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Lots of high-dimensional data...

face images

Zambian President Levy
Mwanawasa has won a
second term in office in
an election his challenger
Michael Sata accused him
of rigging, official results
showed on Monday.

According to media reports,
a pair of hackers said on
Saturday that the Firefox
Web browser, commonly
perceived as the safer
and more customizable
alternative to market
leader Internet Explorer,
is critically flawed. A
presentation on the flaw
was shown during the
ToorCon hacker conference
in San Diego.

documents

gene expression data MEG readings
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Motivation and context

Why do dimensionality reduction?

• Computational: compress data ⇒ time/space efficiency
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Motivation and context

Why do dimensionality reduction?

• Computational: compress data ⇒ time/space efficiency

• Statistical: fewer dimensions ⇒ better generalization

• Visualization: understand structure of data

• Anomaly detection: describe normal data, detect outliers

Dimensionality reduction in this course:

• Linear methods (this week)

• Clustering (last week)

• Feature selection (next week)

• Nonlinear methods (later)
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Types of problems

• Prediction x→ y: classification, regression
Applications: face recognition, gene expression prediction
Techniques: kNN, SVM, least squares (+ dimensionality
reduction preprocessing)

• Structure discovery x→ z: find an alternative
representation z of data x
Applications: visualization
Techniques: clustering, linear dimensionality reduction

• Density estimation p(x): model the data
Applications: anomaly detection, language modeling
Techniques: clustering, linear dimensionality reduction
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Basic idea of linear dimensionality reduction

Represent each face as a high-dimensional vector x ∈ R361
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Basic idea of linear dimensionality reduction

Represent each face as a high-dimensional vector x ∈ R361

x ∈ R361

z = U>x

z ∈ R10

How do we choose U?
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Outline

• Principal component analysis (PCA)

– Basic principles

– Case studies

– Kernel PCA

– Probabilistic PCA

• Canonical correlation analysis (CCA)

• Fisher discriminant analysis (FDA)

• Summary
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Roadmap

• Principal component analysis (PCA)

– Basic principles

– Case studies

– Kernel PCA

– Probabilistic PCA

• Canonical correlation analysis (CCA)

• Fisher discriminant analysis (FDA)

• Summary
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Dimensionality reduction setup

Given n data points in d dimensions: x1, . . . ,xn ∈ Rd

X = ( x1 · · · · · · xn ) ∈ Rd×n

Want to reduce dimensionality from d to k

Choose k directions u1, . . . ,uk

U = ( u1 ·· uk ) ∈ Rd×k

For each uj, compute “similarity” zj = u>j x

Project x down to z = (z1, . . . , zk)> = U>x
How to choose U?
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PCA objective 1: reconstruction error

U serves two functions:

• Encode: z = U>x, zj = u>j x
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PCA objective 1: reconstruction error

U serves two functions:

• Encode: z = U>x, zj = u>j x

• Decode: x̃ = Uz =
∑k

j=1 zjuj

Want reconstruction error ‖x− x̃‖ to be small

Objective: minimize total squared reconstruction error

min
U∈Rd×k

n∑
i=1

‖xi −UU>xi‖2
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PCA objective 2: projected variance

Empirical distribution: uniform over x1, . . . ,xn
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Ê[f(x)] = 1
n

∑n
i=1 f(xi)

Variance (think sum of squares if centered):
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PCA objective 2: projected variance

Empirical distribution: uniform over x1, . . . ,xn

Expectation (think sum over data points):

Ê[f(x)] = 1
n

∑n
i=1 f(xi)

Variance (think sum of squares if centered):

v̂ar[f(x)] + (Ê[f(x)])2 = Ê[f(x)2] = 1
n

∑n
i=1 f(xi)2

Assume data is centered: Ê[x] = 0 (what’s Ê[U>x]?)

Objective: maximize variance of projected data

max
U∈Rd×k,U>U=I

Ê[‖U>x‖2]

Principal component analysis (PCA) / Basic principles 10



Equivalence in two objectives

Key intuition:

variance of data︸ ︷︷ ︸
fixed

= captured variance︸ ︷︷ ︸
want large

+ reconstruction error︸ ︷︷ ︸
want small
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Equivalence in two objectives

Key intuition:

variance of data︸ ︷︷ ︸
fixed

= captured variance︸ ︷︷ ︸
want large

+ reconstruction error︸ ︷︷ ︸
want small

Pythagorean decomposition: x = UU>x + (I −UU>)x

‖UU>x‖

‖(I −UU>)x‖
‖x‖

Take expectations; note rotation U doesn’t affect length:

Ê[‖x‖2] = Ê[‖U>x‖2] + Ê[‖x−UU>x‖2]
Minimize reconstruction error ↔ Maximize captured variance

Principal component analysis (PCA) / Basic principles 11
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Finding one principal component

Input data:

X = ( x1 . . . xn )

Objective: maximize variance
of projected data

= max
‖u‖=1

Ê[(u>x)2]

= max
‖u‖=1

1
n

n∑
i=1

(u>xi)2

= max
‖u‖=1

1
n
‖u>X‖2

= max
‖u‖=1

u>
(

1
n
XX>

)
u

= largest eigenvalue of C
def=

1
n
XX>

(C is covariance matrix of data)
Principal component analysis (PCA) / Basic principles 12



How many principal components?
• Similar to question of “How many clusters?”

• Magnitude of eigenvalues indicate fraction of variance captured.
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How many principal components?
• Similar to question of “How many clusters?”

• Magnitude of eigenvalues indicate fraction of variance captured.

• Eigenvalues on a face image dataset:

2 3 4 5 6 7 8 9 10 11

i

287.1

553.6

820.1

1086.7

1353.2

λi

• Eigenvalues typically drop off sharply, so don’t need that many.

• Of course variance isn’t everything...

Principal component analysis (PCA) / Basic principles 15



Computing PCA
Method 1: eigendecomposition

U are eigenvectors of covariance matrix C = 1
nXX>

Computing C already takes O(nd2) time (very expensive)
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Computing PCA
Method 1: eigendecomposition

U are eigenvectors of covariance matrix C = 1
nXX>

Computing C already takes O(nd2) time (very expensive)

Method 2: singular value decomposition (SVD)

Find X = Ud×dΣd×nV>n×n

where U>U = Id×d, V>V = In×n, Σ is diagonal
Computing top k singular vectors takes only O(ndk)

Relationship between eigendecomposition and SVD:

Left singular vectors are principal components (C = UΣ2U>)
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Roadmap

• Principal component analysis (PCA)

– Basic principles

– Case studies
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Eigen-faces [Turk and Pentland, 1991]

• d = number of pixels

• Each xi ∈ Rd is a face image

• xji = intensity of the j-th pixel in image i
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Eigen-faces [Turk and Pentland, 1991]

• d = number of pixels

• Each xi ∈ Rd is a face image

• xji = intensity of the j-th pixel in image i

Xd×n u Ud×k Zk×n

( . . . ) u ( ) ( z1 . . . zn )
Idea: zi more “meaningful” representation of i-th face than xi

Can use zi for nearest-neighbor classification

Much faster: O(dk + nk) time instead of O(dn) when n, d� k

Why no time savings for linear classifier?
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Latent Semantic Analysis [Deerwater, 1990]

• d = number of words in the vocabulary

• Each xi ∈ Rd is a vector of word counts

• xji = frequency of word j in document i

Xd×n u Ud×k Zk×n

(
stocks: 2 · · · · · · · · · 0

chairman: 4 · · · · · · · · · 1
the: 8 · · · · · · · · · 7
· · · ... · · · · · · · · · ...

wins: 0 · · · · · · · · · 2
game: 1 · · · · · · · · · 3

) u (
0.4 ·· -0.001
0.8 ·· 0.03

0.01 ·· 0.04
... ·· ...

0.002 ·· 2.3
0.003 ·· 1.9

) ( z1 . . . zn )
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Latent Semantic Analysis [Deerwater, 1990]

• d = number of words in the vocabulary

• Each xi ∈ Rd is a vector of word counts

• xji = frequency of word j in document i

Xd×n u Ud×k Zk×n

(
stocks: 2 · · · · · · · · · 0

chairman: 4 · · · · · · · · · 1
the: 8 · · · · · · · · · 7
· · · ... · · · · · · · · · ...

wins: 0 · · · · · · · · · 2
game: 1 · · · · · · · · · 3

) u (
0.4 ·· -0.001
0.8 ·· 0.03

0.01 ·· 0.04
... ·· ...

0.002 ·· 2.3
0.003 ·· 1.9

) ( z1 . . . zn )
How to measure similarity between two documents?

z>1 z2 is probably better than x>1 x2

Applications: information retrieval
Note: no computational savings; original x is already sparse

Principal component analysis (PCA) / Case studies 19



Network anomaly detection [Lakhina, ’05]

xji = amount of traffic on
link j in the network
during each time interval i
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Unsupervised POS tagging [Schütze, ’95]

Part-of-speech (POS) tagging task:
Input: I like reducing the dimensionality of data .

Output: NOUN VERB VERB(-ING) DET NOUN PREP NOUN .
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Unsupervised POS tagging [Schütze, ’95]

Part-of-speech (POS) tagging task:
Input: I like reducing the dimensionality of data .

Output: NOUN VERB VERB(-ING) DET NOUN PREP NOUN .

Each xi is (the context distribution of) a word.

xji is number of times word i appeared in context j

Key idea: words appearing in similar contexts
tend to have the same POS tags;
so cluster using the contexts of each word type

Problem: contexts are too sparse

Solution: run PCA first,
then cluster using new representation
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Multi-task learning [Ando & Zhang, ’05]

• Have n related tasks (classify documents for various users)

• Each task has a linear classifier with weights xi

• Want to share structure between classifiers
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Multi-task learning [Ando & Zhang, ’05]

• Have n related tasks (classify documents for various users)

• Each task has a linear classifier with weights xi

• Want to share structure between classifiers

One step of their procedure:
given n linear classifiers x1, . . . ,xn,
run PCA to identify shared structure:

X = ( x1 . . . xn ) u UZ

Each principal component is a eigen-classifier

Other step of their procedure:
Retrain classifiers, regularizing towards subspace U

Principal component analysis (PCA) / Case studies 22



PCA summary

• Intuition: capture variance of data or minimize
reconstruction error
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PCA summary

• Intuition: capture variance of data or minimize
reconstruction error

• Algorithm: find eigendecomposition of covariance
matrix or SVD

• Impact: reduce storage (from O(nd) to O(nk)), reduce
time complexity

• Advantages: simple, fast

• Applications: eigen-faces, eigen-documents, network
anomaly detection, etc.
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Roadmap

• Principal component analysis (PCA)

– Basic principles

– Case studies

– Kernel PCA
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• Canonical correlation analysis (CCA)

• Fisher discriminant analysis (FDA)

• Summary
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Limitations of linearity

PCA is effective PCA is ineffective

Problem is that PCA subspace is linear:

S = {x = Uz : z ∈ Rk}

In this example:

S = {(x1, x2) : x2 = u2
u1

x1}
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Going beyond linearity: quick solution

Broken solution
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1}

We can get this: S = {φ(x) = Uz} with φ(x) = (x2
1, x2)>

Linear dimensionality reduction in φ(x) space
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Nonlinear dimensionality reduction in x space
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Going beyond linearity: quick solution

Broken solution Desired solution

We want desired solution: S = {(x1, x2) : x2 = u2
u1
x2

1}

We can get this: S = {φ(x) = Uz} with φ(x) = (x2
1, x2)>

Linear dimensionality reduction in φ(x) space
⇔

Nonlinear dimensionality reduction in x space

In general, can set φ(x) = (x1, x
2
1, x1x2, sin(x1), . . . )>

Problems: (1) ad-hoc and tedious
(2) φ(x) large, computationally expensive

Principal component analysis (PCA) / Kernel PCA 26



Towards kernels

Representer theorem:

PCA solution is linear combination of xis
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Towards kernels

Representer theorem:

PCA solution is linear combination of xis

Why?

Recall PCA eigenvalue problem: XX>u = λu
Notice that u = Xα =

∑n
i=1αixi for some weights α

Analogy with SVMs: weight vector w = Xα

Key fact:

PCA only needs inner products K = X>X
Why?

Use representer theorem on PCA objective:

max
‖u‖=1

u>XX>u = max
α>X>Xα=1

α>(X>X)(X>X)α

Principal component analysis (PCA) / Kernel PCA 27



Kernel PCA

Kernel function: k(x1,x2) such that
K, the kernel matrix formed by Kij = k(xi,xj),
is positive semi-definite
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Kernel PCA

Kernel function: k(x1,x2) such that
K, the kernel matrix formed by Kij = k(xi,xj),
is positive semi-definite

Examples:

Linear kernel: k(x1,x2) = x>1 x2

Polynomial kernel: k(x1,x2) = (1 + x>1 x2)2

Gaussian (RBF) kernel: k(x1,x2) = e−‖x1−x2‖2

Treat data points x as black boxes, only access via k
k intuitively measures “similarity” between two inputs

Mercer’s theorem (using kernels is sensible)
Exists high-dimensional feature space φ such that

k(x1,x2) = φ(x1)>φ(x2) (like quick solution earlier!)
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Solving kernel PCA

Direct method:

Kernel PCA objective:

max
α>Kα=1

α>K2α
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Direct method:

Kernel PCA objective:

max
α>Kα=1

α>K2α

⇒ kernel PCA eigenvalue problem: X>Xα = λ′α

Modular method (if you don’t want to think about kernels):

Find vectors x′1, . . . ,x
′
n such that

x′>i x′j = Kij = φ(xi)>φ(xj)
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Solving kernel PCA

Direct method:

Kernel PCA objective:

max
α>Kα=1

α>K2α

⇒ kernel PCA eigenvalue problem: X>Xα = λ′α

Modular method (if you don’t want to think about kernels):

Find vectors x′1, . . . ,x
′
n such that

x′>i x′j = Kij = φ(xi)>φ(xj)

Key: use any vectors that preserve inner products

One possibility is Cholesky decomposition K = X>X

Principal component analysis (PCA) / Kernel PCA 29
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– Case studies
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Probabilistic modeling
So far, deal with objective functions:

min
U

f(X,U)
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Probabilistic modeling
So far, deal with objective functions:

min
U

f(X,U)

Probabilistic modeling:
max

U
p(X | U)

Invent a generative story of how data X arose
Play detective: infer parameters U that produced X

Advantages:
•Model reports estimates of uncertainty

• Natural way to handle missing data

• Natural way to introduce prior knowledge

• Natural way to incorporate in a larger model

Example from last lecture: k-means ⇒ GMMs

Principal component analysis (PCA) / Probabilistic PCA 31



Probabilistic PCA

Generative story [Tipping and Bishop, 1999]:

For each data point i = 1, . . . , n:
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Probabilistic PCA

Generative story [Tipping and Bishop, 1999]:

For each data point i = 1, . . . , n:
Draw the latent vector: zi ∼ N (0, Ik×k)
Create the data point: xi ∼ N (Uzi, σ

2Id×d)

PCA finds the U that maximizes the likelihood of the data

Advantages:
• Handles missing data (important for collaborative

filtering)

• Extension to factor analysis: allow non-isotropic noise
(replace σ2Id×d with arbitrary diagonal matrix)
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Probabilistic latent semantic analysis (pLSA)
Motivation: in text analysis, X contains word counts; PCA (LSA) is
bad model as it allows negative counts; pLSA fixes this
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Probabilistic latent semantic analysis (pLSA)
Motivation: in text analysis, X contains word counts; PCA (LSA) is
bad model as it allows negative counts; pLSA fixes this
Generative story for pLSA [Hofmann, 1999]:

For each document i = 1, . . . , n:
Repeat M times (number of word tokens in document):

Draw a latent topic: z ∼ p(z | i)
Choose the word token: x ∼ p(x | z)

Set xji to be the number of times word j was chosen

Learning using Hard EM (analog of k-means):
E-step: fix parameters, choose best topics
M-step: fix topics, optimize parameters

More sophisticated methods: EM, Latent Dirichlet Allocation
Comparison to a mixture model for clustering:

Mixture model: assume a single topic for entire document
pLSA: allow multiple topics per document
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Roadmap

• Principal component analysis (PCA)

– Basic principles

– Case studies

– Kernel PCA
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• Summary
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Motivation for CCA [Hotelling, 1936]

Often, each data point consists of two views:

• Image retrieval: for each image, have the following:

– x: Pixels (or other visual features)

– y: Text around the image
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Motivation for CCA [Hotelling, 1936]

Often, each data point consists of two views:

• Image retrieval: for each image, have the following:

– x: Pixels (or other visual features)

– y: Text around the image

• Time series:

– x: Signal at time t

– y: Signal at time t + 1
• Two-view learning: divide features into two sets

– x: Features of a word/object, etc.

– y: Features of the context in which it appears

Goal: reduce the dimensionality of the two views jointly
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An example

Setup:

Input data: (x1,y1), . . . , (xn,yn) (matrices X,Y)

Goal: find pair of projections (u,v)
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An example

Setup:

Input data: (x1,y1), . . . , (xn,yn) (matrices X,Y)

Goal: find pair of projections (u,v)

In figure, x and y are paired by brightness

Dimensionality reduction solutions:

Independent Joint
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From PCA to CCA

PCA on views separately: no covariance term

max
u,v

u>XX>u
u>u

+
v>YY>v

v>v
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From PCA to CCA

PCA on views separately: no covariance term

max
u,v

u>XX>u
u>u

+
v>YY>v

v>v

PCA on concatenation (X>,Y>)>: includes covariance term

max
u,v

u>XX>u + 2u>XY>v + v>YY>v
u>u + v>v

Maximum covariance: drop variance terms

max
u,v

u>XY>v√
u>u

√
v>v

Maximum correlation (CCA): divide out variance terms

max
u,v

u>XY>v√
u>XX>u

√
v>YY>v
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Canonical correlation analysis (CCA)

Definitions:

Variance: v̂ar(u>x) = u>XX>u
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Correlation: ccov(u>x,v>y)√cvar(u>x)
√cvar(v>y)

Objective: maximize correlation between projected views

max
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Properties:

• Focus on how variables are related, not how much they vary
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√cvar(v>y)

Objective: maximize correlation between projected views

max
u,v

ĉorr(u>x,v>y)

Properties:

• Focus on how variables are related, not how much they vary

• Invariant to any rotation and scaling of data
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Canonical correlation analysis (CCA)

Definitions:

Variance: v̂ar(u>x) = u>XX>u
Covariance: ĉov(u>x,v>y) = u>XY>v

Correlation: ccov(u>x,v>y)√cvar(u>x)
√cvar(v>y)

Objective: maximize correlation between projected views

max
u,v

ĉorr(u>x,v>y)

Properties:

• Focus on how variables are related, not how much they vary

• Invariant to any rotation and scaling of data

Solved via a generalized eigenvalue problem (Aw = λBw)
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Regularization is important

Extreme examples of degeneracy:

• If x = Ay, then any (u,v) with u = Av is optimal
(correlation 1)
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Extreme examples of degeneracy:

• If x = Ay, then any (u,v) with u = Av is optimal
(correlation 1)

• If x and y are independent, then any (u,v) is optimal
(correlation 0)

Problem: if X or Y has rank n, then any (u,v) is optimal

(correlation 1) with u = X†>Yv ⇒ CCA is meaningless!
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Regularization is important

Extreme examples of degeneracy:

• If x = Ay, then any (u,v) with u = Av is optimal
(correlation 1)

• If x and y are independent, then any (u,v) is optimal
(correlation 0)

Problem: if X or Y has rank n, then any (u,v) is optimal

(correlation 1) with u = X†>Yv ⇒ CCA is meaningless!

Solution: regularization (interpolate between

maximum covariance and maximum correlation)

max
u,v

u>XY>v√
u>(XX> + λI)u

√
v>(YY> + λI)v

Canonical correlation analysis (CCA) 41



Kernel CCA

Two kernels: kx and ky
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Kernel CCA

Two kernels: kx and ky

Direct method:

(some math)

Modular method:

1. Transform xi into x′i ∈ Rn satisfying

k(xi,xj) = x′>i x′j (do same for y)

2. Perform regular CCA

Regularization is especially important for kernel CCA!

Canonical correlation analysis (CCA) 42



Roadmap

• Principal component analysis (PCA)

– Basic principles

– Case studies

– Kernel PCA

– Probabilistic PCA

• Canonical correlation analysis (CCA)

• Fisher discriminant analysis (FDA)

• Summary
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Motivation for FDA [Fisher, 1936]

What is the best linear projection?
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Motivation for FDA [Fisher, 1936]

What is the best linear projection with these labels?

PCA solution FDA solution

Goal: reduce the dimensionality given labels

Idea: want projection to maximize overall interclass variance
relative to intraclass variance

Linear classifiers (logistic regression, SVMs) have similar feel:

Find one-dimensional subspace w,

e.g., to maximize margin between different classes

FDA handles multiple classes, allows multiple dimensions

Fisher discriminant analysis (FDA) 44



FDA objective function

Setup: xi ∈ Rd, yi ∈ {1, . . . ,m}, for i = 1, . . . , n
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intraclass variance − 1
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FDA objective function

Setup: xi ∈ Rd, yi ∈ {1, . . . ,m}, for i = 1, . . . , n

Objective: maximize interclass variance
intraclass variance = total variance

intraclass variance − 1

Total variance: 1
n

∑
i(u

>(xi − µ))2

Mean of all points: µ = 1
n

∑
i xi
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FDA objective function

Setup: xi ∈ Rd, yi ∈ {1, . . . ,m}, for i = 1, . . . , n

Objective: maximize interclass variance
intraclass variance = total variance

intraclass variance − 1

Total variance: 1
n

∑
i(u

>(xi − µ))2

Mean of all points: µ = 1
n

∑
i xi

Intraclass variance: 1
n

∑
i(u

>(xi − µyi
))2

Mean of points in class y: µy = 1
|{i:yi=y}|

∑
i:yi=y xi
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FDA objective function

Setup: xi ∈ Rd, yi ∈ {1, . . . ,m}, for i = 1, . . . , n

Objective: maximize interclass variance
intraclass variance = total variance

intraclass variance − 1

Total variance: 1
n

∑
i(u

>(xi − µ))2

Mean of all points: µ = 1
n

∑
i xi

Intraclass variance: 1
n

∑
i(u

>(xi − µyi
))2

Mean of points in class y: µy = 1
|{i:yi=y}|

∑
i:yi=y xi

Reduces to a generalized eigenvalue problem.
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FDA objective function

Setup: xi ∈ Rd, yi ∈ {1, . . . ,m}, for i = 1, . . . , n

Objective: maximize interclass variance
intraclass variance = total variance

intraclass variance − 1

Total variance: 1
n

∑
i(u

>(xi − µ))2

Mean of all points: µ = 1
n

∑
i xi

Intraclass variance: 1
n

∑
i(u

>(xi − µyi
))2

Mean of points in class y: µy = 1
|{i:yi=y}|

∑
i:yi=y xi

Reduces to a generalized eigenvalue problem.

Kernel FDA: use modular method
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Other linear methods

Random projections:

Randomly project data onto k = O(log n) dimensions
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Other linear methods

Random projections:

Randomly project data onto k = O(log n) dimensions

All pairwise distances preserved with high probability

‖U>xi −U>xj‖2 u ‖xi − xj‖2 for all i, j

Trivial to implement

Kernel dimensionality reduction:

One type of sufficient dimensionality reduction

Find subspace that contains all information about labels

y ⊥⊥ x | U>x
Capturing information is stronger than capturing variance

Hard nonconvex optimization problem
Fisher discriminant analysis (FDA) 47



Summary

Framework: z = U>x, x u Uz
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Summary

Framework: z = U>x, x u Uz

Criteria for choosing U:

• PCA: maximize projected variance

• CCA: maximize projected correlation

• FDA: maximize projected interclass variance
intraclass variance

Algorithm: generalized eigenvalue problem

Extensions:

non-linear using kernels (using same linear framework)

probabilistic, sparse, robust (hard optimization)
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