is a much
stronger technique. Instead of being required to print the computed code letter, we can
make that letter part of a larger computation. In fact, we have to do that in order to
encipher a complete word. Each word is made up of letters, and the task of

198 Chapter 11 Recursive Operations

codelet
codelet

codeword

codeword map

map

codeword

first print codelet
butfirst Codeword

code

codeword
output stop

print one.per.line one.per.line

to codeword :word :code ;; using higher order function
output map [codelet ? :code] :word
end

to one.per.line :word
if emptyp :word [stop]
print first :word
one.per.line butfirst :word
end

to codeword :word :code
if emptyp :word [output "]
output word (codelet first :word :code) (codeword butfirst :word :code)
end

will be to go through a word, letter by letter, using each letter as input to . The
letters output by must be combined into a new word, which will be the output
from .

We could write using the higher order function :

But to help you learn how to write recursive operations, in this chapter we’ll avoid higher
order functions. (As it turns out, itself is a recursive operation, written using the
techniques of this chapter.)

Recall the structure of a previous procedure that went through a word letter by letter:

Compare this to the structure of the recursive :

There are many similarities. Both procedures have a stop rule that tests for an empty
input. Both do something to the of the input (either or), and
each invokes itself recursively on the of the input. (has an extra
input for the code letters, but that doesn’t really change the structure of the procedure.
If that’s confusing to you, you could temporarily pretend that is a global variable
and eliminate it as an input.)

The differences have to do with the fact that is an operation instead of a
command. The stop rule invokes rather than and must therefore specify
what is to be output when the stop condition is met. (In this case, when the input word
is empty, the output is also the empty word.) But the main thing is that the action step
(the in) and the recursive call (the instruction)

hello

CODEWORDCODELET

WORD

i tssg

itssg

its

A Simple Substitution Cipher 199

print codeword "hello "qwertyuiopasdfghjklzxcvbnm

codelet first :word :code

codeword butfirst :word :code

?
itssg

codeword
word

output codeword output
word

word
word

word

codeword

word
output

codeword

print codeword

output codeword print
codeword

are not two separate instructions in . Instead they are expressions (the two in
parentheses) that are combined by to form the complete output. Here’s a picture:

Remember what you learned in Chapter 2 about the way in which Logo instructions
are evaluated. Consider the instruction in . Before can be
invoked, Logo must evaluate its input. That input comes from the output from .
Before can be invoked, Logo must evaluate inputs. There are two of them. The
first input to is the expression

This expression computes the coded version of the first letter of the word we want to
translate. The second input to is the expression

This expression invokes recursively, solving the smaller subproblem of trans-
lating a smaller word, one with the first letter removed. When both of these computations
are complete, can combine the results to form the translation of the complete
input word. Then can output that result.

Here’s an example of how is used.

Notice that we have to say , not just start the instruction line with ; a
complete instruction must have a command. Suppose you had the idea of saving all
that typing by changing the instruction in to a . What would
happen? The answer is that wouldn’t be able to invoke itself recursively as an
operation. (If you don’t understand that, try it!) Also, it’s generally a better idea to write

☞

More Procedure Patterns

combiner

200 Chapter 11 Recursive Operations

code
codeword

code

codeword code

code
sentence

word code

Code codeword
map

word sentence
sentence

fput Fput
fput

print code [meet at midnight, under the dock.] ~
"qwertyuiopasdfghjklzxcvbnm

procedure

combiner something procedure

to code :sent :code
if emptyp :sent [output []]
output sentence (codeword first :sent :code) (code butfirst :sent :code)
end

?

dttz qz dorfouiz, xfrtk zit rgea.

to :input
if emptyp :input [output :input]
output (first :input) (butfirst :input)
end

an operation when you have to compute some result. That way, you aren’t committed to
printing the result; you can use it as part of a larger computation.

For example, right now I’d like to write a procedure that translates an entire
sentence into code. Like , it will be an operation with two inputs, the second
of which is a code (a word of 26 scrambled letters). The difference is that the first input
will be a sentence instead of a word and the output will also be a sentence.

Write using a higher order function. Then see if you can write an equivalent
recursive version.

Just as works by splitting up the word into letters, will work by
splitting up a sentence into words. The structure will be very similar. Here it is:

The main differences are that outputs the empty list, instead of the empty word,
for an empty input and that is used as the combining operation instead of

. Here’s an example of at work.

and are examples of a very common pattern in recursive operations:
They are like using with a particular function. Here is the pattern that they fit.

The is often or , although others are possible. In fact, when
working with lists, the most common combiner is not but another operation
that we haven’t used before, (First PUT). takes two inputs. The first can be
any datum, but the second must be a list. The output from is a list that is equal to
the second input, except that the first input is inserted as a new first member. In other

☞

☞

shape

almost

two

More Procedure Patterns 201

?
[hee hee hee ho ho ho]
?
[[hee hee hee] ho ho ho]

?
[nowhere hereafter afterglow glowworm wormhole]

show sentence [hee hee hee] [ho ho ho]

show fput [hee hee hee] [ho ho ho]

show pairup [now here after glow worm hole]

fput first butfirst

Fput first
butfirst

fput

sentence fput code
fput sentence

Fput sentence
fput
sentence

list fput first butfirst last
butlast if

emptyp wordp output
my-sentence

lput
fput lput

last butlast my-lput
fput first butfirst

map map

map

Map map

words the output from is a list whose is the first input and whose
is the second input.

is a good combiner because the two things we want to combine are the and
the of a list, except that each has been modified in some way. But the of
the final result (a list of so many members) should be the same as the shape of the input,
and that’s what ensures.

When you’re working with sentences—lists of words rather than lists of lists—
and will work equally well as the combiner. For example, could

have been written using instead of . Not until some of the later examples,
when we use tree-structured lists, will the choice really be important.

is actually a “more primitive” operation than , in the sense that the
Logo interpreter actually constructs lists by doing the internal equivalent of . As an
exercise, you might like to try writing your own versions of list combiners like
and out of , , and . You should also be able to write
and using only those three building blocks. (Actually you’ll also need ,

, , and , but you won’t need any other primitive combiners.) Give
your versions distinct names, such as , since Logo won’t let you redefine
primitives.

Another “less primitive” primitive is , an operation that takes two inputs. As for
, the first can be any datum but the second must be a list. The output from

is a list whose is the first input and whose is the second. Write
using and the selectors and .

It may seem silly to learn a recursive pattern for problems that can be solved using
. But sometimes we run into a problem that’s like a , but not exactly. For

example, how would you write the following operation:

Instead of the usual -like situation in which each word in the result is a function of
one word of the input, this time each word of the result is a function of neighboring
input words. won’t solve this problem, but the -like recursion pattern will.

☞

☞

FilterThe Pattern

pairup

numbers

202 Chapter 11 Recursive Operations

show swap [the rain in spain stays mainly on the plain]

show filter "numberp [76 trombones, 4 calling birds, and 8 days]

show numbers [76 trombones, 4 calling birds, and 8 days]

to pairup :words
if emptyp butfirst :words [output []]
output (sentence (word first :words first butfirst :words)

(pairup butfirst :words))
end

?
[rain the spain in mainly stays the on plain]

?
[76 4 8]

to numbers :sent
if emptyp :sent [output []]
if numberp first :sent ~

[output sentence first :sent numbers butfirst :sent]
output numbers butfirst :sent
end

?
[76 4 8]

Compare this procedure with the general pattern on page 200; look for similarities and
differences.

One difference is in the test for the base case. Why is the version in different
from the one in the pattern?

Write an operation that interchanges pairs of words in a sentence, like this:

Don’t forget to think about that leftover word in an odd-length sentence!

In Chapter 5 we saw this example:

To write a recursive operation with the same result, we must handle three cases:
the base case, in which the input is empty; the case in which the first word of the input is
a number; and the case in which the first word isn’t a number.

☞

ReduceThe Pattern

three

The Pattern 203

filter

map

reduce

map

Reduce

procedure

predicate
combiner procedure

procedure

show unique [Paris in the the spring is a joy joy to behold.]

show reduce "word [C S L S]

show reduce "sum [3 4 5 6]

to :input
if emptyp :input [output :input]
if first :input ~

[output first :input butfirst :input]
output butfirst :input
end

?
Paris in the spring is a joy to behold.

?
CSLS
?
18

to wordify :sentence
if emptyp :sentence [output "]
output word (first :sentence) (wordify butfirst :sentence)
end

to addup :numbers
if emptyp :numbers [output 0]
output sum (first :numbers) (addup butfirst :numbers)
end

Here’s the general pattern:

As in the case of the pattern, this one is most useful in situations for which the higher
order function won’t quite do.

Write an operation that looks for two equal words next to each other in a sentence,
and outputs a sentence with one of them removed:

What does your procedure do with consecutive equal words? What should it do?

Other examples from Chapter 5 introduced the higher order function.

Recursive operations equivalent to these examples are very much like the pattern
except that the combiner function is applied to the members of the input directly, rather
than to some function of the members of the input:

☞

☞

identity

204 Chapter 11 Recursive Operations

procedure
identity

combiner procedure

sum product

multiply

multiply

filter reduce

Addup reduce
sum

count

butfirst

count

to :input
if emptyp :input [output]
output (first :input) (butfirst :input)
end

to length :thing
if emptyp :thing [output 0]
output 1+length butfirst :thing
end

to vowelcount :word
if emptyp :word [output 0]
if vowelp first :word [output 1+vowelcount butfirst :word]
output vowelcount butfirst :word
end

What are the differences between these two examples? There are two: the combiner
used and the value output in the base case. Here is the pattern:

The in this pattern depends on the combiner; it’s the value that, when
combined with something else, gives that something else unchanged as the result. Thus,
zero is the identity for , but the identity for would be one.

Write a operation that takes a list of numbers as its input and returns the
product of all the numbers.

You can make your procedure more efficient, in some situations, by
having it notice when one of the numbers in the input list is zero. In that case, you can
output zero as the overall result without looking at any more numbers. The resulting
procedure will, in a sense, combine aspects of the and patterns.

is one example of an important sub-category of -like procedures in
which the “combining” operation is arithmetic, usually . The simplest example is a
procedure equivalent to the primitive , which counts the members of a list or the
letters of a word:

In this procedure, as usual, we can see the reduction of a problem to a smaller subproblem.
The length of any word or list is one more than the length of its . Eventually
this process of shortening the input will reduce it to emptiness; the length of an empty
word or list is zero.

Although is a primitive, there are more complicated counting situations in
which not every member should be counted. For example, here is a procedure to count
the number of vowels in a word:

☞

☞

FindThe Pattern

is

selection

The Pattern 205

vowelp

vowelcount length
length true

if

$21,997.00

item
index

filter

Find

procedure

predicate procedure
procedure

print index "seven [four score and seven years ago]

print index "v "aardvark

procedure

predicate something
procedure

to vowelp :letter
output memberp :letter [a e i o u]
end

to :input
if emptyp :input [output 0]
if first :input [output 1+ butfirst :input]
output butfirst :input
end

?
4
?
5

to :input
if emptyp :input [output :input]
if first :input [output first :input]
output butfirst :input
end

(Actually, my predicate is somewhat oversimplified. The letter Y is a vowel in
certain positions in the word, and even some other letters can sometimes play the role of
a vowel. But this isn’t a book on linguistics!)

You can see the similarities between and . The difference is
that, in effect, uses a predicate that is always , so it always carries out the
instruction inside the . Here’s the pattern:

Try writing a procedure that will accept as input a word like and
output the number of digits before the decimal point. (In this case the correct output
is 5.) Don’t assume that there a decimal point; your program shouldn’t blow up no
matter what word it gets as input.

Another counting problem is to output the position of a member in a list. This
operation is the inverse to , a Logo primitive, which outputs the member at a given
position number. What I’m asking you to write is , which works like this:

A variation of the pattern is for operations: ones that pick a single
element out of a list. The general idea looks like this:

french

Codematch
butfirst

print french "computer

something

predicate;

206 Chapter 11 Recursive Operations

to french :word
output lookup :word [[book livre] [computer ordinateur] [window fenetre]]
end

to lookup :word :dictionary
if emptyp :dictionary [output "]
if equalp :word first first :dictionary [output last first :dictionary]
output lookup :word butfirst :dictionary
end

?
ordinateur

first first :dictionary

last first :dictionary

output first :input

output "true

There will generally be extra inputs to these procedures, to indicate the basis for selection.
For example, here is a program that translates English words into French.

The expression

selects the English word from the first word-pair in the list. Similarly,

selects the French version of the same word. (Of course, in reality, the word list in
would be much longer than the three word-pairs I’ve shown.)

, in the example that started this chapter, follows the same pattern of
selection. The only difference is that there are two inputs that are ed in
parallel.

Somewhat similar to the selection pattern is one for a recursive the
difference is that instead of

for a successful match, the procedure simply says

in that case. This pattern is followed by predicates that ask a question like “Does any
member of the input do X?” For example, suppose that instead of counting the vowels

really

The Pattern 207

print about.computersp [this book is about programming]

true

emptyp
now nowhere

ascii

about.computersp

programming.
programming

Find

to hasvowelp :word
if emptyp :word [output "false]
if vowelp first :word [output "true]
output hasvowelp butfirst :word
end

to sort.beforep :word1 :word2
if emptyp :word1 [output "true]
if emptyp :word2 [output "false]
if (ascii first :word1) < (ascii first :word2) [output "true]
if (ascii first :word1) > (ascii first :word2) [output "false]
output sort.beforep butfirst :word1 butfirst :word2
end

?
true

in a word, we just want to know whether or not there is a vowel. Then we’re asking the
question “Is any letter in this word a vowel?” Here’s how to find out.

A more realistic example is also somewhat more cluttered with extra inputs and
sometimes extra end tests. Here’s a procedure that takes two words as input. It outputs

if the first word comes before the second in the dictionary.

The procedure will end on one of the tests if one of the input words is the
beginning of the other, like and . Otherwise, the procedure ends when two
letters are unequal. The recursion step is followed when the beginning letters are equal.
(The operation takes a one-character word as input, and outputs the numeric
value for that character in the computer’s coding system, which is called the American
Standard Code for Information Interchange.)

A combination of the translation kind of operation and the selection kind is
an operation that selects not one but several members of the input. For example,
you sometimes want to examine the words in a sentence in various ways but have
trouble because the sentence includes punctuation as part of some words. But the
punctuation isn’t part of the word. In Chapter 4, for instance, I defined a predicate

and gave this example of its use:

But if the example were part of a larger program, carrying on a conversation with a
person, the person would probably have ended the sentence with a period. The last
word would then have been (including the period). That word, which is
different from without the period, isn’t in the procedure’s list of relevant

☞

CascadeNumerical Operations: The Pattern

only

factorial

208 Chapter 11 Recursive Operations

false

Strip.word

Strip.word word

letterp

about.computersp strip

to strip :sent
if emptyp :sent [output []]
output sentence (strip.word first :sent) (strip butfirst :sent)
end

to strip.word :word
if emptyp :word [output "]
if letterp first :word ~

[output word (first :word) (strip.word butfirst :word)]
output strip.word butfirst :word
end

to letterp :char
output or (inrangep (ascii :char) (ascii "A) (ascii "Z)) ~

(inrangep (ascii :char) (ascii "a) (ascii "z))
end

to inrangep :this :low :high
output and (:this > (:low-1)) (:this < (:high+1))
end

words, so it would have output . The solution is to write a procedure that strips
the punctuation from each word of a sentence. Of course that’s a straightforward case of
the translation pattern, applying a subprocedure to each word of the sentence:

, though, is more interesting. It must select only the letters from a word.

is like the translation pattern in the use of the combining operation
in the middle instruction line. But it’s also like the selection pattern in that there are two
different choices of output, depending on the result of the predicate .

You might want to rewrite so that it uses . Consider an
initialization procedure.

Certain mathematical functions are defined in terms of recursive calculations. It used to
be that computers were used for numerical computation. They’re now much more
versatile, as you’ve already seen, but sometimes the old numerical work is still important.

The classic example in this category is the function. The factorial of a
positive integer is the product of all the integers from 1 up to that number. The factorial

☞

× × × ×

×

print fact 5

Numerical Operations: The Pattern 209

cascade

cascade
cascade #

fact

power cascade

Cascade

to fact :n ;; cascade version
output cascade :n [? * #] 1
end

?
120

to fact :n
if :n=0 [output 1]
output :n * fact :n-1
end

to power :base :exponent
output cascade :exponent [? * :base] 1
end

of 5 is represented as 5! so
5! = 1 2 3 4 5

We can use to carry out this computation:

In this example I’m using a feature of that we haven’t seen before. The
template (the second input to) may include a number sign () character,
which represents the number of times the template has been repeated. That is, it
represents 1 the first time, 2 the second time, and so on.

Here is a recursive version of that takes one input, a positive integer, and
outputs the factorial function of that number. The input can also be zero; the rule is that
0! = 1.

This procedure works because
5! = 5 4!

That’s another version of reducing a problem to a smaller subproblem.

Chapter 5 gives the following example:

Write a version of using recursion instead of using .

Another classic example, slightly more complicated, is the Fibonacci sequence. Each
number in the sequence is the sum of the two previous numbers; the first two numbers
are 1. So the sequence starts

1, 1, 2, 3, 5, 8, 13, . . .

≥− −n n n

n

0

1

1 2

fib

fib 4

fib 2 fib 4
fib 4 fib 3 fib 3 fib 2 fib 1

fib

F

F

F F F n

n F

list

210 Chapter 11 Recursive Operations

to fib :n
if :n<2 [output 1]
output (fib :n-1)+(fib :n-2)
end

fib 4
fib 3
fib 2
fib 1
fib 0

fib 1
fib 2
fib 1
fib 0

to fiblist :n
if :n<2 [output [1 1]]
output newfib fiblist :n-1
end

A formal definition of the sequence looks like this:

= 1,

= 1,

= + , 2.

Here’s an operation that takes a number as input and outputs .

That procedure will work, but it’s quite seriously inefficient. The problem is that it ends
up computing the same numbers over and over again. To see why, here’s a trace of what
happens when you ask for :

Do you see the problem? is computed twice, once because needs it directly
and once because needs and needs . Similarly, is
computed three times. As the input to gets bigger, this problem gets worse and
worse.

It turns out that a much faster way to handle this problem is to compute a of
all the Fibonacci numbers up to the one we want. Then each computation can take
advantage of the work already done. Here’s what I mean:

Pig Latin

print fiblist 5

n n.

Pig Latin 211

fib fiblist

fib

fiblist

:n-1
butfirst

item
item

index item item

to newfib :list
output fput (sum first :list first butfirst :list) :list
end

?
8 5 3 2 1 1

to fib :n
output first fiblist :n
end

to item :n :list
if equalp :n 1 [output first :list]
output item :n-1 butfirst :list
end

We can then define a faster in terms of :

Convince yourself that the two versions of give the same outputs but that the second
version is much faster. I’m purposely not going through a detailed explanation of this
example; you should use the analytical techniques you learned in Chapter 8. What
problem is trying to solve? What is the smaller subproblem?

The hallmark of numerical recursion is something like in the recursion step.
Sometimes this kind of recursion is combined with the style we’ve seen in
most of the earlier examples. Logo has a primitive operation called , which takes
two inputs. The first is a positive integer, and the second is a list. The output from
is the th member of the list if the first input is (Earlier I suggested that you write

, the opposite of .) If Logo didn’t include , here’s how you could write
it:

When I was growing up, every kid learned a not-very-secret “secret” language called Pig
Latin. When I became a teacher, I was surprised to find out that kids apparently didn’t
learn it any more. But more recently it seems to have come back into vogue. Translating
a sentence into Pig Latin is an interesting programming problem, so I’m going to teach
it to you.

Here’s how it works. For each word take any consonants that are at the beginning
(up to the first vowel) and move them to the end. Then add “ay” at the end. So
“hello” becomes “ellohay”; “through” becomes “oughthray”; “aardvark” just becomes

☞

☞

isn’t

is

212 Chapter 11 Recursive Operations

piglatin

plword code plword

vowelp
y
yarn y

try y

plword

piglatin

if vowelp first :word [output word :word "ay]

to plword :word
if vowelp first :word [output word :word "ay]
output plword word butfirst :word first :word
end

output plword butfirst :word

“aardvarkay.” (Pig Latin is meant to be spoken, not written. You’re supposed to practice
so that you can do it and understand it really fast.)

By now you can write in your sleep the operation , which takes a sentence
and outputs its translation into Pig Latin by going through the sentence applying a
subprocedure to each word. (It’s just like , only different.) It’s
that is the tricky part. The stop rule is pretty straightforward:

If the first letter a vowel, what we want to do is move that letter to the end and try
again. Here’s the complete procedure.

What makes this tricky is that the recursion step doesn’t seem to make the problem
smaller. The word is still the same length after we move the first letter to the end. This
would look more like all the other examples if the recursion step were

That would make the procedure easier to understand. Unfortunately it would also give
the wrong answer. What you have to see is that there something that is getting smaller
about the word, namely the “distance” from the beginning of the word to the first vowel.
Trace through a couple of examples to clarify this for yourself.

By the way, this will work better if you modify (which we defined earlier) so
that is considered a vowel. You’ll then get the wrong answer for a few strange words
like , but on the other hand, if you consider a consonant, you’ll get no answer at
all for words like in which is the only vowel! (Try it. Do you understand what goes
wrong?)

Some people learned a different dialect of Pig Latin. According to them, if the word
starts with a vowel in the first place, you should add “way” at the end instead of just “ay.”
Modify so that it speaks that dialect. (I think the idea is that some words simply
sound better with that rule.) Hint: You’ll want an initialization procedure.

The top-level procedure , which you wrote yourself, is a good candidate
for careful thought about punctuation. You don’t want to see

•
•
•

A Mini-project: Spelling Numbers

list

A Mini-project: Spelling Numbers 213

piglatin strip

isn’t

endpunct

plword
endpunct

number.name

print piglatin [what is he doing?]

print number.name 5513345

print number.name (fact 20)

?
atwhay isway ehay oing?day

atwhay isway ehay oingday?

?
five million five hundred thirteen thousand three hundred forty five
?
two quintillion four hundred thirty two quadrillion nine hundred two
trillion eight billion one hundred seventy six million six hundred
forty thousand

A good first attempt would be to modify to use , to get rid of the
punctuation altogether. But even better would be to remove the punctuation from each
word, translate it to Pig Latin, then put the punctuation back! Then we could get

That’s the right thing to do for punctuation at the end of a word, like a period or a
comma. On the other hand, the apostrophe inside a word like should be treated
just like a letter.

The project I’m proposing to you is a pretty tricky one. Here’s a hint. Write an
operation that takes a word as input and outputs a of two words, first the
“real” word full of letters, then any punctuation that might be at the end. (The second
word will be empty if there is no such punctuation.) Then your new can be
an initialization procedure that invokes a subprocedure with ’s output as its
input.

Write a procedure that takes a positive integer input, and outputs a
sentence containing that number spelled out in words:

There are some special cases you will need to consider:

Numbers in which some particular digit is zero

Numbers like 1,000,529 in which an entire group of three digits is zero.

Numbers in the teens.

Here are two hints. First, split the number into groups of three digits, going from
right to left. Also, use the sentence

☞

SubsetsAdvanced Recursion:

print number.name 1428425

stub

does

larger

214 Chapter 11 Recursive Operations

fifteen 15

number.name

subsets

lit
lights hit

iht hit

lights
word

map

filter
reduce
subsets

[thousand million billion trillion quadrillion quintillion
sextillion septillion octillion nonillion decillion]

? ;; intermediate version
1 million 428 thousand 425

You can write this bottom-up or top-down. To work bottom-up, pick a subtask and
get that working before you tackle the overall structure of the problem. For example,
write a procedure that returns the word given the argument .

To work top-down, start by writing , freely assuming the existence of
whatever helper procedures you like. You can begin debugging by writing procedures
that fit into the overall program but don’t really do their job correctly. For example, as
an intermediate stage you might end up with a program that works like this:

We’ve seen that recursive operations can do the same jobs as higher order functions,
and we’ve seen that recursive operations can do jobs that are similar to the higher order
function patterns but not quite the same. Now we’ll see that recursive operations can do
jobs that are quite outside the bounds of any of the higher order functions in Chapter 5.

I’d like to write an operation that takes a word as input. Its output will be a
sentence containing all the words that can be made using letters from the input word, in
the same order, but not necessarily using all of them. For example, the word counts
as a subset of the word , but doesn’t count because the letters are in the
wrong order. (Of course the procedure won’t know which words are real English words,
so , which has the same letters as in the right order, count.)

How many subsets does have? Write them all down if you’re not sure. (Or
perhaps you’d prefer to count the subsets of a shorter word, such as , instead.)

A problem that follows the pattern is one in which the size of the output is the
same as the size of the input, because each member of the input gives rise to one member
of the output. A problem that follows the pattern is one in which the output is
smaller than the input, because only some of the members are selected. And the
pattern collapses all of the members of the input into one single result. The
problem is quite different from any of these; its output will be much than its input.

If we can’t rely on known patterns, we’ll have to go back to first principles. In Chapter
8 you learned to write recursive procedures by looking for a smaller, similar subproblem
within the problem we’re trying to solve. What is a smaller subproblem that’s similar to

are

Advanced Recursion: 215

lights

ights

lights ights

ights lits
its ights

"
(sentence ")

smaller make

Subsets

to subsets :word ;; incomplete
local "smaller
make "smaller subsets butfirst :word
output sentence :smaller (map [word (first :word) ?] :smaller)
end

to subsets :word
if emptyp :word [output (sentence ")]
local "smaller
make "smaller subsets butfirst :word
output sentence :smaller (map [word (first :word) ?] :smaller)
end

output sentence (subsets butfirst :word) ~
(map [word (first :word) ?] (subsets butfirst :word))

finding the subsets of ? How about finding the subsets of its butfirst? This idea is
the same one that’s often worked for us before. So imagine that we’ve already found all
the subsets of .

Some of the subsets of subsets of . Which ones aren’t? The
missing subsets are the ones that start with the letter L. What’s more, the other letters in
such a subset form a subset of . For example, the word consists of the letter
L followed by , which is a subset of .

This procedure reflects the idea I’ve just tried to explain. The subsets of a given word
can be divided into two groups: the subsets of its butfirst, and those same subsets with the
first letter of the word stuck on the front.

The procedure lacks a base case. It’s tempting to say that if the input is an empty
word, then the output should be an empty sentence. But that isn’t quite right, because
every word is a subset of itself, so in particular the empty word is a subset (the only subset)
of itself. We must output a sentence containing an empty word. That’s a little tricky to
type, but we can represent a quoted empty word as and so a sentence containing an
empty word is .

Why did I use the local variable and a instruction? It wasn’t strictly
necessary; I could have said

The trouble is that this would have told Logo to compute the smaller similar subproblem
twice instead of just once. It may seem that that would make the program take twice as
long, but in fact the problem is worse than that, because each smaller subproblem has a

☞

☞ TM

subsets

true

A Word about Tail Recursion

BEZO
URND
AKAJ
WEOE

?
true
?
false

some

216 Chapter 11 Recursive Operations

print findword "zebra [bezo urnd akaj weoe]

print findword "radar [bezo urnd akaj weoe]

smaller subproblem of its own, and those would be computed four times—twice for each
of the two computations of the first smaller subproblem! As in the case of the Fibonacci
sequence we studied earlier, avoiding the duplicated computation makes an enormous
difference.

Problems like this one, in which the size of the output grows extremely quickly for
small changes in the size of the input, tend to be harder to program than most. Here
are a couple of examples. Like , each of these has a fairly short procedure
definition that hides a very complex computation.

On telephone dials, most digits have letters associated with them. In the United
States, for example, the digit 5 is associated with the letters J, K, and L. (The correspon-
dence is somewhat different in other countries.) You can use these letters to spell out
words to make your phone number easier to remember. For example, many years ago I
had the phone number 492-6824, which spells I-WANT-BH. Write a procedure that takes
a number as its input, and outputs a sentence of all the words that that number can
represent. You may want to test the program using numbers of fewer than seven digits!

In the game of Boggle , the object is to find words by connecting neighboring
letters in a four by four array of letters. For example, the array

contains the words ZEBRA, DONE, and DARK, but not RADAR, because each letter can
be used only once. Write a predicate procedure that takes a word and an array of letters
(in the form of a sentence with one word for each row) as inputs, and outputs if
and only if the given word can be found in the given array.

What I want to talk about in the rest of this chapter isn’t really very important, so you can
skip it if you want. But people think it’s important, so this is for those people.

output

tail recursive.

isn’t
directly

not

A Word about Tail Recursion 217

to one.per.line :thing
if emptyp :thing [stop]
print first :thing
one.per.line butfirst :thing
end

to poly :size :angle
forward :size
right :angle
poly :size :angle
end

to lookup :word :dictionary
if emptyp :dictionary [output "]
if equalp :word first first :dictionary [output last first :dictionary]
output lookup :word butfirst :dictionary
end

Every procedure invocation takes up a certain amount of computer memory, while
the procedure remains active, to hold things like local variables. Since a recursive
procedure can invoke itself many times, recursion is a fairly “expensive” technique to
allow in a programming language. It turns out that if the only recursion step in a
procedure is the very last thing the procedure does, the interpreter can handle that
procedure in a special way that uses memory more efficiently. You can then use as many
levels of recursive invocation as you want without running out of space. Such a procedure
is called It doesn’t make any difference to you as a programmer; it’s just a
matter of what’s happening inside the Logo interpreter.

A tail recursive command is very easy to recognize; the last instruction is an invocation
of the same procedure. Tail recursive commands are quite common; here are a couple
of examples we’ve seen before.

The thing is, many people are confused about what constitutes a tail recursive
operation. It one that is invoked recursively on the last instruction line! Instead, the
rule is that the recursive invocation must be used as the input to , not as
part of a larger computation. For example, this is a tail recursive operation:

But this is tail recursive:

1+

fact

output
fact

both and

218 Chapter 11 Recursive Operations

to length :thing
if emptyp :thing [output 0]
output 1+length butfirst :thing
end

to fact :n
if :n=0 [output 1]
output :n * fact :n-1
end

to fact :n
output fact1 :n 1
end

to fact1 :n :product
if :n=0 [output :product]
output fact1 (:n-1) (:n*:product)
end

It’s that that makes the difference.

It’s sometimes possible to change a nontail recursive operation into a tail recursive
one by tricky programming. For example, look again at :

This is not tail recursive because the input to the final comes from the
multiplication, not directly from . But here is a tail recursive version:

Indeed, this version can, in principle, compute the factorial of larger numbers than the
simpler version without running out of memory. In practice, though, the largest number
that most computers can understand is less than the factorial of 70, and any computer will
allow 70 levels of recursion without difficulty. In fact, not every Logo interpreter bothers
to recognize tail recursive operations. It’s a small point; I only mention it because some
people make a big fuss about tail recursion misunderstand what it means!

