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Lots of high-dimensional data...
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face images

gene expression data

i

Zambian President Levy
Mwanawasa has won a
second term in office in
an election his challenger
Michael Sata accused him
of rigging, official results
showed on Monday.

According to media reports,
a pair of hackers said on
Saturday that the Firefox
Web browser, commonly
perceived as the safer
and more customizable
alternative to market
leader Internet Explorer,
is critically flawed. A
presentation on the flaw
was shown during the
ToorCon hacker conference
in San Diego.
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Motivation and context

Why do dimensionality reduction?

e Computational: compress data = time/space efficiency
e Statistical: fewer dimensions = better generalization

e Visualization: understand structure of data

e Anomaly detection: describe normal data, detect outliers

Dimensionality reduction in this course:
e Linear methods (this week)
e Clustering (last week)
e Feature selection (next week)

e Nonlinear methods (later)
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Types of problems

e Prediction x — y: classification, regression
Applications: face recognition, gene expression prediction
Techniques: kNN, SVM, least squares (+ dimensionality
reduction preprocessing)

e Structure discovery x — z: find an alternative

representation z of data x
Applications: visualization
Techniques: clustering, linear dimensionality reduction

® Density estimation p(x): model the data

Applications: anomaly detection, language modeling
Techniques: clustering, linear dimensionality reduction
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Roadmap
e Principal component analysis (PCA)
— Basic principles
— Case studies
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e Canonical correlation analysis (CCA)
e Fisher discriminant analysis (FDA)

e Summary
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Dimensionality reduction setup

Given n data points in d dimensions: x;,...,x, € R?

Want to reduce dimensionality from d to &
Choose k directions uq, ..., ug

| |

| |
-

For each uj, compute “similarity” z; = u; x

Project x down to z = (z1,...,2;) ' =U'x

How to choose U?

Principal component analysis (PCA) / Basic principles
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® Encode: z = UTX, Zj= uij
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® Decode: x =Uz =)} ., z;u;
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PCA objective 1: reconstruction error

U serves two functions:
® Encode: z = U 'x, Zji =1u
° LT _ \k
Decode: x=Uz =} .,
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PCA objective 1: reconstruction error

U serves two functions:
® Encode: z = UTX, Zj= uij

® Decode: x = Uz = Z?Zl

Want reconstruction error ||x — x|| to be small

Objective: minimize total squared reconstruction error

/%7/ /
j/ P%/é// /t /  UeRdxk &
/}7// ‘=

Principal component analysis (PCA) / Basic principles
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PCA objective 2: projected variance

Empirical distribution: uniform over x1,...,X,
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PCA objective 2: projected variance

Empirical distribution: uniform over x1,...,X,
Expectation (think sum over data points):

Sf(x)] =130 f(x)

Variance (think sum of squares if centered):

var[f (x)] + (E[f (x)])* = E[f(x)?] = & iz, f(x:)°

Assume data is centered: E[x] = 0 (what's E[U"x]?)

Objective: maximize variance of projected data
U x|

max E
UeRdxk UlUu=J

Principal component analysis (PCA) / Basic principles 10



Equivalence in two objectives

Key intuition:

variance of datg = captured variance 4 geconstruction error
e ) —"
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Equivalence in two objectives

Key intuition:

variance of datg = captured variance 4 geconstruction error
e ) —"

fixed want large want small
Pythagorean decomposition: x = UU'x + (I — UUT)X

Ix]|

(I -UU x|

[UU x|

Take expectations; note rotation U doesn’t affect length:
Eflx[*] = E[JU " x| + E[|x — UU "x|]?
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Equivalence in two objectives

Key intuition:

variance of datg = captured variance 4 geconstruction error
e ) —"

fixed want large want small
Pythagorean decomposition: x = UU'x + (I — UUT)X

Ix]|

(I -UU x|

[UU x|

Take expectations; note rotation U doesn’t affect length:
Eflx[*] = E[JU " x| + E[|x — UU "x|]?

Minimize reconstruction error «<— Maximize captured variance
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Finding one principal component

Input data:
| |
X = (X1 o X, )
| |
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Finding one principal component

Objective: maximize variance
of projected data

= [max E[(u’x)?]

Input data:
| |
X = (X1 o X, )
| |
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Finding one principal component

Objective: maximize variance
of projected data

— max E[(u'x)?]

[ul|=1
1 n
= max — g (u'x;)?
lull=17 =

Input data:

e
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Finding one principal component

Objective: maximize variance
of projected data
= max Bl(u"x)?
ul|=1

n

1
= max —z:(uT:xi)2

|ul|=1 7 “—
1=1

Input data: — max lHuTXH2

‘ ‘ [ull=17
X(Xl... Xn)
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Finding one principal component

Objective: maximize variance
of projected data

= [max E[(u’x)?]

n

1
= max —z:(uT:xi)2

|ul|=1 7 “—
1=1

Input data: — max lHuTXH2

‘ ‘ [ull=17
_ 1
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Finding one principal component

Objective: maximize variance
of projected data

= [max E[(u’x)?]

n

1
= max —Z(HTXz‘)Z

|ul|=1 7 “—
1=1

Input data: — max lHuTXH2

‘ ‘ [ull=17
_ 1
| | [u]|=1 n

e ].
= largest eigenvalue of e ZxxT

n

(C' is covariance matrix of data)
Principal component analysis (PCA) / Basic principles
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How many principal components?

e Similar to question of “How many clusters?”
e Magnitude of eigenvalues indicate fraction of variance captured.
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e Similar to question of “How many clusters?”
e Magnitude of eigenvalues indicate fraction of variance captured.

e Eigenvalues on a face image dataset:
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820.1
i

553.6

287.1
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How many principal components?

e Similar to question of “How many clusters?”
e Magnitude of eigenvalues indicate fraction of variance captured.

e Eigenvalues on a face image dataset:
1353.2

1086.7
820.1
i

553.6

287.1

Y 3 4 35 6 3 & o D o

)
e Eigenvalues typically drop off sharply, so don't need that many.
e Of course variance isn't everything...
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Computing PCA

Method 1: eigendecomposition
U are eigenvectors of covariance matrix C' = %XXT
Computing C already takes O(nd?) time (very expensive)
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Computing PCA

Method 1: eigendecomposition
U are eigenvectors of covariance matrix C' = %XXT
Computing C already takes O(nd?) time (very expensive)

Method 2: singular value decomposition (SVD)
Find X = UgxaSaxnV,

nXxn

where U'U = I; 40, V'V = 1,4, ¥ is diagonal
Computing top k singular vectors takes only O(ndk)

Relationship between eigendecomposition and SVD:
Left singular vectors are principal components (C = UZQUT)

Principal component analysis (PCA) / Basic principles 16
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Eigen-faces [Turk and Pentland, 1991}

e d = number of pixels

® Each x; € R? is a face image
e X ;; = Intensity of the j-th pixel in image ¢
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e X ;; = Intensity of the j-th pixel in image ¢

Xan

Uaxk 2 xn
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Eigen-faces [Turk and Pentland, 1991}

e d = number of pixels

® Each x; € R? is a face image
e X ;; = Intensity of the j-th pixel in image ¢
Xan Zan

ldea: z; more “meaningful” representation of ¢-th face than x;

&

&

Can use z; for nearest-neighbor classification
Much faster: O(dk 4 nk) time instead of O(dn) when n,d > k

Why no time savings for linear classifier?

Principal component analysis (PCA) / Case studies 18



Latent Semantic Analysis [Deerwater, 1990]

e d = number of words in the vocabulary

® Each x; € R% is a vector of word counts
e x;; = frequency of word j in document ¢

Xdxn ~  Ugxk L xn
/ o 0 \‘ / 0.4 ---0.001 \‘
Bovennnnn. 1 08- 003
8. 71 | 001 004
......... = AU Z1 Zin,
Oveevnnnn. 9 0.002.. 2.3
\ Toveennnn. 3/ \0_003.. 1.9 /
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Latent Semantic Analysis [Deerwater, 1990]

e d = number of words in the vocabulary

® Each x; € R% is a vector of word counts
e x;; = frequency of word j in document ¢

Xdxn ~  Ugxk Ligxn
/ U 0 \‘ / 0.4 ---0.001 \
4 ......... 1 0.8-- 0.03 ‘ ‘
8., 71 | 001 004
e =~ C. 71 . Zip
IR 2 0.002 - 2.3 | |
\ Toeeennnn. 3 / \ 0003-- 19 /

How to measure similarity between two documents?

7| 75 is probably better than x| x5,

Applications: information retrieval
Note: no computational savings; original x is already sparse

Principal component analysis (PCA) / Case studies
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Network anomaly detection [Lakhina, '05]

] 5 M. W

X j; = amount of traffic on AT

link 7 in the network i —

during each time interval ¢ NSNS e
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Network anomaly detection [Lakhina, '05]

X j; = amount of traffic on

link 7 In the network
during each time interval ¢

- [RE]

= = gy
X fa ex i N Gd =l L]
T |-
=
LI . -
= = ) =l
T |
[l L1 1111 1 1

Model assumption: total traffic is sum of flows along a few “paths”
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Network anomaly detection [Lakhina, '05]

X j; = amount of traffic on

link 7 In the network
during each time interval ¢

- [RE]

[= = gEeraray
£X 3 £ P BN Cd = aam N
5 |-
[
LI . —

= =] = =

T |

171 11 1111 1 1

Model assumption: total traffic is sum of flows along a few “paths”

Apply PCA: each principal component intuitively represents a “path”
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X j; = amount of traffic on

link 7 In the network
during each time interval ¢

E:{
/
/

- [RE]

Model assumption: total traffic is sum of flows along a few “paths”

Apply PCA: each principal component intuitively represents a “path”

Anomaly when traffic deviates from first few principal components
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Network anomaly detection [Lakhina, '05]

xj; = amount of traffic on S
link 7 in the network “EM — —
during each time interval ¢ “mfl e

Model assumption: total traffic is sum of flows along a few “paths”
Apply PCA: each principal component intuitively represents a “path
Anomaly when traffic deviates from first few principal components

0.05)
% 0
o
&
w0
i -008
L L L . L e
Thu Fr Sat Sun Mon Tus Wad Thu Fn Sat Bun

s LR
(a) Normal Behavior (b) Anomalous Behavior
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Unsupervised POS tagging [Schutze, '95]

Part-of-speech (POS) tagging task:

Input: I like reducing  the dimensionality of data .
Output: NOUN VERB VERB(-ING) DET NOUN PREP NOUN .
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Part-of-speech (POS) tagging task:

Input: I like reducing  the dimensionality of data .
Output: NOUN VERB VERB(-ING) DET NOUN PREP NOUN .

Each x; is (the context distribution of ) a word.
Xj; 1S number of times word ¢ appeared in context j

Key idea: words appearing in similar contexts
tend to have the same POS tags;
so cluster using the contexts of each word type

Problem: contexts are too sparse
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Unsupervised POS tagging [Schutze, '95]

Part-of-speech (POS) tagging task:

Input: I like reducing  the dimensionality of data .
Output: NOUN VERB VERB(-ING) DET NOUN PREP NOUN .

Each x; is (the context distribution of ) a word.
Xj; 1S number of times word ¢ appeared in context j

Key idea: words appearing in similar contexts
tend to have the same POS tags;
so cluster using the contexts of each word type

Problem: contexts are too sparse

Solution: run PCA first,
then cluster using new representation
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Multi-task learning [Ando & Zhang, '05]

e Have n related tasks (classify documents for various users)

e Each task has a linear classifier with weights x;
e \Want to share structure between classifiers
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Multi-task learning [Ando & Zhang, '05]

e Have n related tasks (classify documents for various users)

e Each task has a linear classifier with weights x;
e \Want to share structure between classifiers

One step of their procedure:
given n linear classifiers x1,...,x,,
run PCA to identify shared structure:

\ \
X = X1... Xp, ~ UZ
\ \

Each principal component is a eigen-classifier

Other step of their procedure:
Retrain classifiers, regularizing towards subspace U

Principal component analysis (PCA) / Case studies
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PCA summary

e Intuition: capture variance of data or minimize
reconstruction error
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PCA summary

e Intuition: capture variance of data or minimize
reconstruction error

e Algorithm: find eigendecomposition of covariance
matrix or SVD

e Impact: reduce storage (from O(nd) to O(nk)), reduce
time complexity

e Advantages: simple, fast

e Applications: eigen-faces, eigen-documents, network
anomaly detection, etc.

Principal component analysis (PCA) / Case studies 23



Roadmap
e Principal component analysis (PCA)
— Basic principles
— Case studies

— Kernel PCA
— Probabilistic PCA

e Canonical correlation analysis (CCA)
e Fisher discriminant analysis (FDA)

e Summary
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Limitations of linearity
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Limitations of linearity

. tA Is effective PCA is ineffective

Problem is that PCA subspace is linear:
S ={x="Uz:zcRF}
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Limitations of linearity

. tA Is effective PCA is ineffective

Problem is that PCA subspace is linear:
S ={x="Uz:zcRF}

In this example:

S = {(z1,22) : x2 = 211}

Principal component analysis (PCA) / Kernel PCA

°
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o
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Going beyond linearity: quick solution

° ([ ]
%

Broken solution
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Going beyond linearity: quick solution

Broken solution Desired solution
: SR o U3, 2
We want desired solution: S = {(z1,22) : ©2 = 227}
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Going beyond linearity: quick solution
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We want desired solution: S = {(x1,x2) : 2 = Z—fx%}

We can get this: S = {¢(x) = Uz} with ¢(x) = (22, 25) "
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Linear dimensionality reduction in ¢(x) space

)

Nonlinear dimensionality reduction in x space
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Going beyond linearity: quick solution

Broken solution Desired solution

We want desired solution: S = {(x1,x2) : 2 = Z—fﬁ}

We can get this: S = {¢(x) = Uz} with ¢(x) = (22, 25) "

Linear dimensionality reduction in ¢(x) space

)

Nonlinear dimensionality reduction in x space

In general, can set ¢(x) = (x1, 27, T129,sin(x1),...)"

Problems: (1) ad-hoc and tedious
(2) ¢(x) large, computationally expensive
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Towards kernels

Representer theorem:
PCA solution is linear combination of x;s
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Towards kernels

Representer theorem:

PCA solution is linear combination of x;s
Why?

Recall PCA eigenvalue problem: XX 'u = Au
Notice that u = Xa = >, a;x; for some weights
Analogy with SVMs: weight vector w = X«

Key fact:
PCA only needs inner products K = X' X
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Towards kernels

Representer theorem:
PCA solution is linear combination of x;s
Why?

Recall PCA eigenvalue problem: XX 'u = Au
Notice that u = Xa = >, a;x; for some weights
Analogy with SVMs: weight vector w = X«

Key fact:

PCA only needs inner products K = X 'X
Why?
Use representer theorem on PCA objective:

max u' XX'u= max o X'X)(X'X)a
[uf=1 a’XXo=1
Principal component analysis (PCA) / Kernel PCA
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Kernel PCA

Kernel function: k(x1,x2) such that
K, the kernel matrix formed by K;; = k(x;,x;),
Is positive semi-definite
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Kernel function: k(x1,x2) such that
K, the kernel matrix formed by K;; = k(x;,x;),
Is positive semi-definite
Examples:
Linear kernel: k(x1,x9) = X{ Xo
Polynomial kernel: k(xi,x9) = (1 + x{ x2)?
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Kernel PCA

Kernel function: k(x1,x2) such that
K, the kernel matrix formed by K;; = k(x;,x;),
Is positive semi-definite

Examples:
Linear kernel: k(x1,x%2) = X{ X2

Polynomial kernel: k(xi,x9) = (1 + x{ x2)?

Gaussian (RBF) kernel: k(x1,xs) = e~ IIk1—xall’
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Kernel function: k(x1,x2) such that
K, the kernel matrix formed by K;; = k(x;,x;),
Is positive semi-definite

Examples:
Linear kernel: k(x1,x%2) = X{ X2
Polynomial kernel: k(xi,x9) = (1 + x{ x2)?
Gaussian (RBF) kernel: k(x1,x9) = e~ lIx1—x2l”

Treat data points x as black boxes, only access via &
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Kernel PCA

Kernel function: k(x1,x2) such that
K, the kernel matrix formed by K;; = k(x;,x;),
Is positive semi-definite

Examples:
Linear kernel: k(xq,x5) = x| X2
Polynomial kernel: k(x1,x2) = (1 + x{ x2)
Gaussian (RBF) kernel: k(x1,x5) = e~ Ix1—x2ll”

Treat data points x as black boxes, only access via &
k intuitively measures “similarity” between two inputs

2
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Kernel PCA

Kernel function: k(x1,x2) such that
K, the kernel matrix formed by K;; = k(x;,x;),
Is positive semi-definite

Examples:
Linear kernel: k(x1,x%2) = X{ X2
Polynomial kernel: k(xi,x9) = (1 + x{ x2)?
Gaussian (RBF) kernel: k(x1,x9) = e~ lIx1—x2l”

Treat data points x as black boxes, only access via &
k intuitively measures “similarity” between two inputs

Mercer’'s theorem (using kernels is sensible)
Exists high-dimensional feature space ¢ such that

k(x1,%2) = &(x1) ' ¢(x2) (like quick solution earlier!)
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Solving kernel PCA

Direct method:
Kernel PCA objective:

max o K2«
o' Ka=1
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Solving kernel PCA

Direct method:
Kernel PCA objective:

max o K2«
o' Ka=1

— kernel PCA eigenvalue problem: X' Xa = Vo

Modular method (if you don’t want to think about kernels):

Find vectors x,...,x/ such that
T T
x; x5 = Kij = ¢(x;) ' o(x;)

Principal component analysis (PCA) / Kernel PCA

29



Solving kernel PCA

Direct method:
Kernel PCA objective:

max o K2«
o' Ka=1

— kernel PCA eigenvalue problem: X' Xa = Vo

Modular method (if you don’t want to think about kernels):

Find vectors x,...,x/ such that
-
XQTX;- = K;j = o(x;) ' o(x5)

Key: use any vectors that preserve inner products
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Solving kernel PCA

Direct method:
Kernel PCA objective:

max o K2«
o' Ka=1

— kernel PCA eigenvalue problem: X' Xa = Vo

Modular method (if you don’t want to think about kernels):

Find vectors x,...,x/ such that
T T
x; x5 = Kij = ¢(x;) ' o(x;)
Key: use any vectors that preserve inner products

One possibility is Cholesky decomposition K = X ' X

Principal component analysis (PCA) / Kernel PCA
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Roadmap
e Principal component analysis (PCA)
— Basic principles
— Case studies

— Kernel PCA
— Probabilistic PCA

e Canonical correlation analysis (CCA)
e Fisher discriminant analysis (FDA)

e Summary

Principal component analysis (PCA) / Probabilistic PCA

30



Probabilistic modeling

So far, deal with objective functions:
m{}n f(X,U)
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Probabilistic modeling

So far, deal with objective functions:
m{}n f(X,U)
Probabilistic modeling:
mgxp(X | U)

Invent a generative story of how data X arose
Play detective: infer parameters U that produced X

Advantages:
e Model reports estimates of uncertainty

e Natural way to handle missing data
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Probabilistic modeling

So far, deal with objective functions:

m{}n f(X,U)

Probabilistic modeling:

X
maxp(X | U)

Invent a generative story of how data X arose
Play detective: infer parameters U that produced X

Advantages:
e Model reports estimates of uncertainty

e Natura
e Natura
e Natura

way to handle missing data
way to introduce prior knowledge
way to incorporate in a larger model
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Probabilistic modeling

So far, deal with objective functions:

m{}n f(X,U)

Probabilistic modeling:

X
maxp(X | U)

Invent a generative story of how data X arose
Play detective: infer parameters U that produced X

Advantages:
e Model reports estimates of uncertainty

e Natura
e Natura
e Natura

way to handle missing data
way to introduce prior knowledge
way to incorporate in a larger model

Example from last lecture: k-means = GMMs

Principal component analysis (PCA) / Probabilistic PCA
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Probabilistic PCA

Generative story [Tipping and Bishop, 1999]:

For each data point 2 =1,...,n:
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Probabilistic PCA

Generative story [Tipping and Bishop, 1999]:

For each data point 2 =1,...,n:
Draw the latent vector: z; ~ N (0, [ xx)

Create the data point: x; ~ M (Uz;, 0% 4)

PCA finds the U that maximizes the likelihood of the data

Advantages:
e Handles missing data (important for collaborative
filtering)
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Probabilistic PCA

Generative story [Tipping and Bishop, 1999]:

For each data point 2 =1,...,n:
Draw the latent vector: z; ~ N (0, [ xx)

Create the data point: x; ~ M (Uz;, 0% 4)

PCA finds the U that maximizes the likelihood of the data

Advantages:
e Handles missing data (important for collaborative
filtering)

e Extension to factor analysis: allow non-isotropic noise
(replace 0?14y 4 with arbitrary diagonal matrix)

Principal component analysis (PCA) / Probabilistic PCA
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Probabilistic latent semantic analysis (pLSA)

Motivation: in text analysis, X contains word counts; PCA (LSA) is
bad model as it allows negative counts; pLSA fixes this
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For each document 2 =1,...,n:
Repeat M times (number of word tokens in document):
Draw a latent topic: z ~ p(z | 7)
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Motivation: in text analysis, X contains word counts; PCA (LSA) is
bad model as it allows negative counts; pLSA fixes this
Generative story for pLSA [Hofmann, 1999]:

For each document 2 =1,...,n:
Repeat M times (number of word tokens in document):
Draw a latent topic: z ~ p(z | 7)
Choose the word token: x ~ p(x | z)
Set x,; to be the number of times word j was chosen

Learning using Hard EM (analog of k-means):

E-step: fix parameters, choose best topics
M-step: fix topics, optimize parameters
More sophisticated methods: EM, Latent Dirichlet Allocation

Principal component analysis (PCA) / Probabilistic PCA

33



Probabilistic latent semantic analysis (pLSA)

Motivation: in text analysis, X contains word counts; PCA (LSA) is
bad model as it allows negative counts; pLSA fixes this
Generative story for pLSA [Hofmann, 1999]:

For each document 2 =1,...,n:
Repeat M times (number of word tokens in document):
Draw a latent topic: z ~ p(z | 7)
Choose the word token: x ~ p(x | z)
Set x,; to be the number of times word j was chosen

Learning using Hard EM (analog of k-means):
E-step: fix parameters, choose best topics
M-step: fix topics, optimize parameters
More sophisticated methods: EM, Latent Dirichlet Allocation
Comparison to a mixture model for clustering:
Mixture model: assume a single topic for entire document
pLSA: allow multiple topics per document

Principal component analysis (PCA) / Probabilistic PCA 33



Roadmap
e Principal component analysis (PCA)
— Basic principles
— Case studies

— Kernel PCA
— Probabilistic PCA

e Canonical correlation analysis (CCA)
e Fisher discriminant analysis (FDA)

e Summary
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Motivation for CCA [Hotelling, 1936]

Often, each data point consists of two views:
e Image retrieval: for each image, have the following:
—x: Pixels (or other visual features)
—vy: Text around the image
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Motivation for CCA [Hotelling, 1936]

Often, each data point consists of two views:

e Image retrieval: for each image, have the following:
—x: Pixels (or other visual features)
—vy: Text around the image

e [Ime series:
—x: Signal at time ¢
—vy: Signal at time ¢t + 1

e Two-view learning: divide features into two sets
—x: Features of a word/object, etc.
—vy: Features of the context in which it appears

Goal: reduce the dimensionality of the two views jointly

Canonical correlation analysis (CCA)

35



An example

Setup:
Input data: (x1,¥4¢),...,(Xn,¥,,) (matrices X,Y)

Goal: find pair of projections (u, v)
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An example

Setup:
Input data: (x1,¥4¢),...,(Xn,¥,,) (matrices X,Y)

Goal: find pair of projections (u, v)
In figure, x and y are paired by brightness

Dimensionality reduction solutions:

Independent . Joint
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From PCA to CCA

PCA on views separately: no covariance term
u'XX'u v'YY'v
max +

u,v u'u vIiv

Canonical correlation analysis (CCA)
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PCA on views separately: no covariance term
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From PCA to CCA

PCA on views separately: no covariance term
u'XX'u v'YY'v
max +

u,v uTu VTV

PCA on concatenation (X', Y ")": includes covariance term
u' XX'u+2u' XY 'v+v'YY 'y
max
u,v u'u+v'lv

Maximum covariance: drop variance terms
u' XY'v
1mMax

u,v \/HTH\/VTV
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From PCA to CCA

PCA on views separately: no covariance term
u'XX'u v'YY'v
max +

u,v uTu VTV

PCA on concatenation (X', Y ")": includes covariance term
u' XX'u+2u' XY 'v+v'YY 'y
max
u,v u'u+v'lv

Maximum covariance: drop variance terms
u' XY 'v
v vuluvv v
Maximum correlation (CCA): divide out variance terms
u'XY'v
max

v A/uTXXTuvvIiYY Ty

Canonical correlation analysis (CCA)
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Canonical correlation analysis (CCA)

Definitions:

Variance: var(u'x) =u'XX 'u
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Canonical correlation analysis (CCA)

Definitions:
Variance: var(u'x) =u'XX 'u
Covariance: cov(u'x,v'y) =u' XY 'v

cov(u' x,v'y)
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Correlation:

Canonical correlation analysis (CCA)

38



Canonical correlation analysis (CCA)

Definitions:
Variance: var(u'x) =u'XX 'u
Covariance: cov(u'x,v'y) =u' XY 'v

cov(u' x,v'y)
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Objective: maximize correlation between projected views
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Covariance: cov(u'x,v'y) =u' XY 'v
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Objective: maximize correlation between projected views
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Properties:

e Focus on how variables are related, not how much they vary
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Canonical correlation analysis (CCA)

Definitions:
Variance: var(u'x) =u'XX 'u
Covariance: cov(u'x,v'y) =u' XY 'v

cov(u' x,v'y)

\/\7a\r(uTx) \/\7a\r(VTy)

Correlation:

Objective: maximize correlation between projected views

max corr(u ' x,v'y)

u,v

Properties:

e Focus on how variables are related, not how much they vary

e [nvariant to any rotation and scaling of data
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Canonical correlation analysis (CCA)

Definitions:
Variance: var(u'x) =u'XX 'u
Covariance: cov(u'x,v'y) =u' XY 'v

cov(u' x,v'y)

\/\7a\r(uTx) \/\7a\r(VTy)

Correlation:

Objective: maximize correlation between projected views

max corr(u ' x,v'y)

u,v
Properties:

e Focus on how variables are related, not how much they vary
e [nvariant to any rotation and scaling of data

Solved via a generalized eigenvalue problem (Aw = ABw)
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Regularization Is important

Extreme examples of degeneracy:

o If x = Ay, then any (u,v) with u = Av is optimal
(correlation 1)
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Regularization Is important

Extreme examples of degeneracy:

o If x = Ay, then any (u,v) with u = Av is optimal
(correlation 1)

e If x and y are independent, then any (u, v) is optimal
(correlation 0)

Problem: if X or Y has rank n, then any (u,v) is optimal

(correlation 1) with u = X""'Yv = CCA is meaningless!
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Regularization Is important

Extreme examples of degeneracy:

o If x = Ay, then any (u,v) with u = Av is optimal
(correlation 1)

e If x and y are independent, then any (u, v) is optimal
(correlation 0)

Problem: if X or Y has rank n, then any (u,v) is optimal

(correlation 1) with u = X""'Yv = CCA is meaningless!
Solution: regularization (interpolate between
maximum covariance and maximum correlation)
u' XY 'v
max

wv ul (XX T+ ADuy/vI(YY T + M)y
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Kernel CCA

Two kernels: k, and k,

Canonical correlation analysis (CCA)
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Kernel CCA

Two kernels: k, and k,
Direct method:
(some math)

Canonical correlation analysis (CCA)

42



Kernel CCA

Two kernels: k, and k,
Direct method:
(some math)

Modular method:

1. Transform x; into x; € R™ satisfying
1T !

k(xi,x5) = x;' x}; (do same for y)

Canonical correlation analysis (CCA)

42



Kernel CCA

Two kernels: k, and k,
Direct method:
(some math)

Modular method:

1. Transform x; into x; € R™ satisfying
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Kernel CCA

Two kernels: k, and k,
Direct method:
(some math)

Modular method:

1. Transform x; into x; € R™ satisfying

k(x,x;) = x;' x; (do same for y)

2. Perform regular CCA

Regularization is especially important for kernel CCA!

Canonical correlation analysis (CCA)
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Roadmap
e Principal component analysis (PCA)
— Basic principles
— Case studies

— Kernel PCA
— Probabilistic PCA
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e Fisher discriminant analysis (FDA)

e Summary
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Motivation for FDA [Fisher, 1936}

What is the best linear projection?

.
]
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Motivation for FDA [Fisher, 1936}

What is the best linear projection with these labels?

T X

PCA solution FDA solution

Goal: reduce the dimensionality given labels

ldea: want projection to maximize overall interclass variance
relative to intraclass variance

Linear classifiers (logistic regression, SVMs) have similar feel:
Find one-dimensional subspace w,
e.g., to maximize margin between different classes

FDA handles multiple classes, allows multiple dimensions

Fisher discriminant analysis (FDA) 44



FDA objective function

Setup: x; ERd,yi c{l,...,m}, fort=1,...,n
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FDA objective function

Setup: x; ERd,yi c{l,...,m}, fort=1,...,n

Interclass variance _  total variance

ObJeCtlve: MaXIMIZE foi aciass variance — intraclass variance

Total variance: + > (u' (x; — u))?
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FDA objective function

Setup: x; ERd,yi c{l,...,m}, fort=1,...,n

Interclass variance _  total variance

Objective: maximize : ance _ _
Intraclass variance Intraclass variance

Total variance: + > (u' (x; — u))?
Mean of all points: u = =3 x;

Intraclass variance: lz (u'(x; — ,Léyz))2

Mean of points in class y: p, = |{,Ly m—y Z

Reduces to a generalized eigenvalue problem.

Kernel FDA: use modular method
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Other linear methods

Random projections:

Randomly project data onto £ = O(logn) dimensions
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Other linear methods

Random projections:
Randomly project data onto £ = O(logn) dimensions
All pairwise distances preserved with high probability
U "x; — UTX]'HZ ~ ||x; — x4]|* for all i,

Trivial to implement

Kernel dimensionality reduction:
One type of sufficient dimensionality reduction
Find subspace that contains all information about labels

y Lx|U'x

Capturing information is stronger than capturing variance

Hard nonconvex optimization problem

Fisher discriminant analysis (FDA)
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Summary

Framework: z = UTX, x ~ Uz
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Summary

Framework: z = UTX, x ~ Uz

Criteria for choosing U:

e PCA: maximize
e CCA: maximize

® FDA: maximize
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Summary

Framework: z = UTX, x ~ Uz

Criteria for choosing U:
e PCA: maximize projected variance

L

e CCA: maximize projected correlation

-

® FDA: maximize projected !nterclass variance

- Intraclass variance

Algorithm: generalized eigenvalue problem
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Summary

Framework: z = UTX, x ~ Uz

Criteria for choosing U:
e PCA: maximize projected variance
e CCA: maximize projected correlation

® FDA: maximize projected Interclass variance
- Intraclass variance

Algorithm: generalized eigenvalue problem
Extensions:
non-linear using kernels (using same linear framework)

probabilistic, sparse, robust (hard optimization)

Fisher discriminant analysis (FDA)
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