
CS 294 - Homework 2

October 2, 2006

This homework is due on October 9th, in class. If you have questions, please contact Ben Blum
(bblum@cs.berkeley.edu) or Gad Kimmel (kimmel@cs.berkeley.edu). Grading is on a 2/1/0 scale as in the
last homework; the idea is just to give you some hands-on exposure to data and to some of the algorithms
we’ve been looking at. This homework will require the use of both R and YALE.

1. This question is based around the R code in featsel.R; you shouldn’t execute this script directly, but
you can copy and paste the code from it into an R session (or use it as a starting point to write your
own R scripts).
The idea behind this exercise is to explore how filtering performs versus Lasso regression and forward
selection.

(a) Generate a dataset of size 100 with 10 features, following the instructions in featsel.R. Create
a response variable that depends linearly on just two of the covariates, with some added noise
(follow the guidelines in featsel.R closely). Perform filtering, using as a score the squared Pearson
correlation coefficient. The Pearson correlation coefficient is a popular measure of how related
two random variables are. It can be computed as

Corr(X, Y ) =
Cov(X, Y )√

Var(X)
√

Var(Y )
.

From a finite sample of points (Xi, Yi), this is estimated as
∑

i(Xi − X̄)(Yi − Ȳ )√∑
i(X − X̄)2

√∑
i(Y − Ȳ )2

.

It lies between −1 and 1. It is equal to 1 if and only if the variables are perfectly correlated, and
is equal to −1 if and only if they are perfectly anticorrelated.
Generate random datasets at least five different times, running filtering each time. Suppose we
want a model with two variables; we will discard all but the top two scoring features. Does this
filtering score consistently rank the top two relevant features as the best? If not, why not? (see
featsel.R for a hint)

(b) On each of the datasets you used for filtering in part (a), fit a sparse linear model using LARS.
Print out the plot.lars output (just one graph will do, for one of the five runs). This output traces
the weights for each feature as the regularization coefficient decreases. As it decreases, do the top
two relevant features consistently receive nonzero weight before any others?

(c) Make y a different linear function of several of the covariates–your choice. Pick a new dataset
size–perhaps increase the ratio of features to examples. You can alter the variance of the noise
term if you like by multiplying it by a constant. Redo parts (a) and (b).

(d) Generate a dataset of size 1000 with 1000 features; this dataset is a little large for LARS. Perform
filtering using the squared Pearson correlation. Suppose we want a model with just two variables.
Does filtering on its own consistently give us the best model? Now try filtering out all but 200
features and then using LARS. Does this combination consistently pick out the correct model?
Does it run quickly?

1

CS 294 - Homework 3

October 15, 2009

If you have questions, contact Alexandre Bouchard (bouchard@cs.berkeley.edu) for part 1 and Alex
Simma (asimma@EECS.Berkeley.EDU) for part 2. Also check the class website for updates and due date.

1 Part 1: Feature selection

2 Part 2: Hidden Markov Models

1

CS 294 - Homework 3

October 15, 2009

If you have questions, contact Alexandre Bouchard (bouchard@cs.berkeley.edu) for part 1 and Alex
Simma (asimma@EECS.Berkeley.EDU) for part 2. Also check the class website for updates and due date.

1 Part 1: Feature selection

2 Part 2: Hidden Markov Models

1



(e) Now we’ll take our dataset into YALE to try forward selection. First, output one of your generated
datasets from part (a) to a file, following the instructions in featsel.R. Pick a dataset for which
filtering failed to rank the relevant features highest. Name the file featsel.dat and put it in the
same directory as featsel.aml and featsel.xml. Now open the experiment “featsel.xml” in YALE.
Look through the operator chain; it performs forward selection using cross validation with squared
error as an ob jective function, with linear regression as the internal learning module. Edit the
“attributes” key in the “ExampleSource” operator to point to featsel.aml, edit the “filename” key
in the “ExperimentLog” operator to specify an output file, and run the experiment. See which
features were selected by clicking the ExampleSource tab in the results section. What were they?

(f) Optional: Try feature selection algorithms on a problem from your own research (or from the UCI
Machine Learning Repository). For instance, compare LARS regression against L2 regularized
and unregularized regression. What are the number of non-zero features selected? Is there a gain
of accuracy? Is regression (or classification) faster at test time?

2. Download the file “case-control dataset.zip” and unzip it. The zipped file contains two files: “cases”
and “controls”. cases contains mean blood pressure measurements of 10,000 samples who have a
disease, and controls contains mean blood pressure measurements of healthy 10,000 samples. The goal
is to find a learning algorithm which classifies samples based on their mean blood pressure measurement
into case or control. The measurement is also called a trait.
We consider two different classifiers (or algorithms):

(a) If the trait > t - classify as case. Otherwise, classify as control.
(b) If the trait < t - classify as case. Otherwise, classify as control.

Where t is the parameter of the algorithm.

(a) Draw ROC plots for both algorithms. Try different values for t starting from 70 to 150.
(b) For both classifiers, calculate the value of the true positive rate, given that the false positive rate

equals 0.5.
(c) Which of the classifiers seems to be a better one for the problem? Explain your answer.

2

CS 294 - Homework 3

October 15, 2009

If you have questions, contact Alexandre Bouchard (bouchard@cs.berkeley.edu) for question 1 and Alex
Simma (asimma@EECS.Berkeley.EDU) for question 2. Also check the class website for updates and due
date.

1 Part 2: Hidden Markov Models

1

CS 294 - Practical Machine Learning - Homework 3

Part I: Hidden Markov Models

Preliminaries This part of the assignment will be done entirely in R. You will need to use
the package hmm.discnp, and source the auxiliary functions provided in hw4-hmmFuncs.R.
The script hw4-hmmScript.R provides partial solutions, and comments indicating where
additional code is needed. WARNING: Training HMMs via the EM algorithm may take a
few hours of computation time, so start early!

Problem 1: EM Training & Model Order Selection We begin by learning hidden
Markov models (HMMs) which describe the statistics of English text. In this application,
each discrete “time” point corresponds to a single letter. For training, we use a chapter
from Lewis Carroll’s Alice’s Adventures in Wonderland, available in aliceTrainRaw.txt.
To simplify the modeling task, we first converted letters to lower–case and removed all
punctuation. The resulting text, stored in aliceTrain.txt, is a sequence composed of 27
distinct characters (26 letters, as well as whitespace encoded via an underscore ‘ ’).

(a) The method hmm, provided by the R package hmm.discnp, is an implementation of
the EM algorithm for ML parameter estimation in HMMs. Use this package to
learn HMMs with different hidden state dimensions (for example, try models with
N = 1, 3, 5, 10, 15, 20, 30 states). Note that the model with N = 1 assumes that char-
acters are independent. For each of these models, compute the log–likelihood which it
assigns to the training sequence. Save these models for later sections.

In many applications of HMMs, there is insufficient data to select the model order via cross–
validation. In these situations, the state dimension is often selected via either the Akaike
information criterion (AIC) or Bayesian information criterion (BIC). Let y = (y1, . . . , yT )
denote the observed training sequence, x = (x1, . . . , xT ) a hidden state sequence, and θ̂N an
ML estimate of the parameters for an HMM with N states:

θ̂N = arg max
θN

p(y | θN ) = arg max
θN

∑

x

p(y | x, θN )p(x | θN ) xt ∈ {1, . . . , N}

For this model, the AIC and BIC take the following form:

AICN = log p(y | θ̂N) − d(N)

BICN = log p(y | θ̂N) −
1

2
d(N) log(T )

1



Here, d(N) is the number of parameters for an HMM with N states. The “best” model is
then the one for which AICN or BICN is largest.

(b) Without using the penalization, would you expect a model with more parameters to
have a higher or lower log-likelihood than one with fewer parameters? Why? Why
would we want to use the AIC or BIC, instead of just the log-likelihood to select our
model?

(c) Derive a formula for the number of parameters d in an HMM with N hidden states, and
observations taking one of M discrete values. Remember to account for normalization
constraints (for example, a discrete distribution on 4 events has only 3 degrees of
freedom, since the probabilities of these events must sum to one). Plot the training
log–likelihood log p(y | θ̂N ), AICN , and BICN versus N for the HMMs learned in part
(a). Which criterion favors simpler models?

(d) To test our learned HMMs, we use the text from a different chapter of Alice’s Adven-
tures in Wonderland, available in aliceTest.txt. Using loglike.hmm, evaluate the
test chapter’s log–likelihood with respect to each HMM learned in part (a). Plot these
test log–likelihoods versus N . Which model selection criterion better predicted test
performance?

(d) Using the method sampleText, generate a random 500–character sequence from three
different HMMs: the model with no temporal dependence (N = 1), the model with
the highest BICN , and the model with the highest AICN . Compare and contrast these
sequences. What aspects of English text do they capture? What do they miss?

Problem 2: Filling in Missing Letters In addition to computing likelihoods, HMMs
lead to an efficient forward–backward algorithm which estimates the posterior probabilities
of unobserved state sequences. This problem uses this method to estimate the identities of
characters which have been erased from a text document.

Let xt ∈ {1, . . . , N} denote the hidden state at position t, and yt the “true” character
at position t of some document. Suppose that instead of observing y, we observe an alter-
native sequence z in which some letters have been erased. We assume that each letter is
independently erased with probability ε, so that

Pr [zt = yt | yt] = 1 − ε Pr [zt = ∗ | yt] = ε

where ‘*’ is a special erasure symbol. Figure 1 shows a graphical model describing this
generative process. Note that we never observe an “incorrect” letter; zt is always either
identical to yt, or the erasure symbol ‘*’.

(a) Starting with the test sequence from aliceTest.txt, generate a “noisy” text sequence
by randomly erasing letters with probability ε = 0.2. The perturbText method pro-
vides an easy way to do this. Print out the first 500 characters of the noisy sequence.

2



x1 x2 x3 x4 x5

y1 y2 y3 y4 y5

z1 z2 z3 z4 z5

Hidden States:

1  4  3  3  7

True Text:

h  e  l  l  o

Observed Text:

h  *  l  l  *

Figure 1: Graphical model illustrating an HMM with hidden states xt which generate letters
yt. We observe a sequence z in which some of these letters have been erased.

(b) Using the method margprob.hmm, compute the posterior distributions p(xt | z) for the
three models from problem 1(d). To do this, exploit the fact that

p(zt | xt) =
∑

yt

p(zt | yt)p(yt | xt)

This implies that if we sum or marginalize over the possible values of the letters yt, we
recover a standard hidden Markov model in which the observations zt are independent
given the hidden state sequence x.

(c) Suppose that we observe a letter zt != ∗ at position t. Show that this implies that
yt = zt with probability one.

(d) Suppose that we observe an erasure at position t, so that p(zt = ∗ | yt) = ε remains
constant as yt is varied (since erasures provide no information about the underlying
letter). Using the Markov properties of the graph in Fig. 1, and the form of the
observation model, show that the posterior distribution of yt is

p(yt | z, zt = ∗) ∝ p(zt | yt)p(yt | z1, . . . , zt−1, zt+1, . . . , zT )

∝
∑

xt

p(yt | xt)p(xt | z)

where p(xt | z) is the posterior distribution of xt given the full noisy sequence z.

(e) Using the marginal distributions p(xt | z) from part (b), and the equation from part (d),
determine the most likely missing letter for each erasure. Or, equivalently, implement
the decision rule which minimizes the expected number of incorrect characters.

(f) Determine the percentage of missing letters which were correctly estimated by each
model. What would chance performance be for this task? Print the first 500 characters
of the denoised text produced by each model, and comment on any differences.

3



(g) A friend tells you that the next n + 1st letter depends not only on the nth letter, but
also on the n − 1st one. So, your friend suggests that you should be fitting a second-
order Hidden Markov Model, where the probability of transitioning to a hidden state
depends on the last two states. Is your friend correct? Will the first order HMM not
capture those dependencies? What would you expect the second-order HMM to do?
(This is a qualitative question; you do not need to implement the second-order HMM.)

4


