Linear Dimensionality Reduction

Practical Machine Learning (CS294-34)

September 24, 2009

Percy Liang

Lots of high-dimensional data...

face images

gene expression data

According to media reports, a pair of hackers said on Saturday that the Firefox Web browser, commonly perceived as the safer and more customizable alternative to market leader Internet Explorer, is critically flawed. A presentation on the flaw was shown during the ToorCon hacker conference in San Diego
documents

MEG readings

Motivation and context

Why do dimensionality reduction?

- Computational: compress data \Rightarrow time/space efficiency

Motivation and context

Why do dimensionality reduction?

- Computational: compress data \Rightarrow time/space efficiency
- Statistical: fewer dimensions \Rightarrow better generalization

Motivation and context

Why do dimensionality reduction?

- Computational: compress data \Rightarrow time/space efficiency
- Statistical: fewer dimensions \Rightarrow better generalization
- Visualization: understand structure of data

Motivation and context

Why do dimensionality reduction?

- Computational: compress data \Rightarrow time/space efficiency
- Statistical: fewer dimensions \Rightarrow better generalization
- Visualization: understand structure of data
- Anomaly detection: describe normal data, detect outliers

Motivation and context

Why do dimensionality reduction?

- Computational: compress data \Rightarrow time/space efficiency
- Statistical: fewer dimensions \Rightarrow better generalization
- Visualization: understand structure of data
- Anomaly detection: describe normal data, detect outliers

Dimensionality reduction in this course:

- Linear methods (this week)
- Clustering (last week)
- Feature selection (next week)
- Nonlinear methods (later)

Types of problems

- Prediction $\mathrm{x} \rightarrow \mathrm{y}$: classification, regression

Types of problems

- Prediction $\mathrm{x} \rightarrow \mathrm{y}$: classification, regression Applications: face recognition, gene expression prediction Techniques: kNN, SVM, least squares (+ dimensionality reduction preprocessing)

Types of problems

- Prediction $\mathrm{x} \rightarrow \mathrm{y}$: classification, regression Applications: face recognition, gene expression prediction Techniques: kNN, SVM, least squares (+ dimensionality reduction preprocessing)
- Structure discovery $\mathbf{x} \rightarrow \mathbf{z}$: find an alternative representation z of data x

Types of problems

- Prediction $\mathrm{x} \rightarrow \mathrm{y}$: classification, regression Applications: face recognition, gene expression prediction Techniques: kNN, SVM, least squares (+ dimensionality reduction preprocessing)
- Structure discovery $\mathbf{x} \rightarrow \mathbf{z}$: find an alternative representation \mathbf{z} of data \mathbf{x}
Applications: visualization Techniques: clustering, linear dimensionality reduction

Types of problems

- Prediction $\mathrm{x} \rightarrow \mathrm{y}$: classification, regression Applications: face recognition, gene expression prediction Techniques: kNN, SVM, least squares (+ dimensionality reduction preprocessing)
- Structure discovery $\mathbf{x} \rightarrow \mathbf{z}$: find an alternative representation \mathbf{z} of data \mathbf{x}
Applications: visualization
Techniques: clustering, linear dimensionality reduction
- Density estimation $p(\mathbf{x})$: model the data

Types of problems

- Prediction $\mathrm{x} \rightarrow \mathrm{y}$: classification, regression Applications: face recognition, gene expression prediction Techniques: kNN, SVM, least squares (+ dimensionality reduction preprocessing)
- Structure discovery $\mathbf{x} \rightarrow \mathbf{z}$: find an alternative representation \mathbf{z} of data \mathbf{x}
Applications: visualization
Techniques: clustering, linear dimensionality reduction
- Density estimation $p(\mathrm{x})$: model the data Applications: anomaly detection, language modeling Techniques: clustering, linear dimensionality reduction

Basic idea of linear dimensionality reduction

Represent each face as a high-dimensional vector $\mathrm{x} \in \mathbb{R}^{361}$

Basic idea of linear dimensionality reduction

Represent each face as a high-dimensional vector $\mathrm{x} \in \mathbb{R}^{361}$

$$
\begin{aligned}
& \mathbf{x} \in \mathbb{R}^{361} \\
& \quad \mid \mathbf{z}=\mathbf{U}^{\top} \mathbf{x} \\
& \mathbf{z} \in \mathbb{R}^{10}
\end{aligned}
$$

Basic idea of linear dimensionality reduction

Represent each face as a high-dimensional vector $\mathrm{x} \in \mathbb{R}^{361}$

$$
\begin{aligned}
& \mathbf{x} \in \mathbb{R}^{361} \\
& \\
& \quad \mid \mathbf{z}=\mathbf{U}^{\top} \mathbf{x} \\
& \mathbf{z} \in \mathbb{R}^{10}
\end{aligned}
$$

How do we choose U?

Outline

- Principal component analysis (PCA)
- Basic principles
- Case studies
- Kernel PCA
- Probabilistic PCA
- Canonical correlation analysis (CCA)
- Fisher discriminant analysis (FDA)
- Summary

Roadmap

- Principal component analysis (PCA)
- Basic principles
- Case studies
- Kernel PCA
- Probabilistic PCA
- Canonical correlation analysis (CCA)
- Fisher discriminant analysis (FDA)
- Summary

Dimensionality reduction setup

Given n data points in d dimensions: $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n} \in \mathbb{R}^{d}$

Dimensionality reduction setup

Given n data points in d dimensions: $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n} \in \mathbb{R}^{d}$

$$
\mathbf{X}=\left(\left.\begin{array}{c}
\mid \\
\mathbf{x}_{1} \cdots \cdots \\
\mid
\end{array} \right\rvert\, \begin{array}{c}
\mid \\
\mid
\end{array}\right) \in \mathbb{R}^{d \times n}
$$

Dimensionality reduction setup

Given n data points in d dimensions: $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n} \in \mathbb{R}^{d}$

$$
\mathbf{X}=\left(\left.\begin{array}{c}
\mid \\
\mathbf{x}_{1} \cdots \cdots \cdots \\
\mid
\end{array} \right\rvert\, \begin{array}{c}
\mid \\
\mid
\end{array}\right) \in \mathbb{R}^{d \times n}
$$

Want to reduce dimensionality from d to k

Dimensionality reduction setup

Given n data points in d dimensions: $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n} \in \mathbb{R}^{d}$

$$
\mathbf{X}=\left(\left.\begin{array}{c}
\mid \\
\mathbf{x}_{1} \cdots \cdots \cdots \\
\mid
\end{array} \right\rvert\, \begin{array}{c}
\mid \\
\mid
\end{array}\right) \in \mathbb{R}^{d \times n}
$$

Want to reduce dimensionality from d to k
Choose k directions $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}$

Dimensionality reduction setup

Given n data points in d dimensions: $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n} \in \mathbb{R}^{d}$

$$
\left.\mathbf{X}=\left(\begin{array}{c}
\mid \\
\mathbf{x}_{1} \cdots \cdots \cdots \\
\mid
\end{array}\right) \in \mathbf{x}_{n}\right) \in \mathbb{R}^{d \times n}
$$

Want to reduce dimensionality from d to k
Choose k directions $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}$

$$
\mathbf{U}=\left(\begin{array}{cc}
\mid & \mid \\
\mathbf{u}_{1} & \cdots \\
\mid & \mid
\end{array}\right) \in \mathbf{u}_{k}^{d \times k}
$$

Dimensionality reduction setup

Given n data points in d dimensions: $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n} \in \mathbb{R}^{d}$

$$
\mathbf{X}=\left(\left.\begin{array}{c}
\mid \\
\mathbf{x}_{1} \cdots \cdots \cdots \\
\mid
\end{array} \right\rvert\, \begin{array}{c}
\mid \\
\mid
\end{array}\right) \in \mathbb{R}^{d \times n}
$$

Want to reduce dimensionality from d to k
Choose k directions $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}$

$$
\mathbf{U}=\left(\begin{array}{cc}
\mid & \mid \\
\mathbf{u}_{1} \cdot & \mid \\
\mid & \mid
\end{array}\right) \in \mathbf{u}_{k}^{d \times k}
$$

For each \mathbf{u}_{j}, compute "similarity" $z_{j}=\mathbf{u}_{j}^{\top} \mathbf{x}$

Dimensionality reduction setup

Given n data points in d dimensions: $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n} \in \mathbb{R}^{d}$

$$
\mathbf{X}=\left(\left.\begin{array}{c}
\mid \\
\mathbf{x}_{1} \cdots \cdots \cdots \\
\mid
\end{array} \right\rvert\, \begin{array}{c}
\mid \\
\mid
\end{array}\right) \in \mathbb{R}^{d \times n}
$$

Want to reduce dimensionality from d to k
Choose k directions $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}$

$$
\mathbf{U}=\left(\begin{array}{cc}
\mid & \mid \\
\mathbf{u}_{1} \cdot \cdot \mathbf{u}_{k} \\
\mid & \mid
\end{array}\right) \in \mathbb{R}^{d \times k}
$$

For each \mathbf{u}_{j}, compute "similarity" $z_{j}=\mathbf{u}_{j}^{\top} \mathbf{x}$
Project \mathbf{x} down to $\mathbf{z}=\left(z_{1}, \ldots, z_{k}\right)^{\top}=\mathbf{U}^{\top} \mathbf{x}$

Dimensionality reduction setup

Given n data points in d dimensions: $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n} \in \mathbb{R}^{d}$

$$
\mathbf{X}=\left(\left.\begin{array}{c}
\mid \\
\mathbf{x}_{1} \cdots \cdots \cdots \\
\mid
\end{array} \right\rvert\, \begin{array}{c}
\mid \\
\mid
\end{array}\right) \in \mathbb{R}^{d \times n}
$$

Want to reduce dimensionality from d to k
Choose k directions $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}$

$$
\mathbf{U}=\left(\begin{array}{cc}
\mid & \mid \\
\mathbf{u}_{1} \cdot & \mid \\
\mid & \mid
\end{array}\right) \in \mathbf{u}_{k}^{d \times k}
$$

For each \mathbf{u}_{j}, compute "similarity" $z_{j}=\mathbf{u}_{j}^{\top} \mathbf{x}$
Project \mathbf{x} down to $\mathbf{z}=\left(z_{1}, \ldots, z_{k}\right)^{\top}=\mathbf{U}^{\top} \mathbf{x}$
How to choose U?

PCA objective 1: reconstruction error

U serves two functions:

- Encode: $\mathbf{z}=\mathbf{U}^{\top} \mathbf{x}, \quad z_{j}=\mathbf{u}_{j}^{\top} \mathbf{x}$

PCA objective 1: reconstruction error

U serves two functions:

- Encode: $\mathbf{z}=\mathbf{U}^{\top} \mathbf{x}, \quad z_{j}=\mathbf{u}_{j}^{\top} \mathbf{x}$
- Decode: $\tilde{\mathbf{x}}=\mathrm{Uz}=\sum_{j=1}^{k} z_{j} \mathbf{u}_{j}$

PCA objective 1: reconstruction error

U serves two functions:

- Encode: $\mathbf{z}=\mathbf{U}^{\top} \mathbf{x}, \quad z_{j}=\mathbf{u}_{j}^{\top} \mathbf{x}$
- Decode: $\tilde{\mathbf{x}}=\mathrm{Uz}=\sum_{j=1}^{k} z_{j} \mathbf{u}_{j}$

Want reconstruction error $\|\mathbf{x}-\tilde{\mathbf{x}}\|$ to be small

PCA objective 1: reconstruction error

U serves two functions:

- Encode: $\mathbf{z}=\mathrm{U}^{\top} \mathbf{x}, \quad z_{j}=\mathbf{u}_{j}^{\top} \mathbf{x}$
- Decode: $\tilde{\mathbf{x}}=\mathrm{Uz}=\sum_{j=1}^{k} z_{j} \mathbf{u}_{j}$

Want reconstruction error $\|\mathbf{x}-\tilde{\mathbf{x}}\|$ to be small
Objective: minimize total squared reconstruction error

$$
\min _{\mathrm{U} \in \mathbb{R}^{d \times k}} \sum_{i=1}^{n}\left\|\mathbf{x}_{i}-\mathrm{UU}^{\top} \mathbf{x}_{i}\right\|^{2}
$$

PCA objective 2: projected variance

Empirical distribution: uniform over $\mathrm{x}_{1}, \ldots, \mathrm{x}_{n}$

PCA objective 2: projected variance

Empirical distribution: uniform over $\mathrm{x}_{1}, \ldots, \mathrm{x}_{n}$ Expectation (think sum over data points):

$$
\hat{\mathbb{E}}[f(\mathrm{x})]=\frac{1}{n} \sum_{i=1}^{n} f\left(\mathrm{x}_{i}\right)
$$

PCA objective 2: projected variance

Empirical distribution: uniform over $\mathrm{x}_{1}, \ldots, \mathrm{x}_{n}$ Expectation (think sum over data points):

$$
\hat{\mathbb{E}}[f(\mathrm{x})]=\frac{1}{n} \sum_{i=1}^{n} f\left(\mathrm{x}_{i}\right)
$$

Variance (think sum of squares if centered):

$$
\widehat{\operatorname{var}}[f(\mathrm{x})]+(\hat{\mathbb{E}}[f(\mathrm{x})])^{2}=\hat{\mathbb{E}}\left[f(\mathrm{x})^{2}\right]=\frac{1}{n} \sum_{i=1}^{n} f\left(\mathbf{x}_{i}\right)^{2}
$$

PCA objective 2: projected variance

Empirical distribution: uniform over $\mathrm{x}_{1}, \ldots, \mathrm{x}_{n}$ Expectation (think sum over data points):

$$
\hat{\mathbb{E}}[f(\mathrm{x})]=\frac{1}{n} \sum_{i=1}^{n} f\left(\mathrm{x}_{i}\right)
$$

Variance (think sum of squares if centered):

$$
\widehat{\operatorname{var}}[f(\mathrm{x})]+(\hat{\mathbb{E}}[f(\mathrm{x})])^{2}=\hat{\mathbb{E}}\left[f(\mathrm{x})^{2}\right]=\frac{1}{n} \sum_{i=1}^{n} f\left(\mathrm{x}_{i}\right)^{2}
$$

Assume data is centered: $\hat{\mathbb{E}}[\mathbf{x}]=0$

PCA objective 2: projected variance

Empirical distribution: uniform over $\mathrm{x}_{1}, \ldots, \mathrm{x}_{n}$ Expectation (think sum over data points):

$$
\hat{\mathbb{E}}[f(\mathrm{x})]=\frac{1}{n} \sum_{i=1}^{n} f\left(\mathrm{x}_{i}\right)
$$

Variance (think sum of squares if centered):

$$
\widehat{\operatorname{var}}[f(\mathbf{x})]+(\hat{\mathbb{E}}[f(\mathbf{x})])^{2}=\hat{\mathbb{E}}\left[f(\mathbf{x})^{2}\right]=\frac{1}{n} \sum_{i=1}^{n} f\left(\mathbf{x}_{i}\right)^{2}
$$

Assume data is centered: $\hat{\mathbb{E}}[\mathbf{x}]=0$ (what's $\hat{\mathbb{E}}\left[\mathbf{U}^{\top} \mathbf{x}\right]$?)

PCA objective 2: projected variance

Empirical distribution: uniform over $\mathrm{x}_{1}, \ldots, \mathrm{x}_{n}$ Expectation (think sum over data points):

$$
\hat{\mathbb{E}}[f(\mathbf{x})]=\frac{1}{n} \sum_{i=1}^{n} f\left(\mathbf{x}_{i}\right)
$$

Variance (think sum of squares if centered):

$$
\widehat{\operatorname{var}}[f(\mathbf{x})]+(\hat{\mathbb{E}}[f(\mathbf{x})])^{2}=\hat{\mathbb{E}}\left[f(\mathbf{x})^{2}\right]=\frac{1}{n} \sum_{i=1}^{n} f\left(\mathbf{x}_{i}\right)^{2}
$$

Assume data is centered: $\hat{\mathbb{E}}[\mathrm{x}]=0$ (what's $\hat{\mathbb{E}}\left[\mathrm{U}^{\top} \mathbf{x}\right]$?)
Objective: maximize variance of projected data

$$
\max _{d \times k, \mathbf{U}^{\top} \mathbf{U}=I} \hat{\mathbb{E}}\left[\left\|\mathbf{U}^{\top} \mathbf{x}\right\|^{2}\right]
$$

Equivalence in two objectives

Key intuition:
$\underbrace{\text { variance of data }}_{\text {fixed }}=\underbrace{\text { captured variance }}_{\text {want large }}+\underbrace{\text { reconstruction error }}_{\text {want small }}$

Equivalence in two objectives

Key intuition:
$\underbrace{\text { variance of data }}_{\text {fixed }}=\underbrace{\text { captured variance }}_{\text {want large }}+\underbrace{\text { reconstruction error }}_{\text {want small }}$
Pythagorean decomposition: $\mathbf{x}=\mathbf{U U}^{\top} \mathbf{x}+\left(I-\mathbf{U U}^{\top}\right) \mathbf{x}$

Equivalence in two objectives

Key intuition:
$\underbrace{\text { variance of data }}_{\text {fixed }}=\underbrace{\text { captured variance }}_{\text {want large }}+\underbrace{\text { reconstruction error }}_{\text {want small }}$
Pythagorean decomposition: $\mathbf{x}=\mathbf{U U}^{\top} \mathbf{x}+\left(I-\mathbf{U U}^{\top}\right) \mathbf{x}$

Equivalence in two objectives

Key intuition:
$\underbrace{\text { variance of data }}_{\text {fixed }}=\underbrace{\text { captured variance }}_{\text {want large }}+\underbrace{\text { reconstruction error }}_{\text {want small }}$
Pythagorean decomposition: $\mathbf{x}=\mathbf{U U}^{\top} \mathbf{x}+\left(I-\mathbf{U U}^{\top}\right) \mathbf{x}$

Take expectations; note rotation U doesn't affect length:

$$
\hat{\mathbb{E}}\left[\|\mathbf{x}\|^{2}\right]=\hat{\mathbb{E}}\left[\left\|\mathbf{U}^{\top} \mathbf{x}\right\|^{2}\right]+\hat{\mathbb{E}}\left[\left\|\mathbf{x}-\mathbf{U U}^{\top} \mathbf{x}\right\|^{2}\right]
$$

Equivalence in two objectives

Key intuition:
$\underbrace{\text { variance of data }}_{\text {fixed }}=\underbrace{\text { captured variance }}_{\text {want large }}+\underbrace{\text { reconstruction error }}_{\text {want small }}$
Pythagorean decomposition: $\mathbf{x}=\mathbf{U U}^{\top} \mathbf{x}+\left(I-\mathbf{U U}^{\top}\right) \mathbf{x}$

Take expectations; note rotation U doesn't affect length:

$$
\hat{\mathbb{E}}\left[\|\mathbf{x}\|^{2}\right]=\hat{\mathbb{E}}\left[\left\|\mathbf{U}^{\top} \mathbf{x}\right\|^{2}\right]+\hat{\mathbb{E}}\left[\left\|\mathbf{x}-\mathbf{U U}^{\top} \mathbf{x}\right\|^{2}\right]
$$

Minimize reconstruction error \leftrightarrow Maximize captured variance

Finding one principal component

Input data:
 $\mathbf{X}=\left(\begin{array}{ccc}\mid & & \mid \\ \mathbf{x}_{1} & \ldots & \mathbf{x}_{n} \\ \mid & & \mid\end{array}\right)$

Finding one principal component

Objective: maximize variance of projected data

Input data:

$\mathbf{X}=\left(\begin{array}{ccc}\mid & & \mid \\ \mathbf{x}_{1} & \ldots & \mathbf{x}_{n} \\ \mid & & \mid\end{array}\right)$

Finding one principal component

Objective: maximize variance of projected data

$=\max _{\|\mathbf{u}\|=1} \hat{\mathbb{E}}\left[\left(\mathbf{u}^{\top} \mathbf{x}\right)^{2}\right]$

Input data:
$\mathbf{X}=\left(\begin{array}{ccc}\mid & & \mid \\ \mathbf{x}_{1} & \ldots & \mathbf{x}_{n} \\ \mid & & \mid\end{array}\right)$

Finding one principal component

Objective: maximize variance of projected data
$=\max _{\|\mathbf{u}\|=1} \hat{\mathbb{E}}\left[\left(\mathbf{u}^{\top} \mathbf{x}\right)^{2}\right]$
$=\max _{\|\mathbf{u}\|=1} \frac{1}{n} \sum_{i=1}^{n}\left(\mathbf{u}^{\top} \mathbf{x}_{i}\right)^{2}$
Input data:
$\mathbf{X}=\left(\begin{array}{ccc}\mid & & \mid \\ \mathbf{x}_{1} & \ldots & \mathbf{x}_{n} \\ \mid & & \mid\end{array}\right)$

Finding one principal component

Finding one principal component

Finding one principal component

How many principal components?

- Similar to question of "How many clusters?"
- Magnitude of eigenvalues indicate fraction of variance captured.

How many principal components?

- Similar to question of "How many clusters?"
- Magnitude of eigenvalues indicate fraction of variance captured.
- Eigenvalues on a face image dataset:

How many principal components?

- Similar to question of "How many clusters?"
- Magnitude of eigenvalues indicate fraction of variance captured.
- Eigenvalues on a face image dataset:

- Eigenvalues typically drop off sharply, so don't need that many.
- Of course variance isn't everything...

Computing PCA

Method 1: eigendecomposition U are eigenvectors of covariance matrix $C=\frac{1}{n} \mathbf{X} \mathbf{X}^{\top}$ Computing C already takes $O\left(n d^{2}\right)$ time (very expensive)

Computing PCA

Method 1: eigendecomposition
U are eigenvectors of covariance matrix $C=\frac{1}{n} \mathbf{X X}{ }^{\top}$
Computing C already takes $O\left(n d^{2}\right)$ time (very expensive)
Method 2: singular value decomposition (SVD)
Find $\mathbf{X}=\mathbf{U}_{d \times d} \Sigma_{d \times n} \mathbf{V}_{n \times n}^{\top}$
where $\mathrm{U}^{\top} \mathrm{U}=I_{d \times d}, \mathrm{~V}^{\top} \mathrm{V}=I_{n \times n}, \Sigma$ is diagonal
Computing top k singular vectors takes only $O(n d k)$

Computing PCA

Method 1: eigendecomposition
U are eigenvectors of covariance matrix $C=\frac{1}{n} \mathbf{X} \mathbf{X}^{\top}$
Computing C already takes $O\left(n d^{2}\right)$ time (very expensive)
Method 2: singular value decomposition (SVD)
Find $\mathbf{X}=\mathbf{U}_{d \times d} \Sigma_{d \times n} \mathbf{V}_{n \times n}^{\top}$
where $\mathrm{U}^{\top} \mathrm{U}=I_{d \times d}, \mathrm{~V}^{\top} \mathbf{V}=I_{n \times n}, \Sigma$ is diagonal
Computing top k singular vectors takes only $O(n d k)$
Relationship between eigendecomposition and SVD:
Left singular vectors are principal components ($C=\mathbf{U} \Sigma^{2} \mathbf{U}^{\top}$)

Roadmap

- Principal component analysis (PCA)
- Basic principles
- Case studies
- Kernel PCA
- Probabilistic PCA
- Canonical correlation analysis (CCA)
- Fisher discriminant analysis (FDA)
- Summary

Eigen-faces [Turk and Pentland, 1991]

- $d=$ number of pixels
- Each $\mathrm{x}_{i} \in \mathbb{R}^{d}$ is a face image
- $\mathbf{x}_{j i}=$ intensity of the j-th pixel in image i

Eigen-faces [Turk and Pentland, 1991]

- $d=$ number of pixels
- Each $\mathrm{x}_{i} \in \mathbb{R}^{d}$ is a face image
- $\mathbf{x}_{j i}=$ intensity of the j-th pixel in image i

$$
\mathbf{X}_{d \times n} \quad \approx \quad \mathbf{U}_{d \times k} \quad \mathbf{Z}_{k \times n}
$$

Eigen-faces [Turk and Pentland, 1991]

- $d=$ number of pixels
- Each $\mathrm{x}_{i} \in \mathbb{R}^{d}$ is a face image
- $\mathbf{x}_{j i}=$ intensity of the j-th pixel in image i

$$
\mathbf{X}_{d \times n} \quad \approx \quad \mathbf{U}_{d \times k} \quad \mathbf{Z}_{k \times n}
$$

Idea: \mathbf{z}_{i} more "meaningful" representation of i-th face than \mathbf{x}_{i}
Can use \mathbf{z}_{i} for nearest-neighbor classification
Much faster: $O(d k+n k)$ time instead of $O(d n)$ when $n, d \gg k$ Why no time savings for linear classifier?

Latent Semantic Analysis [Deerwater, 1990]

- $d=$ number of words in the vocabulary
- Each $\mathrm{x}_{i} \in \mathbb{R}^{d}$ is a vector of word counts
- $\mathbf{x}_{j i}=$ frequency of word j in document i

Latent Semantic Analysis [Deerwater, 1990]

- $d=$ number of words in the vocabulary
- Each $\mathrm{x}_{i} \in \mathbb{R}^{d}$ is a vector of word counts
- $\mathbf{x}_{j i}=$ frequency of word j in document i

How to measure similarity between two documents?
$\mathbf{z}_{1}^{\top} \mathbf{z}_{2}$ is probably better than $\mathbf{x}_{1}^{\top} \mathbf{x}_{2}$

Latent Semantic Analysis [Deerwater, 1990]

- $d=$ number of words in the vocabulary
- Each $\mathrm{x}_{i} \in \mathbb{R}^{d}$ is a vector of word counts
- $\mathbf{x}_{j i}=$ frequency of word j in document i

How to measure similarity between two documents?
$\mathbf{z}_{1}^{\top} \mathbf{z}_{2}$ is probably better than $\mathbf{x}_{1}^{\top} \mathbf{x}_{2}$
Applications: information retrieval

Latent Semantic Analysis [Deerwater, 1990]

- $d=$ number of words in the vocabulary
- Each $\mathrm{x}_{i} \in \mathbb{R}^{d}$ is a vector of word counts
- $\mathbf{x}_{j i}=$ frequency of word j in document i

How to measure similarity between two documents?
$\mathbf{z}_{1}^{\top} \mathbf{z}_{2}$ is probably better than $\mathbf{x}_{1}^{\top} \mathbf{x}_{2}$
Applications: information retrieval
Note: no computational savings; original x is already sparse

Network anomaly detection [Lakhina, '05]

$\mathrm{x}_{j i}=$ amount of traffic on link j in the network during each time interval i

Network anomaly detection [Lakhina, '05]

$\mathrm{x}_{j i}=$ amount of traffic on link j in the network during each time interval i

Model assumption: total traffic is sum of flows along a few "paths"

Network anomaly detection [Lakhina, '05]

$\mathrm{x}_{j i}=$ amount of traffic on link j in the network during each time interval i

Model assumption: total traffic is sum of flows along a few "paths" Apply PCA: each principal component intuitively represents a "path"

Network anomaly detection [Lakhina, '05]

$\mathrm{x}_{j i}=$ amount of traffic on link j in the network during each time interval i

Model assumption: total traffic is sum of flows along a few "paths" Apply PCA: each principal component intuitively represents a "path" Anomaly when traffic deviates from first few principal components

Network anomaly detection [Lakhina, '05]

$\mathrm{x}_{j i}=$ amount of traffic on link j in the network during each time interval i

Model assumption: total traffic is sum of flows along a few "paths" Apply PCA: each principal component intuitively represents a "path" Anomaly when traffic deviates from first few principal components

(b) Anomalous Behavior

Unsupervised POS tagging [Schütze, '95]

Part-of-speech (POS) tagging task:
Input: I like reducing the dimensionality of data Output: NOUN VERB VERB(-ING) DET NOUN PREP NOUN .

Unsupervised POS tagging [Schütze, '95]

Part-of-speech (POS) tagging task:
Input: I like reducing the dimensionality of data
Output: NOUN VERB VERB(-ING) DET NOUN PREP NOUN .
Each x_{i} is (the context distribution of) a word.
$\mathrm{x}_{j i}$ is number of times word i appeared in context j
Key idea: words appearing in similar contexts tend to have the same POS tags; so cluster using the contexts of each word type
Problem: contexts are too sparse

Unsupervised POS tagging [Schütze, '95]

Part-of-speech (POS) tagging task:
Input: I like reducing the dimensionality of data
Output: NOUN VERB VERB(-ING) DET NOUN PREP NOUN .
Each x_{i} is (the context distribution of) a word.
$\mathrm{x}_{j i}$ is number of times word i appeared in context j
Key idea: words appearing in similar contexts tend to have the same POS tags; so cluster using the contexts of each word type
Problem: contexts are too sparse
Solution: run PCA first,
then cluster using new representation

Multi-task learning [Ando \& Zhang, '05]

- Have n related tasks (classify documents for various users)
- Each task has a linear classifier with weights \mathbf{x}_{i}
- Want to share structure between classifiers

Multi-task learning [Ando \& Zhang, '05]

- Have n related tasks (classify documents for various users)
- Each task has a linear classifier with weights x_{i}
- Want to share structure between classifiers

One step of their procedure: given n linear classifiers $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$, run PCA to identify shared structure:

Multi-task learning [Ando \& Zhang, '05]

- Have n related tasks (classify documents for various users)
- Each task has a linear classifier with weights x_{i}
- Want to share structure between classifiers

One step of their procedure: given n linear classifiers $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$, run PCA to identify shared structure:

$$
\mathbf{X}=\left(\begin{array}{ccc}
\mid & & \mid \\
\mathbf{x}_{1} & \ldots & \mathbf{x}_{n} \\
\mid & & \mid
\end{array}\right) \approx \mathbf{U Z}
$$

Multi-task learning [Ando \& Zhang, '05]

- Have n related tasks (classify documents for various users)
- Each task has a linear classifier with weights x_{i}
- Want to share structure between classifiers

One step of their procedure:
given n linear classifiers $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$, run PCA to identify shared structure:

$$
\mathbf{X}=\left(\begin{array}{ccc}
\mid & & \mid \\
\mathbf{x}_{1} & \ldots & \mathbf{x}_{n} \\
\mid & & \mid
\end{array}\right) \approx \mathbf{U Z}
$$

Each principal component is a eigen-classifier

Multi-task learning [Ando \& Zhang, '05]

- Have n related tasks (classify documents for various users)
- Each task has a linear classifier with weights x_{i}
- Want to share structure between classifiers

One step of their procedure: given n linear classifiers $\mathrm{x}_{1}, \ldots, \mathrm{x}_{n}$, run PCA to identify shared structure:

$$
\mathbf{X}=\left(\begin{array}{ccc}
\mid & & \mid \\
\mathbf{x}_{1} & \ldots & \mathbf{x}_{n} \\
\mid & & \mid
\end{array}\right) \approx \mathbf{U Z}
$$

Each principal component is a eigen-classifier
Other step of their procedure:
Retrain classifiers, regularizing towards subspace \mathbf{U}

PCA summary

- Intuition: capture variance of data or minimize reconstruction error

PCA summary

- Intuition: capture variance of data or minimize reconstruction error
- Algorithm: find eigendecomposition of covariance matrix or SVD

PCA summary

- Intuition: capture variance of data or minimize reconstruction error
- Algorithm: find eigendecomposition of covariance matrix or SVD
- Impact: reduce storage (from $O(n d)$ to $O(n k)$), reduce time complexity

PCA summary

- Intuition: capture variance of data or minimize reconstruction error
- Algorithm: find eigendecomposition of covariance matrix or SVD
- Impact: reduce storage (from $O(n d)$ to $O(n k)$), reduce time complexity
- Advantages: simple, fast

PCA summary

- Intuition: capture variance of data or minimize reconstruction error
- Algorithm: find eigendecomposition of covariance matrix or SVD
- Impact: reduce storage (from $O(n d)$ to $O(n k)$), reduce time complexity
- Advantages: simple, fast
- Applications: eigen-faces, eigen-documents, network anomaly detection, etc.

Roadmap

- Principal component analysis (PCA)
- Basic principles
- Case studies
- Kernel PCA
- Probabilistic PCA
- Canonical correlation analysis (CCA)
- Fisher discriminant analysis (FDA)
- Summary

Limitations of linearity

Problem is that PCA subspace is linear:

$$
S=\left\{\mathbf{x}=\mathbf{U z}: \mathbf{z} \in \mathbb{R}^{k}\right\}
$$

Limitations of linearity

PCA is effective

PCA is ineffective

Problem is that PCA subspace is linear:

$$
S=\left\{\mathrm{x}=\mathrm{Uz}: \mathbf{z} \in \mathbb{R}^{k}\right\}
$$

In this example:

$$
S=\left\{\left(x_{1}, x_{2}\right): x_{2}=\frac{u_{2}}{u_{1}} x_{1}\right\}
$$

Going beyond linearity: quick solution

Broken solution

Going beyond linearity: quick solution

Broken solution

Desired solution

We want desired solution: $S=\left\{\left(x_{1}, x_{2}\right): x_{2}=\frac{u_{2}}{u_{1}} x_{1}^{2}\right\}$

Going beyond linearity: quick solution

Broken solution

Desired solution

We want desired solution: $S=\left\{\left(x_{1}, x_{2}\right): x_{2}=\frac{u_{2}}{u_{1}} x_{1}^{2}\right\}$
We can get this: $S=\{\phi(\mathbf{x})=\mathbf{U z}\}$ with $\phi(\mathbf{x})=\left(x_{1}^{2}, x_{2}\right)^{\top}$

Going beyond linearity: quick solution

Broken solution

Desired solution

We want desired solution: $S=\left\{\left(x_{1}, x_{2}\right): x_{2}=\frac{u_{2}}{u_{1}} x_{1}^{2}\right\}$
We can get this: $S=\{\phi(\mathbf{x})=\mathbf{U z}\}$ with $\phi(\mathbf{x})=\left(x_{1}^{2}, x_{2}\right)^{\top}$
Linear dimensionality reduction in $\phi(\mathbf{x})$ space §
Nonlinear dimensionality reduction in x space

Going beyond linearity: quick solution

Broken solution

Desired solution

We want desired solution: $S=\left\{\left(x_{1}, x_{2}\right): x_{2}=\frac{u_{2}}{u_{1}} x_{1}^{2}\right\}$
We can get this: $S=\{\phi(\mathbf{x})=\mathbf{U z}\}$ with $\phi(\mathbf{x})=\left(x_{1}^{2}, x_{2}\right)^{\top}$
Linear dimensionality reduction in $\phi(\mathbf{x})$ space介
Nonlinear dimensionality reduction in x space
In general, can set $\phi(\mathbf{x})=\left(x_{1}, x_{1}^{2}, x_{1} x_{2}, \sin \left(x_{1}\right), \ldots\right)^{\top}$

Going beyond linearity: quick solution

Broken solution

Desired solution

We want desired solution: $S=\left\{\left(x_{1}, x_{2}\right): x_{2}=\frac{u_{2}}{u_{1}} x_{1}^{2}\right\}$
We can get this: $S=\{\phi(\mathbf{x})=\mathbf{U z}\}$ with $\phi(\mathbf{x})=\left(x_{1}^{2}, x_{2}\right)^{\top}$
Linear dimensionality reduction in $\phi(\mathbf{x})$ space介
Nonlinear dimensionality reduction in x space
In general, can set $\phi(\mathbf{x})=\left(x_{1}, x_{1}^{2}, x_{1} x_{2}, \sin \left(x_{1}\right), \ldots\right)^{\top}$
Problems: (1) ad-hoc and tedious
(2) $\phi(\mathrm{x})$ large, computationally expensive

Towards kernels

Representer theorem:
PCA solution is linear combination of $\mathrm{x}_{i} \mathrm{~s}$

Towards kernels

Representer theorem:
PCA solution is linear combination of $\mathrm{x}_{i} \mathrm{~s}$
Why?
Recall PCA eigenvalue problem: $\mathbf{X X}^{\top} \mathbf{u}=\lambda \mathbf{u}$

Towards kernels

Representer theorem:
PCA solution is linear combination of $\mathrm{x}_{i} \mathrm{~s}$
Why?
Recall PCA eigenvalue problem: $\mathbf{X X}^{\top} \mathbf{u}=\lambda \mathbf{u}$
Notice that $\mathbf{u}=\mathbf{X} \boldsymbol{\alpha}=\sum_{i=1}^{n} \alpha_{i} \mathbf{x}_{i}$ for some weights $\boldsymbol{\alpha}$

Towards kernels

Representer theorem:
PCA solution is linear combination of $\mathrm{x}_{i} \mathrm{~s}$
Why?
Recall PCA eigenvalue problem: $\mathbf{X X}^{\top} \mathbf{u}=\lambda \mathbf{u}$
Notice that $\mathbf{u}=\mathbf{X} \boldsymbol{\alpha}=\sum_{i=1}^{n} \alpha_{i} \mathbf{x}_{i}$ for some weights $\boldsymbol{\alpha}$
Analogy with SVMs: weight vector $\mathbf{w}=\mathbf{X} \alpha$

Towards kernels

Representer theorem:
PCA solution is linear combination of $x_{i} s$
Why?
Recall PCA eigenvalue problem: $\mathbf{X X}^{\top} \mathbf{u}=\lambda \mathbf{u}$
Notice that $\mathbf{u}=\mathbf{X} \boldsymbol{\alpha}=\sum_{i=1}^{n} \alpha_{i} \mathbf{x}_{i}$ for some weights $\boldsymbol{\alpha}$
Analogy with SVMs: weight vector $\mathbf{w}=\mathbf{X} \alpha$
Key fact:
PCA only needs inner products $K=\mathbf{X}^{\top} \mathbf{X}$

Towards kernels

Representer theorem:
PCA solution is linear combination of $\mathrm{x}_{i} \mathrm{~s}$
Why?
Recall PCA eigenvalue problem: $\mathbf{X X}^{\top} \mathbf{u}=\lambda \mathbf{u}$
Notice that $\mathbf{u}=\mathbf{X} \boldsymbol{\alpha}=\sum_{i=1}^{n} \alpha_{i} \mathbf{x}_{i}$ for some weights $\boldsymbol{\alpha}$
Analogy with SVMs: weight vector $\mathbf{w}=\mathbf{X} \alpha$
Key fact:
PCA only needs inner products $K=\mathbf{X}^{\top} \mathbf{X}$
Why?
Use representer theorem on PCA objective:

$$
\max _{\|\mathbf{u}\|=1} \mathbf{u}^{\top} \mathbf{X} \mathbf{X}^{\top} \mathbf{u}=\max _{\boldsymbol{\alpha}^{\top} \mathbf{X}^{\top} \mathbf{X} \boldsymbol{\alpha}=1} \boldsymbol{\alpha}^{\top}\left(\mathbf{X}^{\top} \mathbf{X}\right)\left(\mathbf{X}^{\top} \mathbf{X}\right) \boldsymbol{\alpha}
$$

Kernel PCA

Kernel function: $k\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)$ such that K, the kernel matrix formed by $K_{i j}=k\left(\mathrm{x}_{i}, \mathrm{x}_{j}\right)$, is positive semi-definite

Kernel PCA

Kernel function: $k\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)$ such that K, the kernel matrix formed by $K_{i j}=k\left(\mathrm{x}_{i}, \mathrm{x}_{j}\right)$, is positive semi-definite

Examples:
Linear kernel: $k\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\mathrm{x}_{1}^{\top} \mathrm{x}_{2}$

Kernel PCA

Kernel function: $k\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)$ such that K, the kernel matrix formed by $K_{i j}=k\left(\mathrm{x}_{i}, \mathrm{x}_{j}\right)$, is positive semi-definite

Examples:
Linear kernel: $k\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\mathbf{x}_{1}^{\top} \mathrm{x}_{2}$
Polynomial kernel: $k\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\left(1+\mathbf{x}_{1}^{\top} \mathbf{x}_{2}\right)^{2}$

Kernel PCA

Kernel function: $k\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)$ such that K, the kernel matrix formed by $K_{i j}=k\left(\mathrm{x}_{i}, \mathrm{x}_{j}\right)$, is positive semi-definite

Examples:
Linear kernel: $k\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\mathbf{x}_{1}^{\top} \mathrm{x}_{2}$
Polynomial kernel: $k\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\left(1+\mathbf{x}_{1}^{\top} \mathbf{x}_{2}\right)^{2}$
Gaussian (RBF) kernel: $k\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=e^{-\left\|\mathrm{x}_{1}-\mathrm{x}_{2}\right\|^{2}}$

Kernel PCA

Kernel function: $k\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)$ such that K, the kernel matrix formed by $K_{i j}=k\left(\mathrm{x}_{i}, \mathrm{x}_{j}\right)$, is positive semi-definite

Examples:
Linear kernel: $k\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\mathrm{x}_{1}^{\top} \mathrm{x}_{2}$
Polynomial kernel: $k\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\left(1+\mathbf{x}_{1}^{\top} \mathbf{x}_{2}\right)^{2}$
Gaussian (RBF) kernel: $k\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=e^{-\left\|\mathrm{x}_{1}-\mathrm{x}_{2}\right\|^{2}}$
Treat data points x as black boxes, only access via k

Kernel PCA

Kernel function: $k\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)$ such that K, the kernel matrix formed by $K_{i j}=k\left(\mathrm{x}_{i}, \mathrm{x}_{j}\right)$, is positive semi-definite

Examples:
Linear kernel: $k\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\mathrm{x}_{1}^{\top} \mathrm{x}_{2}$
Polynomial kernel: $k\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\left(1+\mathbf{x}_{1}^{\top} \mathbf{x}_{2}\right)^{2}$
Gaussian (RBF) kernel: $k\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=e^{-\left\|\mathrm{x}_{1}-\mathrm{x}_{2}\right\|^{2}}$
Treat data points x as black boxes, only access via k k intuitively measures "similarity" between two inputs

Kernel PCA

Kernel function: $k\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)$ such that K, the kernel matrix formed by $K_{i j}=k\left(\mathrm{x}_{i}, \mathrm{x}_{j}\right)$, is positive semi-definite
Examples:
Linear kernel: $k\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\mathrm{x}_{1}^{\top} \mathrm{x}_{2}$
Polynomial kernel: $k\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\left(1+\mathbf{x}_{1}^{\top} \mathbf{x}_{2}\right)^{2}$
Gaussian (RBF) kernel: $k\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=e^{-\left\|\mathrm{x}_{1}-\mathrm{x}_{2}\right\|^{2}}$
Treat data points \mathbf{x} as black boxes, only access via k k intuitively measures "similarity" between two inputs
Mercer's theorem (using kernels is sensible)
Exists high-dimensional feature space ϕ such that $k\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\phi\left(\mathrm{x}_{1}\right)^{\top} \phi\left(\mathrm{x}_{2}\right)$ (like quick solution earlier!)

Solving kernel PCA

Direct method:

Kernel PCA objective:

$$
\max _{\boldsymbol{\alpha}^{\top} K \boldsymbol{\alpha}=1} \boldsymbol{\alpha}^{\top} K^{2} \boldsymbol{\alpha}
$$

Solving kernel PCA

Direct method:
Kernel PCA objective:

$$
\max _{\boldsymbol{\alpha}^{\top} K \boldsymbol{\alpha}=1} \boldsymbol{\alpha}^{\top} K^{2} \boldsymbol{\alpha}
$$

\Rightarrow kernel PCA eigenvalue problem: $\mathbf{X}^{\top} \mathbf{X} \boldsymbol{\alpha}=\lambda^{\prime} \boldsymbol{\alpha}$

Solving kernel PCA

Direct method:
Kernel PCA objective:

$$
\max _{\boldsymbol{\alpha}^{\top} K \boldsymbol{\alpha}=1} \boldsymbol{\alpha}^{\top} K^{2} \boldsymbol{\alpha}
$$

\Rightarrow kernel PCA eigenvalue problem: $\mathbf{X}^{\top} \mathbf{X} \boldsymbol{\alpha}=\lambda^{\prime} \boldsymbol{\alpha}$
Modular method (if you don't want to think about kernels):
Find vectors $\mathrm{x}_{1}^{\prime}, \ldots, \mathrm{x}_{n}^{\prime}$ such that

$$
\mathrm{x}_{i}^{\prime \top} \mathrm{x}_{j}^{\prime}=K_{i j}=\phi\left(\mathrm{x}_{i}\right)^{\top} \phi\left(\mathrm{x}_{j}\right)
$$

Solving kernel PCA

Direct method:
Kernel PCA objective:

$$
\max _{\boldsymbol{\alpha}^{\top} K \boldsymbol{\alpha}=1} \boldsymbol{\alpha}^{\top} K^{2} \boldsymbol{\alpha}
$$

\Rightarrow kernel PCA eigenvalue problem: $\mathbf{X}^{\top} \mathbf{X} \boldsymbol{\alpha}=\lambda^{\prime} \boldsymbol{\alpha}$
Modular method (if you don't want to think about kernels):
Find vectors $\mathrm{x}_{1}^{\prime}, \ldots, \mathrm{x}_{n}^{\prime}$ such that

$$
\mathrm{x}_{i}^{\prime \top} \mathrm{x}_{j}^{\prime}=K_{i j}=\phi\left(\mathrm{x}_{i}\right)^{\top} \phi\left(\mathrm{x}_{j}\right)
$$

Key: use any vectors that preserve inner products

Solving kernel PCA

Direct method:
Kernel PCA objective:

$$
\max _{\boldsymbol{\alpha}^{\top} K \boldsymbol{\alpha}=1} \boldsymbol{\alpha}^{\top} K^{2} \boldsymbol{\alpha}
$$

\Rightarrow kernel PCA eigenvalue problem: $\mathbf{X}^{\top} \mathbf{X} \boldsymbol{\alpha}=\lambda^{\prime} \boldsymbol{\alpha}$
Modular method (if you don't want to think about kernels):
Find vectors $\mathrm{x}_{1}^{\prime}, \ldots, \mathrm{x}_{n}^{\prime}$ such that

$$
\mathrm{x}_{i}^{\prime \top} \mathrm{x}_{j}^{\prime}=K_{i j}=\phi\left(\mathrm{x}_{i}\right)^{\top} \phi\left(\mathrm{x}_{j}\right)
$$

Key: use any vectors that preserve inner products
One possibility is Cholesky decomposition $K=\mathbf{X}^{\top} \mathbf{X}$

Roadmap

- Principal component analysis (PCA)
- Basic principles
- Case studies
- Kernel PCA
- Probabilistic PCA
- Canonical correlation analysis (CCA)
- Fisher discriminant analysis (FDA)
- Summary

Probabilistic modeling

So far, deal with objective functions: $\min _{\mathrm{U}} f(\mathbf{X}, \mathbf{U})$

Probabilistic modeling

So far, deal with objective functions:

$$
\min _{\mathbf{U}} f(\mathbf{X}, \mathbf{U})
$$

Probabilistic modeling:

$$
\max _{\mathbf{U}} p(\mathbf{X} \mid \mathbf{U})
$$

Probabilistic modeling

So far, deal with objective functions:

Probabilistic modeling:

$$
\max _{\mathrm{U}} p(\mathbf{X} \mid \mathbf{U})
$$

Invent a generative story of how data \mathbf{X} arose Play detective: infer parameters \mathbf{U} that produced \mathbf{X}

Probabilistic modeling

So far, deal with objective functions: $\min _{\mathrm{U}} f(\mathbf{X}, \mathbf{U})$
Probabilistic modeling:

$$
\max _{\mathrm{U}} p(\mathbf{X} \mid \mathbf{U})
$$

Invent a generative story of how data \mathbf{X} arose Play detective: infer parameters \mathbf{U} that produced \mathbf{X}

Advantages:

- Model reports estimates of uncertainty
- Natural way to handle missing data

Probabilistic modeling

So far, deal with objective functions:

$$
\min _{\mathbf{U}} f(\mathbf{X}, \mathbf{U})
$$

Probabilistic modeling:

$$
\max _{\mathbf{U}} p(\mathbf{X} \mid \mathbf{U})
$$

Invent a generative story of how data \mathbf{X} arose
Play detective: infer parameters \mathbf{U} that produced \mathbf{X}
Advantages:

- Model reports estimates of uncertainty
- Natural way to handle missing data
- Natural way to introduce prior knowledge
- Natural way to incorporate in a larger model

Probabilistic modeling

So far, deal with objective functions:

$$
\min _{\mathbf{U}} f(\mathbf{X}, \mathbf{U})
$$

Probabilistic modeling:

$$
\max _{\mathbf{U}} p(\mathbf{X} \mid \mathbf{U})
$$

Invent a generative story of how data \mathbf{X} arose
Play detective: infer parameters \mathbf{U} that produced \mathbf{X}
Advantages:

- Model reports estimates of uncertainty
- Natural way to handle missing data
- Natural way to introduce prior knowledge
- Natural way to incorporate in a larger model

Example from last lecture: k-means \Rightarrow GMMs

Probabilistic PCA

Generative story [Tipping and Bishop, 1999]:
For each data point $i=1, \ldots, n$:

Probabilistic PCA

Generative story [Tipping and Bishop, 1999]:
For each data point $i=1, \ldots, n$:
Draw the latent vector: $\mathbf{z}_{i} \sim \mathcal{N}\left(0, I_{k \times k}\right)$

Probabilistic PCA

Generative story [Tipping and Bishop, 1999]:
For each data point $i=1, \ldots, n$:
Draw the latent vector: $\mathbf{z}_{i} \sim \mathcal{N}\left(0, I_{k \times k}\right)$
Create the data point: $\mathrm{x}_{i} \sim \mathcal{N}\left(\mathrm{Uz}_{i}, \sigma^{2} I_{d \times d}\right)$

Probabilistic PCA

Generative story [Tipping and Bishop, 1999]:
For each data point $i=1, \ldots, n$:
Draw the latent vector: $\mathbf{z}_{i} \sim \mathcal{N}\left(0, I_{k \times k}\right)$
Create the data point: $\mathbf{x}_{i} \sim \mathcal{N}\left(\mathrm{Uz}_{i}, \sigma^{2} I_{d \times d}\right)$
PCA finds the U that maximizes the likelihood of the data

Probabilistic PCA

Generative story [Tipping and Bishop, 1999]:
For each data point $i=1, \ldots, n$:
Draw the latent vector: $\mathbf{z}_{i} \sim \mathcal{N}\left(0, I_{k \times k}\right)$
Create the data point: $\mathrm{x}_{i} \sim \mathcal{N}\left(\mathrm{Uz}_{i}, \sigma^{2} I_{d \times d}\right)$
PCA finds the U that maximizes the likelihood of the data
Advantages:

- Handles missing data (important for collaborative filtering)

Probabilistic PCA

Generative story [Tipping and Bishop, 1999]:
For each data point $i=1, \ldots, n$:
Draw the latent vector: $\mathbf{z}_{i} \sim \mathcal{N}\left(0, I_{k \times k}\right)$
Create the data point: $\mathbf{x}_{i} \sim \mathcal{N}\left(\mathrm{Uz}_{i}, \sigma^{2} I_{d \times d}\right)$
PCA finds the U that maximizes the likelihood of the data
Advantages:

- Handles missing data (important for collaborative filtering)
- Extension to factor analysis: allow non-isotropic noise (replace $\sigma^{2} I_{d \times d}$ with arbitrary diagonal matrix)

Probabilistic latent semantic analysis (pLSA)

Motivation: in text analysis, \mathbf{X} contains word counts; PCA (LSA) is bad model as it allows negative counts; pLSA fixes this

Probabilistic latent semantic analysis (pLSA)

Motivation: in text analysis, \mathbf{X} contains word counts; PCA (LSA) is bad model as it allows negative counts; pLSA fixes this Generative story for pLSA [Hofmann, 1999]:

For each document $i=1, \ldots, n$:

Probabilistic latent semantic analysis (pLSA)

Motivation: in text analysis, \mathbf{X} contains word counts; PCA (LSA) is bad model as it allows negative counts; pLSA fixes this Generative story for pLSA [Hofmann, 1999]:

For each document $i=1, \ldots, n$:
Repeat M times (number of word tokens in document):

Probabilistic latent semantic analysis (pLSA)

Motivation: in text analysis, \mathbf{X} contains word counts; PCA (LSA) is bad model as it allows negative counts; pLSA fixes this Generative story for pLSA [Hofmann, 1999]:

For each document $i=1, \ldots, n$:
Repeat M times (number of word tokens in document):
Draw a latent topic: $\mathbf{z} \sim p(\mathbf{z} \mid i)$

Probabilistic latent semantic analysis (pLSA)

Motivation: in text analysis, \mathbf{X} contains word counts; PCA (LSA) is bad model as it allows negative counts; pLSA fixes this Generative story for pLSA [Hofmann, 1999]:

For each document $i=1, \ldots, n$:
Repeat M times (number of word tokens in document):
Draw a latent topic: $\mathbf{z} \sim p(\mathbf{z} \mid i)$
Choose the word token: $\mathbf{x} \sim p(\mathbf{x} \mid \mathbf{z})$

Probabilistic latent semantic analysis (pLSA)

Motivation: in text analysis, \mathbf{X} contains word counts; PCA (LSA) is bad model as it allows negative counts; pLSA fixes this Generative story for pLSA [Hofmann, 1999]:

For each document $i=1, \ldots, n$:
Repeat M times (number of word tokens in document):
Draw a latent topic: $\mathbf{z} \sim p(\mathbf{z} \mid i)$
Choose the word token: $\mathbf{x} \sim p(\mathbf{x} \mid \mathbf{z})$
Set $\mathrm{x}_{j i}$ to be the number of times word j was chosen

Probabilistic latent semantic analysis (pLSA)

Motivation: in text analysis, \mathbf{X} contains word counts; PCA (LSA) is bad model as it allows negative counts; pLSA fixes this Generative story for pLSA [Hofmann, 1999]:

For each document $i=1, \ldots, n$:
Repeat M times (number of word tokens in document):
Draw a latent topic: $\mathbf{z} \sim p(\mathbf{z} \mid i)$
Choose the word token: $\mathbf{x} \sim p(\mathbf{x} \mid \mathbf{z})$
Set $\mathrm{x}_{j i}$ to be the number of times word j was chosen
Learning using Hard EM (analog of k-means):
E-step: fix parameters, choose best topics
M-step: fix topics, optimize parameters
More sophisticated methods: EM, Latent Dirichlet Allocation

Probabilistic latent semantic analysis (pLSA)

Motivation: in text analysis, \mathbf{X} contains word counts; PCA (LSA) is bad model as it allows negative counts; pLSA fixes this Generative story for pLSA [Hofmann, 1999]:

For each document $i=1, \ldots, n$:
Repeat M times (number of word tokens in document):
Draw a latent topic: $\mathbf{z} \sim p(\mathbf{z} \mid i)$
Choose the word token: $\mathbf{x} \sim p(\mathbf{x} \mid \mathbf{z})$
Set $\mathrm{x}_{j i}$ to be the number of times word j was chosen
Learning using Hard EM (analog of k-means):
E-step: fix parameters, choose best topics M-step: fix topics, optimize parameters
More sophisticated methods: EM, Latent Dirichlet Allocation Comparison to a mixture model for clustering:
Mixture model: assume a single topic for entire document pLSA: allow multiple topics per document

Roadmap

- Principal component analysis (PCA)
- Basic principles
- Case studies
- Kernel PCA
- Probabilistic PCA
- Canonical correlation analysis (CCA)
- Fisher discriminant analysis (FDA)
- Summary

Motivation for CCA [Hotelling, 1936]

Often, each data point consists of two views:

- Image retrieval: for each image, have the following:
-x : Pixels (or other visual features)
-y : Text around the image

Motivation for CCA [Hotelling, 1936]

Often, each data point consists of two views:

- Image retrieval: for each image, have the following:
-x : Pixels (or other visual features)
-y : Text around the image
- Time series:
- x: Signal at time t
- y: Signal at time $t+1$

Motivation for CCA [Hotelling, 1936]

Often, each data point consists of two views:

- Image retrieval: for each image, have the following:
-x : Pixels (or other visual features)
-y : Text around the image
- Time series:
- x: Signal at time t
- y: Signal at time $t+1$
- Two-view learning: divide features into two sets
-x : Features of a word/object, etc.
$-\mathbf{y}$: Features of the context in which it appears

Motivation for CCA [Hotelling, 1936]

Often, each data point consists of two views:

- Image retrieval: for each image, have the following:
-x : Pixels (or other visual features)
-y : Text around the image
- Time series:
- x : Signal at time t
- y: Signal at time $t+1$
- Two-view learning: divide features into two sets
-x : Features of a word/object, etc.
$-\mathbf{y}$: Features of the context in which it appears
Goal: reduce the dimensionality of the two views jointly

An example

Setup:

Input data: $\left(\mathbf{x}_{1}, \mathbf{y}_{1}\right), \ldots,\left(\mathbf{x}_{n}, \mathbf{y}_{n}\right)$ (matrices $\left.\mathbf{X}, \mathbf{Y}\right)$
Goal: find pair of projections (\mathbf{u}, v)

An example

Setup:
Input data: $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right), \ldots,\left(\mathrm{x}_{n}, \mathbf{y}_{n}\right)$ (matrices $\left.\mathbf{X}, \mathbf{Y}\right)$
Goal: find pair of projections (\mathbf{u}, v)
In figure, \mathbf{x} and \mathbf{y} are paired by brightness

An example

Setup:
Input data: $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right), \ldots,\left(\mathrm{x}_{n}, \mathbf{y}_{n}\right)$ (matrices $\left.\mathbf{X}, \mathbf{Y}\right)$
Goal: find pair of projections (\mathbf{u}, v)
In figure, \mathbf{x} and \mathbf{y} are paired by brightness
Dimensionality reduction solutions:

Independent

An example

Setup:
Input data: $\left(\mathbf{x}_{1}, \mathbf{y}_{1}\right), \ldots,\left(\mathbf{x}_{n}, \mathbf{y}_{n}\right)$ (matrices $\left.\mathbf{X}, \mathbf{Y}\right)$
Goal: find pair of projections (\mathbf{u}, v)
In figure, \mathbf{x} and \mathbf{y} are paired by brightness
Dimensionality reduction solutions:

Independent

Joint

From PCA to CCA

PCA on views separately: no covariance term

$$
\max _{\mathbf{u}, \mathbf{v}} \frac{\mathbf{u}^{\top} \mathbf{X} \mathbf{X}^{\top} \mathbf{u}}{\mathbf{u}^{\top} \mathbf{u}}+\frac{\mathbf{v}^{\top} \mathbf{Y} \mathbf{Y}^{\top} \mathbf{v}}{\mathbf{v}^{\top} \mathbf{v}}
$$

From PCA to CCA

PCA on views separately: no covariance term

$$
\max _{\mathbf{u}, \mathbf{v}} \frac{\mathbf{u}^{\top} \mathbf{X} \mathbf{X}^{\top} \mathbf{u}}{\mathbf{u}^{\top} \mathbf{u}}+\frac{\mathbf{v}^{\top} \mathbf{Y} \mathbf{Y}^{\top} \mathbf{v}}{\mathbf{v}^{\top} \mathbf{v}}
$$

PCA on concatenation $\left(\mathbf{X}^{\top}, \mathbf{Y}^{\top}\right)^{\top}$: includes covariance term $\max _{\mathbf{u}, \mathbf{v}} \frac{\mathbf{u}^{\top} \mathbf{X} \mathbf{X}^{\top} \mathbf{u}+2 \mathbf{u}^{\top} \mathbf{X} \mathbf{Y}^{\top} \mathbf{v}+\mathbf{v}^{\top} \mathbf{Y} \mathbf{Y}^{\top} \mathbf{v}}{\mathbf{u}^{\top} \mathbf{u}+\mathbf{v}^{\top} \mathbf{v}}$

From PCA to CCA

PCA on views separately: no covariance term

$$
\max _{\mathbf{u}, \mathbf{v}} \frac{\mathbf{u}^{\top} \mathbf{X} \mathbf{X}^{\top} \mathbf{u}}{\mathbf{u}^{\top} \mathbf{u}}+\frac{\mathbf{v}^{\top} \mathbf{Y} \mathbf{Y}^{\top} \mathbf{v}}{\mathbf{v}^{\top} \mathbf{v}}
$$

PCA on concatenation $\left(\mathbf{X}^{\top}, \mathbf{Y}^{\top}\right)^{\top}$: includes covariance term

$$
\max _{\mathbf{u}, \mathbf{v}} \frac{\mathbf{u}^{\top} \mathbf{X} \mathbf{X}^{\top} \mathbf{u}+2 \mathbf{u}^{\top} \mathbf{X} \mathbf{Y}^{\top} \mathbf{v}+\mathbf{v}^{\top} \mathbf{Y} \mathbf{Y}^{\top} \mathbf{v}}{\mathbf{u}^{\top} \mathbf{u}+\mathbf{v}^{\top} \mathbf{v}}
$$

Maximum covariance: drop variance terms

$$
\max _{\mathbf{u}, \mathbf{v}} \frac{\mathbf{u}^{\top} \mathbf{X} \mathbf{Y}^{\top} \mathbf{v}}{\sqrt{\mathbf{u}^{\top} \mathbf{u}} \sqrt{\mathbf{v}^{\top} \mathbf{v}}}
$$

From PCA to CCA

PCA on views separately: no covariance term

$$
\max _{\mathbf{u}, \mathbf{v}} \frac{\mathbf{u}^{\top} \mathbf{X} \mathbf{X}^{\top} \mathbf{u}}{\mathbf{u}^{\top} \mathbf{u}}+\frac{\mathbf{v}^{\top} \mathbf{Y} \mathbf{Y}^{\top} \mathbf{v}}{\mathbf{v}^{\top} \mathbf{v}}
$$

PCA on concatenation $\left(\mathbf{X}^{\top}, \mathbf{Y}^{\top}\right)^{\top}$: includes covariance term

$$
\max _{\mathbf{u}, \mathbf{v}} \frac{\mathbf{u}^{\top} \mathbf{X} \mathbf{X}^{\top} \mathbf{u}+2 \mathbf{u}^{\top} \mathbf{X} \mathbf{Y}^{\top} \mathbf{v}+\mathbf{v}^{\top} \mathbf{Y} \mathbf{Y}^{\top} \mathbf{v}}{\mathbf{u}^{\top} \mathbf{u}+\mathbf{v}^{\top} \mathbf{v}}
$$

Maximum covariance: drop variance terms

$$
\max _{\mathbf{u}, \mathbf{v}} \frac{\mathbf{u}^{\top} \mathbf{X} \mathbf{Y}^{\top} \mathbf{v}}{\sqrt{\mathbf{u}^{\top} \mathbf{u}} \sqrt{\mathbf{v}^{\top} \mathbf{v}}}
$$

Maximum correlation (CCA): divide out variance terms

$$
\max _{\mathbf{u}, \mathbf{v}} \frac{\mathbf{u}^{\top} \mathbf{X} \mathbf{Y}^{\top} \mathbf{v}}{\sqrt{\mathbf{u}^{\top} \mathbf{X} \mathbf{X}^{\top} \mathbf{u}} \sqrt{\mathbf{v}^{\top} \mathbf{Y} \mathbf{Y}^{\top} \mathbf{v}}}
$$

Canonical correlation analysis (CCA)

Definitions:
Variance: $\widehat{\operatorname{var}}\left(\mathbf{u}^{\top} \mathbf{x}\right)=\mathbf{u}^{\top} \mathbf{X} \mathbf{X}^{\top} \mathbf{u}$

Canonical correlation analysis (CCA)

Definitions:
Variance: $\widehat{\operatorname{var}}\left(\mathbf{u}^{\top} \mathbf{x}\right)=\mathbf{u}^{\top} \mathbf{X} \mathbf{X}^{\top} \mathbf{u}$
Covariance: $\widehat{\operatorname{cov}}\left(\mathbf{u}^{\top} \mathbf{x}, \mathbf{v}^{\top} \mathbf{y}\right)=\mathbf{u}^{\top} \mathbf{X} \mathbf{Y}^{\top} \mathbf{v}$

Canonical correlation analysis (CCA)

Definitions:
Variance: $\widehat{\operatorname{var}}\left(\mathbf{u}^{\top} \mathbf{x}\right)=\mathbf{u}^{\top} \mathbf{X} \mathbf{X}^{\top} \mathbf{u}$
Covariance: $\widehat{\operatorname{cov}}\left(\mathbf{u}^{\top} \mathbf{x}, \mathbf{v}^{\top} \mathbf{y}\right)=\mathbf{u}^{\top} \mathbf{X} \mathbf{Y}^{\top} \mathbf{v}$
Correlation: $\frac{\widehat{\operatorname{cov}}\left(u^{\top} x, v^{\top} y\right)}{\sqrt{\widehat{\operatorname{var}(}\left(u^{\top} x\right)} \sqrt{\operatorname{\operatorname {var}}\left(v^{\top} y\right)}}$

Canonical correlation analysis (CCA)

Definitions:
Variance: $\widehat{\operatorname{var}}\left(\mathbf{u}^{\top} \mathbf{x}\right)=\mathbf{u}^{\top} \mathbf{X} \mathbf{X}^{\top} \mathbf{u}$
Covariance: $\widehat{\operatorname{cov}}\left(\mathbf{u}^{\top} \mathbf{x}, \mathrm{v}^{\top} \mathbf{y}\right)=\mathbf{u}^{\top} \mathbf{X} \mathbf{Y}^{\top} \mathbf{v}$
Correlation: $\frac{\widehat{\operatorname{cov}\left(u^{\top} x, v^{\top} y\right)}}{\sqrt{\sqrt[\operatorname{Var}]{ }\left(u^{\top} x\right)} \sqrt{\widehat{\operatorname{Var}}\left(\mathrm{v}^{\top} y\right)}}$
Objective: maximize correlation between projected views

$$
\max _{\mathbf{u}, \mathbf{v}} \widehat{\operatorname{corr}}\left(\mathbf{u}^{\top} \mathbf{x}, \mathbf{v}^{\top} \mathbf{y}\right)
$$

Canonical correlation analysis (CCA)

Definitions:
Variance: $\widehat{\operatorname{var}}\left(\mathbf{u}^{\top} \mathbf{x}\right)=\mathbf{u}^{\top} \mathbf{X} \mathbf{X}^{\top} \mathbf{u}$
Covariance: $\widehat{\operatorname{cov}}\left(\mathbf{u}^{\top} \mathbf{x}, \mathbf{v}^{\top} \mathbf{y}\right)=\mathbf{u}^{\top} \mathbf{X} \mathbf{Y}^{\top} \mathbf{v}$
Correlation: $\frac{\widehat{\operatorname{cov}}\left(u^{\top} x, v^{\top} y\right)}{\sqrt{\sqrt[\operatorname{Var}]{ }\left(u^{\top} \mathrm{x}\right)} \sqrt{\widehat{\operatorname{Var}}\left(\mathrm{v}^{\top} \mathrm{y}\right)}}$
Objective: maximize correlation between projected views

$$
\max _{\mathbf{u}, \mathbf{v}} \widehat{\operatorname{corr}}\left(\mathbf{u}^{\top} \mathbf{x}, \mathbf{v}^{\top} \mathbf{y}\right)
$$

Properties:

- Focus on how variables are related, not how much they vary

Canonical correlation analysis (CCA)

Definitions:
Variance: $\widehat{\operatorname{var}}\left(\mathbf{u}^{\top} \mathbf{x}\right)=\mathbf{u}^{\top} \mathbf{X} \mathbf{X}^{\top} \mathbf{u}$
Covariance: $\widehat{\operatorname{cov}}\left(\mathbf{u}^{\top} \mathbf{x}, \mathbf{v}^{\top} \mathbf{y}\right)=\mathbf{u}^{\top} \mathbf{X} \mathbf{Y}^{\top} \mathbf{v}$
Correlation: $\frac{\widehat{\operatorname{Cov}\left(u^{\top} x, v^{\top} y\right)}}{\sqrt{\sqrt[\operatorname{Var}]{ }\left(u^{\top} \mathrm{x}\right)} \sqrt{\widehat{\operatorname{Var}}\left(\mathrm{v}^{\top} \mathrm{y}\right)}}$
Objective: maximize correlation between projected views

$$
\max _{\mathbf{u}, \mathbf{v}} \widehat{\operatorname{corr}}\left(\mathbf{u}^{\top} \mathbf{x}, \mathbf{v}^{\top} \mathbf{y}\right)
$$

Properties:

- Focus on how variables are related, not how much they vary
- Invariant to any rotation and scaling of data

Canonical correlation analysis (CCA)

Definitions:
Variance: $\widehat{\operatorname{var}}\left(\mathbf{u}^{\top} \mathbf{x}\right)=\mathbf{u}^{\top} \mathbf{X} \mathbf{X}^{\top} \mathbf{u}$
Covariance: $\widehat{\operatorname{cov}}\left(\mathbf{u}^{\top} \mathbf{x}, \mathbf{v}^{\top} \mathbf{y}\right)=\mathbf{u}^{\top} \mathbf{X} \mathbf{Y}^{\top} \mathbf{v}$
Correlation: $\frac{\widehat{\operatorname{Cov}\left(u^{\top} x, v^{\top} y\right)}}{\sqrt{\sqrt[\operatorname{Var}]{ }\left(u^{\top} \mathrm{x}\right)} \sqrt{\widehat{\operatorname{Var}}\left(\mathrm{v}^{\top} \mathrm{y}\right)}}$
Objective: maximize correlation between projected views

$$
\max _{\mathbf{u}, \mathbf{v}} \widehat{\operatorname{corr}}\left(\mathbf{u}^{\top} \mathbf{x}, \mathbf{v}^{\top} \mathbf{y}\right)
$$

Properties:

- Focus on how variables are related, not how much they vary
- Invariant to any rotation and scaling of data

Solved via a generalized eigenvalue problem $(A \mathbf{w}=\lambda B \mathbf{w})$

Regularization is important

Extreme examples of degeneracy:

- If $\mathrm{x}=A \mathrm{y}$, then any (u, v) with $\mathrm{u}=A \mathrm{v}$ is optimal (correlation 1)

Regularization is important

Extreme examples of degeneracy:

- If $\mathrm{x}=A \mathrm{y}$, then any (u, v) with $\mathrm{u}=A \mathrm{v}$ is optimal (correlation 1)
- If x and y are independent, then any (u, v) is optimal (correlation 0)

Regularization is important

Extreme examples of degeneracy:

- If $\mathrm{x}=A \mathrm{y}$, then any (u, v) with $\mathrm{u}=A \mathrm{v}$ is optimal (correlation 1)
- If x and y are independent, then any (u, v) is optimal (correlation 0)
Problem: if \mathbf{X} or \mathbf{Y} has rank n, then any (\mathbf{u}, \mathbf{v}) is optimal (correlation 1) with $\mathbf{u}=\mathbf{X}^{\dagger \top} \mathbf{Y} v \Rightarrow$ CCA is meaningless!

Regularization is important

Extreme examples of degeneracy:

- If $\mathrm{x}=A \mathrm{y}$, then any (u, v) with $\mathrm{u}=A \mathrm{v}$ is optimal (correlation 1)
- If x and y are independent, then any (u, v) is optimal (correlation 0)
Problem: if \mathbf{X} or \mathbf{Y} has rank n, then any (\mathbf{u}, \mathbf{v}) is optimal (correlation 1) with $\mathbf{u}=\mathbf{X}^{\dagger \top} \mathbf{Y} \mathbf{v} \Rightarrow$ CCA is meaningless!
Solution: regularization (interpolate between maximum covariance and maximum correlation)

$$
\max _{\mathbf{u}, \mathbf{v}} \frac{\mathbf{u}^{\top} \mathbf{X} \mathbf{Y}^{\top} \mathbf{v}}{\left.\sqrt{\mathbf{u}^{\top}(\mathbf{X X}}{ }^{\top}+\lambda I\right) \mathbf{u}} \sqrt{\mathbf{v}^{\top}\left(\mathbf{Y} \mathbf{Y}^{\top}+\lambda I\right) \mathbf{v}}
$$

Kernel CCA

Two kernels: k_{x} and k_{y}

Kernel CCA

Two kernels: k_{x} and k_{y} Direct method: (some math)

Kernel CCA

Two kernels: k_{x} and k_{y} Direct method: (some math)

Modular method:

1. Transform x_{i} into $\mathrm{x}_{i}^{\prime} \in \mathbb{R}^{n}$ satisfying $k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\mathbf{x}_{i}^{\prime \top} \mathbf{x}_{j}^{\prime}$ (do same for \mathbf{y})

Kernel CCA

Two kernels: k_{x} and k_{y} Direct method:
(some math)
Modular method:

1. Transform x_{i} into $\mathrm{x}_{i}^{\prime} \in \mathbb{R}^{n}$ satisfying $k\left(\mathrm{x}_{i}, \mathrm{x}_{j}\right)=\mathrm{x}_{i}^{\prime \top} \mathrm{x}_{j}^{\prime}$ (do same for \mathbf{y})
2. Perform regular CCA

Kernel CCA

Two kernels: k_{x} and k_{y}
Direct method:
(some math)
Modular method:

1. Transform x_{i} into $\mathrm{x}_{i}^{\prime} \in \mathbb{R}^{n}$ satisfying $k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\mathbf{x}_{i}^{\prime \top} \mathbf{x}_{j}^{\prime}$ (do same for \mathbf{y})
2. Perform regular CCA

Regularization is especially important for kernel CCA!

Roadmap

- Principal component analysis (PCA)
- Basic principles
- Case studies
- Kernel PCA
- Probabilistic PCA
- Canonical correlation analysis (CCA)
- Fisher discriminant analysis (FDA)
- Summary

Motivation for FDA [Fisher, 1936]

What is the best linear projection?

Motivation for FDA [Fisher, 1936]

What is the best linear projection?

Motivation for FDA [Fisher, 1936]

What is the best linear projection with these labels?

Motivation for FDA [Fisher, 1936]

What is the best linear projection with these labels?

Motivation for FDA [Fisher, 1936]

What is the best linear projection with these labels?

PCA solution

FDA solution

Goal: reduce the dimensionality given labels
Idea: want projection to maximize overall interclass variance relative to intraclass variance

Motivation for FDA [Fisher, 1936]

What is the best linear projection with these labels?

PCA solution

FDA solution

Goal: reduce the dimensionality given labels
Idea: want projection to maximize overall interclass variance relative to intraclass variance
Linear classifiers (logistic regression, SVMs) have similar feel:
Find one-dimensional subspace \mathbf{w},
e.g., to maximize margin between different classes

Motivation for FDA [Fisher, 1936]

What is the best linear projection with these labels?

PCA solution

FDA solution

Goal: reduce the dimensionality given labels
Idea: want projection to maximize overall interclass variance relative to intraclass variance
Linear classifiers (logistic regression, SVMs) have similar feel:
Find one-dimensional subspace w,
e.g., to maximize margin between different classes

FDA handles multiple classes, allows multiple dimensions

FDA objective function

Setup: $\mathbf{x}_{i} \in \mathbb{R}^{d}, y_{i} \in\{1, \ldots, m\}$, for $i=1, \ldots, n$

FDA objective function

Setup: $\mathbf{x}_{i} \in \mathbb{R}^{d}, y_{i} \in\{1, \ldots, m\}$, for $i=1, \ldots, n$

Objective: maximize $\frac{\text { interclass variance }}{\text { intraclass variance }}=\frac{\text { total variance }}{\text { intraclass variance }}-1$

FDA objective function

Setup: $\mathbf{x}_{i} \in \mathbb{R}^{d}, y_{i} \in\{1, \ldots, m\}$, for $i=1, \ldots, n$
Objective: maximize $\frac{\text { interclass variance }}{\text { intraclass variance }}=\frac{\text { total variance }}{\text { intraclass variance }}-1$
Total variance: $\frac{1}{n} \sum_{i}\left(\mathbf{u}^{\top}\left(\mathbf{x}_{i}-\mu\right)\right)^{2}$
Mean of all points: $\mu=\frac{1}{n} \sum_{i} \mathrm{x}_{i}$

FDA objective function

Setup: $\mathbf{x}_{i} \in \mathbb{R}^{d}, y_{i} \in\{1, \ldots, m\}$, for $i=1, \ldots, n$
Objective: maximize $\frac{\text { interclass variance }}{\text { intraclass variance }}=\frac{\text { total variance }}{\text { intraclass variance }}-1$
Total variance: $\frac{1}{n} \sum_{i}\left(\mathbf{u}^{\top}\left(\mathbf{x}_{i}-\mu\right)\right)^{2}$
Mean of all points: $\mu=\frac{1}{n} \sum_{i} \mathrm{x}_{i}$
Intraclass variance: $\frac{1}{n} \sum_{i}\left(\mathbf{u}^{\top}\left(\mathbf{x}_{i}-\mu_{\mathbf{y}_{i}}\right)\right)^{2}$
Mean of points in class $y: \mu_{y}=\frac{1}{\left|\left\{i: y_{i}=y\right\}\right|} \sum_{i: y_{i}=y} \mathbf{x}_{i}$

FDA objective function

Setup: $\mathbf{x}_{i} \in \mathbb{R}^{d}, y_{i} \in\{1, \ldots, m\}$, for $i=1, \ldots, n$
Objective: maximize $\frac{\text { interclass variance }}{\text { intraclass variance }}=\frac{\text { total variance }}{\text { intraclass variance }}-1$
Total variance: $\frac{1}{n} \sum_{i}\left(\mathbf{u}^{\top}\left(\mathbf{x}_{i}-\mu\right)\right)^{2}$
Mean of all points: $\mu=\frac{1}{n} \sum_{i} \mathrm{x}_{i}$
Intraclass variance: $\frac{1}{n} \sum_{i}\left(\mathbf{u}^{\top}\left(\mathbf{x}_{i}-\mu_{\mathbf{y}_{i}}\right)\right)^{2}$
Mean of points in class $y: \mu_{y}=\frac{1}{\left|\left\{i: y_{i}=y\right\}\right|} \sum_{i: y_{i}=y} \mathbf{x}_{i}$
Reduces to a generalized eigenvalue problem.

FDA objective function

Setup: $\mathbf{x}_{i} \in \mathbb{R}^{d}, y_{i} \in\{1, \ldots, m\}$, for $i=1, \ldots, n$
Objective: maximize $\frac{\text { interclass variance }}{\text { intraclass variance }}=\frac{\text { total variance }}{\text { intraclass variance }}-1$
Total variance: $\frac{1}{n} \sum_{i}\left(\mathbf{u}^{\top}\left(\mathbf{x}_{i}-\mu\right)\right)^{2}$
Mean of all points: $\mu=\frac{1}{n} \sum_{i} \mathrm{x}_{i}$
Intraclass variance: $\frac{1}{n} \sum_{i}\left(\mathbf{u}^{\top}\left(\mathbf{x}_{i}-\mu_{\mathbf{y}_{i}}\right)\right)^{2}$
Mean of points in class $y: \mu_{y}=\frac{1}{\left|\left\{i: y_{i}=y\right\}\right|} \sum_{i: y_{i}=y} \mathbf{x}_{i}$
Reduces to a generalized eigenvalue problem.
Kernel FDA: use modular method

Other linear methods

Random projections:
Randomly project data onto $k=O(\log n)$ dimensions

Other linear methods

Random projections:
Randomly project data onto $k=O(\log n)$ dimensions All pairwise distances preserved with high probability

$$
\left\|\mathbf{U}^{\top} \mathbf{x}_{i}-\mathbf{U}^{\top} \mathbf{x}_{j}\right\|^{2} \approx\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2} \text { for all } i, j
$$

Other linear methods

Random projections:
Randomly project data onto $k=O(\log n)$ dimensions All pairwise distances preserved with high probability

$$
\left\|\mathbf{U}^{\top} \mathbf{x}_{i}-\mathbf{U}^{\top} \mathbf{x}_{j}\right\|^{2} \approx\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2} \text { for all } i, j
$$

Trivial to implement

Other linear methods

Random projections:
Randomly project data onto $k=O(\log n)$ dimensions
All pairwise distances preserved with high probability

$$
\left\|\mathbf{U}^{\top} \mathbf{x}_{i}-\mathbf{U}^{\top} \mathbf{x}_{j}\right\|^{2} \cong\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2} \text { for all } i, j
$$

Trivial to implement
Kernel dimensionality reduction:
One type of sufficient dimensionality reduction
Find subspace that contains all information about labels

Other linear methods

Random projections:
Randomly project data onto $k=O(\log n)$ dimensions
All pairwise distances preserved with high probability

$$
\left\|\mathbf{U}^{\top} \mathbf{x}_{i}-\mathbf{U}^{\top} \mathbf{x}_{j}\right\|^{2} \approx\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2} \text { for all } i, j
$$

Trivial to implement
Kernel dimensionality reduction:
One type of sufficient dimensionality reduction
Find subspace that contains all information about labels

$$
\mathbf{y} \Perp \mathrm{x} \mid \mathrm{U}^{\top} \mathrm{x}
$$

Other linear methods

Random projections:
Randomly project data onto $k=O(\log n)$ dimensions
All pairwise distances preserved with high probability

$$
\left\|\mathbf{U}^{\top} \mathbf{x}_{i}-\mathbf{U}^{\top} \mathbf{x}_{j}\right\|^{2} \approx\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2} \text { for all } i, j
$$

Trivial to implement
Kernel dimensionality reduction:
One type of sufficient dimensionality reduction
Find subspace that contains all information about labels

$$
\mathrm{y} \Perp \mathrm{x} \mid \mathrm{U}^{\top} \mathrm{x}
$$

Capturing information is stronger than capturing variance

Other linear methods

Random projections:
Randomly project data onto $k=O(\log n)$ dimensions
All pairwise distances preserved with high probability

$$
\left\|\mathbf{U}^{\top} \mathbf{x}_{i}-\mathbf{U}^{\top} \mathbf{x}_{j}\right\|^{2} \cong\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2} \text { for all } i, j
$$

Trivial to implement
Kernel dimensionality reduction:
One type of sufficient dimensionality reduction
Find subspace that contains all information about labels

$$
\mathrm{y} \Perp \mathrm{x} \mid \mathrm{U}^{\top} \mathrm{x}
$$

Capturing information is stronger than capturing variance Hard nonconvex optimization problem

Summary

Framework: $\mathbf{z}=\mathbf{U}^{\top} \mathbf{x}, \mathbf{x} \cong \mathbf{U z}$

Summary

Framework: $\mathbf{z}=\mathbf{U}^{\top} \mathbf{x}, \mathbf{x} \approx \mathbf{U z}$
Criteria for choosing U:

- PCA: maximize projected variance
- CCA: maximize projected correlation
- FDA: maximize projected $\frac{\text { interclass variance }}{\text { intraclass variance }}$

Summary

Framework: $\mathbf{z}=\mathbf{U}^{\top} \mathbf{x}, \mathbf{x} \approx \mathbf{U z}$
Criteria for choosing U :

- PCA: maximize projected variance
- CCA: maximize projected correlation
- FDA: maximize projected $\frac{\text { interclass variance }}{\text { intraclass variance }}$

Algorithm: generalized eigenvalue problem

Summary

Framework: $\mathbf{z}=\mathbf{U}^{\top} \mathbf{x}, \mathbf{x} \cong \mathbf{U z}$
Criteria for choosing U :

- PCA: maximize projected variance
- CCA: maximize projected correlation
- FDA: maximize projected interclass variance

Algorithm: generalized eigenvalue problem
Extensions:
non-linear using kernels (using same linear framework) probabilistic, sparse, robust (hard optimization)

