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ABSTRACT
Interest in deep learning has exploded in recent years, due
in no small part to substantial advances in the ability to
harness Graphics Processors to train deep learning models
efficiently. The next frontier in machine learning systems
lies in harnessing GPUs to serve these models to users ef-
ficiently. We present Rafiqi, an optimized model serving
system. Rafiqi provides a REST API to classify against an
arbitrary number of user-provided models, and uses GPU
caching and adaptive job batching to provide low-latency
high-throughput classifications. We demonstrate substan-
tial improvements in flexibility and performance over cur-
rent systems.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures

General Terms
Systems, Deep Learning

1. INTRODUCTION
In recent years, there has been an exponential growth in
the general availability of data, which has in turn led to
a major expansion in the commercial and research focuses
on Machine Learning to extract meaning from this data.
Classical machine learning methods, however, usually aren’t
optimal for the complex, multifaceted problems we want to
solve today. For this reason, deep learning[1] has gained
popularity, as it allow us to understand more complex and
nuanced relationships in our data. In the past, deep neural
networks were impractical to use at scale because of the
computing power they demanded to train and predict, but
this has changed significantly in recent years.

A lot of the recent research in machine learning has focused
on utilizing the incredible parallelism afforded by Graphical

Processing Units (GPUs) to make Deep Neural Networks
much more practical. This is due to the fact that these deep
networks are usually made up of a convolution stage as well
as a fully connected neuron stage (which can be computed
by using series of matrix multiplications), both of which are
very parallelizable computations. Modern CPUs tend to
have on the order of 4-16 cores but even consumer-grade
GPUs have hundreds or thousands of cores. GPUs, then,
lend themselves to deep learning, and vastly improve the
speed of deep neural networks. Thus far, however, the vast
majority of work has focused on using GPUs to optimize the
training process [2], with very little literature on optimizing
model serving; that is, making inferences from these trained
neural networks in real time.

Currently, there are still several significant bottlenecks in
performing GPU computations, all of which become more
important in smaller scale computations, like model serving.
First, any data that that is involved has to be transferred to
the GPU via a Direct Memory Access (DMA) memcopy after
a device memory allocation. This makes it hard to justify
the use of GPUs for smaller computations since the over-
head of memory allocation and memory transfer tend to be
overshadow the decreased computation latency of the GPU.
But, in larger computations (like model training), this cost
is amortized over the entire process and becomes neglible.
Since most modern neural networks are very deep (having
many computation layers), a GPU can still pre-process and
classify a single input two to three orders of magnitude faster
than a CPU when including overhead.

To increase efficiency during training, bundles of inputs called
batches are created. These batches are transferred together
to the GPU and can be convolved and matrix multiplied in
a 3D stack fashion. This typically utilizes the GPU to a
much higher degree compared if each input was transferred,
pre-processed and classified sequentially.

However this is hard to accomplish in a real-time setting
due to the fact that we cannot predict future requests. This
now becomes a tradeoff between throughput and latency:
creating larger batches gives better throughput but a longer
per-request latency, as we have to wait longer to fill a batch,
while smaller batches give stronger latency guarantees but
hurt throughput.

Deep Neural Networks tend to be in the order of hundreds of
megabytes to gigabytes in size which can be an issue when



one wishes to perform inference on a variety of models. Cur-
rent systems typically pin models in the GPU and send in-
coming requests to those models. This is a problem because
we can only have at most tens of models running concur-
rently in a single system, and most are usually inactive.

We propose Rafiqi, a system that takes a different approach
to model serving. Rafiqi is an example ”model-serving as
a service,” where the user simply registers all of their mod-
els with our system, and we provide a full REST API from
which they can make predictions and receive results. Rafiqi
incorporates an adaptive batching system that changes with
load, allowing the system to maximize throughput and min-
imize latency under all conditions. Rafiqi also includes a
memory management system that allows a large amount
models to be served simultaneously and asynchronously. This
is accomplished by swapping the least used models out of the
GPU when GPU memory overflows.

The outline of this paper is as follows: section 2 discusses
the two major components in Rafiqi; sections 3 and 4 pro-
vide a detailed analysis of the design of each component;
section 5 evaluates the performance of our system; section 6
discusses related work; we outline future work in section 7
and conclude in section 8.

2. HIGH-LEVEL ARCHITECTURE
Rafiqi is broadly divided into two main components. The
first is a web server and job manager, which includes queu-
ing, batching, and memory management. The second is an
interface to Caffe[3], GPU contexts and memory manage-
ment. This section provides a high-level discussion of each
of these.

2.1 Application Level Architecture
Rafiqi defines two endpoints for clients: /register and /classify.
To classify an input, clients submit a request to /classify
with the name of the model to be used for classification
and the input to be classified. The classify endpoint adds
the job to a system-side queue, where the job is eventually
passed to Caffe for classification. When classification com-
pletes, the system returns the top predictions for the input
to the user. Classification requests for the same model are
batched in groups that adjust in size based on recent demand
for that model, since classification time is substantially im-
proved when we can batch classification of multiple images
for the same model.

Rafiqi supports classification requests for an arbitrary num-
ber of models. In order to be used in a classification re-
quest, the user must first send a request to the registration
endpoint, which persistently stores the model information.
Since models are typically quite large, typically only a sub-
set of registered models are cached in shared memory on
the GPU, in order to reduce classification times. Models
needed for classification that aren’t already in the GPU are
transparently swapped with the least recently used models
on demand.

2.2 GPU Management
In order to have a high performance system, the code was
split into two layers, with a C API as the interface. To per-
form the actual inference of a data input through a neural

Figure 1: The architecture of Rafiqi

network, we use Caffe, a Berkeley-built framework for deep
neural nets. To perform the preprocessing for a data in-
put such as resizing, thresholding or normalization, we use
OpenCV which provides GPU accelerated image operations.
Since Caffe is mostly targeted at training applications, we
also had to implement a context pool that allows multiple
instances of Caffe to be run simultaneously which is needed
if we are to multiplex inferences of the same and different
models. The final step was to add a memory management
system into Caffe that allows to have more powerful control
of where the memory is. This enables us to have an API
that lets us move whole models to the GPU or CPU asyn-
chronously and then pipeline prepreprocessing in an efficient
manner.

3. WEB SERVER AND JOB PROCESSING
Figure 1 provides a diagram of each of the components in
Rafiqi. In this section, we discuss the components of the top
half of Rafiqi in turn.

3.1 Registration
When registering a new model, clients provide a unique
name for the model, and four files needed by Caffe: the
model file, a means file, and a labels file-all on the order of
kilobytes-, and the trained weights file-often on the order
of 100-300MB. Registered models are persistently stored in
BoltDB[4], a lightweight key-value store. When a model is
registered, it is immediately initialized, before returning a
response to the client. We expect that registration of new
models will be relatively infrequent, and do not expect that
the lengthy response time for registration will be a prac-
tical concern. Note also that registration requests can be



interleaved with classification requests without issue.

3.2 Job Processing
Jobs enter the system through our REST API, where each
classification request is sent as a tuple of model identifiers
(unique user-specified strings) and inputs (byte arrays). Our
server forks a new thread for every incoming request for
two reasons: first, each thread will block until it receives a
response; second, we expect many concurrent requests to our
system, precluding sequential processing of each job. Each
thread (which we refer to as a ”job handler”) will package
its incoming request into a job, which consists of a model
identifier and a byte array of an image, and add it to our
global job queue, and then wait for a classification response.

For our global job queue, we decided to use a ”hashy linked-
list”. This is simply a standard linked-list augmented with a
hashtable, where the hashtable maps strings to an array of
pointers to the linked-list. We had a number of requirements
for this queue. First, we needed constant time append and
pop operations, because this queue would have to handle
concurrent insertions and removals by potentially hundreds
of threads. Even a small delay in these operations could
cause a tremendous slowdown in our system, especially un-
der high load. We also needed efficient access to separate
sets of nodes in the linked list, because our system heavily
utilizes per model request batching[5], requiring us to pro-
vide each worker with fast access to the set of jobs under its
assigned model. The hashy-linked list ensures constant time
append and pop operations: each append and pop operation
consist of updating pointers in the linked list, and updating
an array inside the hashtable, all of which is constant time.
The hashtable also allows constant time accesses to all jobs
pertaining to a certain model, letting each worker efficiently
pull a set of jobs from the queue.

In addition to the hashy linked-list, we maintain a separate
threadsafe queue of model identifiers. This represents all
the models that currently have jobs requiring process. We’ll
refer to this as the ”to-process queue.”

The system currently has two main queues: the to-process
queue, and the hashy linked-list. To bridge these two, we
have a background daemon: a constantly-running thread
that wakes up after a certain quanta and loops through every
model. For each model, it checks if the number of currently
queued requests if greater than some threshold; if it is, the
daemon adds that model to the to-process queue, else it
continues looping. This threshold will dynamically change
for each model (which will be described in section 4.3). Once
the daemon is done looping, it goes back to sleep for one
quanta before repeating.

The daemon loops through all the models in Least Recently
Used (LRU) order. It updates this LRU list whenever it adds
a model to the to-process queue. We chose LRU mainly be-
cause it’ll ensure fairness. Consider the case we pass through
the list with some static ordering, and some model that we’ll
call A is besieged with requests. Every model that’s after A
in our ordering will be forced to wait for A’s jobs to com-
plete. If models after A also have a high number of requests,
then latency will increase dramatically, which will not scale.
With LRU ordering, however, model A will remain near the

end of the list, so other models can still have their jobs pro-
cessed without constantly waiting on A’s large batches. This
significantly reduces the increased latency that comes with
high load, allowing the system to scale gracefully.

Once a model is added to a to-process queue, it needs to be
assigned to a worker. We accomplish this using a dispatcher
- a background thread that pulls model identifiers off of the
to-process queue and assigns them to workers. We used a
dispatcher, rather than having workers directly wait on the
to-process queue, because it affords us flexibility. Through
the dispatcher, we can make a simple interface to start or
kill new workers, or view a worker’s status. It also provides a
layer of abstraction between workers and the queue, which
allows us to change the queue without changing workers.
And, since the dispatcher doesn’t acquire any locks and is
usually sleeping, the overhead it introduces is negligible.

We have k workers running at any one time, where k is
the number of parallel model executions possible on each
GPU (this is determined contexts, which we discuss in sec-
tion 5). We only have k workers running simultaneously for
two reasons. First, our workers are pretty minimal and have
very few delays - besides the Caffe call made for classifica-
tion, we don’t have any long, blocking operations - so extra
workers wouldn’t be helpful in amortizing pre-classification
costs. And, because only k classification jobs can execute
in parallel, more workers would just lead to more blocked
threads. Having fewer workers also means that our queue is
less contested, which reduces concurrency delays.

Workers handle all communication with Caffe, and perform
the actual classification, which is a blocking call into Caffe’s
C++ API. This prevents any other part of the system from
having to block on C++, reducing other delays. Results are
then taken directly from the classification call and passed
onto the job’s output queue. The Job Handler, which has
been waiting on this queue, will now wake up and complete
the request by returning the output.

3.3 Adaptive Batching
Our current system, with a fixed batching threshold, will
not adapt to changes in system load. A fixed threshold sig-
nificantly increases job latency during low-load situations,
because jobs are forced to wait until enough accumulate to
reach the threshold. It also severely reduces throughput un-
der high load, because the threshold will be too low and
batch sizes will be too small. So, it’s necessary to have the
threshold change with current system load to prevent un-
necessary performance delays.

We had two major constraints for our adaptive threshold:
it needs to increase gradually with load, but decrease very
rapidly with a load falloff. A rapid decrease prevents load
falloffs from artificially inflating Rafiqi’s latency. Rapid de-
crease is also necessary because threshold that’s too high
is much more harmful than a low threshold that’s too low:
if the threshold is too low, the system will continue with
reduced throughput, but if the threshold is too high, the
system will actually stop making progress until the thresh-
old is met. Then, a gradual increase is needed for a similar
reason: we need to ensure that the system is almost always
making forward progress. Also, a gradual increase will pre-



vent overreaction to short load spikes,

Our first attempt at an adaptive threshold was to use an
additive increase and a multiplicative decrease, similar to
TCP’s windowing[6]. For the multiplicative decrease, we
divided the threshold by two whenever the number of re-
quests in the current quanta was less than the threshold.
This works very well in creating a rapid decrease, and with
our empirically tested threshold cap of 128, it only takes 7
quanta for the threshold to return to 0. Quanta are an ad-
justable parameter, but the usual is about 5 milliseconds,
so it takes 35 milliseconds for the threshold to return to 0.
Then, in the worst case, where the load goes from ≥ 128 to
1, we only add 35 milliseconds of latency.

For additive increase, when the number of requests for that
model were greater than the threshold in the current quanta,
we simply increase the threshold by the number of requests.
This, however, isn’t entirely desirable. Additive increase
causes the threshold to rise too quickly, adding a lot of la-
tency to the system as the threshold is constantly forced to
decrease.

Instead, for additive increase, we decided to use exponential
averaging [7]. This changes our update to the following (let t
be the threshold for a certain model, and let c be the number
of requests for a model in the last quanta):

t = α ∗ t+ (1− α) ∗ c

Here, alpha is a configurable parameter we can set; we found
empirically that our best alpha was about 0.5.

This update significantly improved performance, as expo-
nential averaging induces a bit of lag in our system, prevent-
ing the threshold from rising too quickly. It also smooths
out sudden variations in load, insulating the threshold low-
duration load spikes.

3.4 Memory Management
As noted above, initialization of a model for the first time
takes on the order of 30 seconds per model. Additionally, in
order to perform a classification on the GPU, models need
to be transferred from RAM into shared memory on the
GPU, and frame buffers for images need to be allocated.
Models are often quite large: Caffe’s reference image classi-
fication model is roughly 233MB. Since Rafiqi aims to effi-
ciently support requests for an arbitrary number of models,
we implement a memory manager to reduce initialization
and transfers as much as possible.

Our memory manager uses the shared memory of a sin-
gle GPU as a cache for model data. Users can configure
the maximum amount of GPU memory to be consumed by
Rafiqi, which defaults to the total memory of the GPU, and
they can also provide a limit on the total number models
loaded in the GPU at any time.

For the remainder of this section, we use ”the GPU” to refer
to the memory-managed GPU. Other GPUs connected to
the same physical machine can be utilized for processing,
but will not be managed by the memory manager.

The memory manager keeps a global state of all initialized
models, and includes their location in RAM, as returned by
model init, and whether they are currently cached in the
GPU. It also maintains an LRU list of all cached models
in decreasing order of most recent classification time. This
list is updated whenever a worker begins classification for a
model.

It has a single method: LoadModel. LoadModel takes
a model name, and checks internal caching state for that
model. If necessary, it transfers the model to the GPU cache.
It updates the model’s position in the LRU, and returns a
representation of the model.

When a Rafiqi server starts, the memory manager first ini-
tializes all registered models. As a result, no classification
request will ever incur the cost of an initialization. During
this process, it also produces and stores persistently an esti-
mate of the size of the model on the GPU using a sample of
consumed GPU memory before and after loading the model.
This estimate will be used to determine whether a model can
be loaded onto the GPU during a classification. When the
preloading process completes, it will leave an arbitrary set of
all models loaded in the GPU cache when the server begins
accepting requests.

When a classification request is processed by a worker, the
worker calls LoadModel to retrieve the internal model rep-
resentation. If this model is not loaded into the cache, then
the memory manager uses the estimate of the model size
to determine whether the model could fit within the user-
imposed size constraints on the cache. If not, then the mem-
ory manager begins evicting the least recently used models
from the cache. To maintain consistency, we impose the
constraint that only a single model can be in the process of
being loaded into the GPU at a time. Once enough space
has been freed on the GPU, the model is transferred to the
GPU, internal state is updated, the LRU list is updated,
and the model is returned to the worker.

3.4.1 Eviction
The process of moving models to and from the GPU is
performed via Cgo calls. To avoid completely destroying
a model during an eviction, and thereby requiring a com-
plete initialization on the next classification request, we im-
plemented a to gpu function that transfers a model to the
GPU and re-allocates the associated image buffers, and a
to cpu function that syncs all GPU-cached model to CPU
RAM and frees all the data associated with a model that is
stored on the GPU.

As noted in the previous section, transferring models to the
GPU can be a lengthy process: a call to to gpu for Caffe’s
reference image classification model can take up to 90ms,
over 10x the time needed to perform a classification. In order
to reduce the cost of this transfer as much possible, to gpu
is implemented asynchronously. Data is transferred by the
GPU in the background. If data hasn’t finished transferring
by the time the classification begins, then the classification
blocks on the completion of the transfer.



3.4.2 Limitations
The memory manager makes one crucial assumption: it
assumes that no other process is using the GPU. When
the memory manager samples GPU memory usage, it uses
a CUDA API[8] which only supports sampling total GPU
memory usage, not per-process memory usage. As a re-
sult, if another process is using the GPU, then it could
cause Rafiqi’s memory management decisions to be incor-
rect. However, since the memory manager only operates on
a single GPU, other processes would be free to use other
GPUs connected to the machine.

3.5 Classification
When the web server receives a classification request, it cre-
ates a new thread and passes request information to a re-
quest handling function. The request handler reads the in-
put into memory, and creates a job containing the name of
the model, the input, and a pointer to a thread-safe queue
to be used for the communicating the result of classification.
The request handler then sleeps until either data is placed
onto the job’s result queue, or a timeout expires, indicating
that an error has occurred somewhere in the processing of
the job. Once data is received on the job’s result queue or
the timeout expires, the data (or error message, in the case
of timeout) is sent to the client in the form of JSON, and
the request handling thread exits.

3.6 Implementation
The main web server is written in Google’s Go[9], a statically-
typed, compiled, garbage-collected language. Our decision
to use Go for the web server was motivated by the following:
first, Go has an efficient and highly scalable web server as
part of the standard library; second, garbage collection and
a simple type system enabled more rapid development at a
minimal performance cost; third, we made heavy use of con-
currency in the queuing and batching components, and Go
includes a lightweight green thread implementation, along
with concurrency primitives that made concurrency efficient
and straightforward to reason about; finally, Go has a mech-
anism for interacting with C code called Cgo[10, 11]

The use of Cgo incurs a minor performance hit for every C
call on the order of 10x, or 120ns per call, as a result of
Cgo interactions with the Go scheduler[12]. Since calls into
C happen only a small number of times per classification,
and the time spent on classification dwarfs the time lost
to the Cgo interface, we consider this an acceptable perfor-
mance cost. It is also important to note that the use of Cgo
adds some complexity to reasoning about concurrency: Go
threads that make Cgo calls have to be executed in their
own OS thread, so as to not block the Go scheduler. As a
result, we ensured that only pre-allocated worker routines
and registration request handlers make Cgo calls.

4. GPU MANAGEMENT
The GPU management component of Rafiqi is directly re-
sponsible for initializing and calling Caffe functions. For
every model, k context objects per GPU are created and
stored in a threadsafe queue, leading to a total of k ∗N ∗M ,
where N is the number of GPUs and M is the number of
models. Context objects maintain a reference to an initial-
ized neural network wrapper class that we created, which, in

turn, maintains state about the loaded Caffe model. When
a classification request is made, a single context is removed
from that model’s context pool. If none are available, then
the worker blocks until one is. Once a context is acquired,
the classification request is executed, and once it finishes, the
context is returned to the context pool. If the model wasn’t
in the GPU memory, then the memory manager would call
into GPU Management and start the transfer of the model
before the classification process begins. All of the GPU man-
agement is written in C++, which gives us access to the
C++ libraries of Caffe and OpenCV but also allows us to
make a C interface that Cgo can call.

4.0.1 Modifying Caffe’s Memory Management
Caffe does not provide a public interface for forcing trans-
fers of neural networks between the CPU and GPU. So we
created a fork of Caffe and modified how memory is han-
dled. Internally, Caffe represents models as a sequence of
network objects. Each network object is itself a sequence
of blobs of data. These blobs implement methods to en-
sure synchronization between the CPU and the GPU. Our
first modifications to the memory management allowed us to
make blocking calls that first allocated the frame buffer in
the GPU and then transferred the data synchronously. This
on average took around 60ms on a Titan X on a 233MB
model. Our second version allowed us to perform these ac-
tions asynchronously, which then only took 3ms on average.
This mostly consisted of allocating the GPU memory. The
main challenge in asynchronous memory calls was that we
had to synchronize all state before the worker performed a
forward pass.

Then, this asynchronous model allowed for preprocessing of
inputs to be done in parallel, also asynchronously. To enable
asynchronous transfers, we had to force the system to pin
hardware pages when keeping the models in CPU DRAM.
This allows the actual DMA to occur without page transla-
tion. This, however, increases the time to initialize a model,
since pinned pages have to be memory allocated. Pinned al-
location is much slower than allocating virtual memory, but
gives us much better memory bandwidth utilization.

4.0.2 GPU Processing Pipeline
To improve Rafiqi’s performance, we also use CUDA Streams
to allow the GPU to overlap computations and memory op-
erations. A CUDA stream allows us to perform actions asyn-
chronously with the promise that the operations in a specific
stream will be performed serially. This allows the GPU to
overlap different streams to utilize more of the GPU’s pro-
cessing power and memory bandwidth. We create a CUDA
stream for each context of each model. This allows each
model to be transferred to the GPU and start pre-processing
the input batches concurrently with other contexts of the
same model and even other models. We modified Caffe
such that we could pass in a CUDA stream to perform the
memcopy on the owner context’s stream. Pre-processing for
the classifier is done by OpenCV[13] which provides vector
operations for CUDA. To implement this in our applica-
tion, we wrapped OpenCV asynchronous sreams with our
CUDA stream that we use per each context. This gives the
promise that all operations for each context occur serially,
which we need to perform preprocessing, but that the pre-
processing of one context may happen before or after the
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Figure 2: An analysis of the latencies of various ac-
cess patterns of 5 models when the cache is limited
to a maximum of 4 at any given time.

memcopy/preprocessing of another. Without this, all oper-
ations would have to be performed serially, which is a major
performance issue.

4.0.3 Context Pool and Slab Allocator
For each model, we create a threadsafe, blocking queue of
contexts that gives us multiple replicas of a single neural
network. This allows us to have multiple workers perform-
ing batches of a single model concurrently, which is helpful
when a model is extremely popular. But, we don’t want
excessively large batches, however, because that would give
inconsistent latencies. Instead, whenever a context is initial-
ized or moved to the GPU, we allocate a new frame buffer
of GPU memory. This is used by a slab allocator we made.
We then get the benefit of our input matrices being padded
and cache aligned, as well as having the data in a fixed place
in the GPU RAM. This expedites asynchronous operations
during preprocessing. Then, when a worker acquires a con-
text, slab allocator’s pointer is reset to the start of the allo-
cated memory. Finally, when the memory manager evicts a
model from the GPU, we free the allocated memory of that
frame buffer.

5. EVALUATION
In this section we present the evaluation of our model-serving
system. All benchmarks are run using a slightly modified
version of Boom[14], a Google-sponsored Go implementa-
tion of the standard Apache Benchmarking tool, ab. We
use Boom to send a request to the classification endpoint
with an image in the request body

5.0.1 Concurrent Loads
Our first benchmark was performed on a UC Berkeley Aspire
Lab millennium machine, with eight Nvidia Titan X GPUs
and a Xeon Intel CPU. We sent an increasing number of
concurrent requests for a single model at our system and
Nvidia’s GPU REST Engine, and recorded how through-
put and latency changed as concurrency increased. For this
experiment, we used a maximum batch size of 128 and a
quanta of 10 milliseconds. As seen in Figure 3, what we
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found was that as concurrency increased, Nvidia’s system
didn’t show any increase in throughput, because it doesn’t
batch requests, but it had major increases in latency due
to its sequential processing of each request. Meanwhile, our
system adapted to changing load - as requests increased,
the throughput improved while the latency remained fairly
stable. After 27 active requests, our throughput began to
decrease and latency increased significantly - this is our ”in-
flection point,” where batch sizes become too high and cause
the system to spend an inordinate amount of time waiting on
worker threads. One possible resolution to this issue is using
adaptive quanta, a feature we discuss in depth in section 7.

5.0.2 Access Patterns
Our next benchmark tested the latency of our system when
models overran GPU memory. This benchmark was run on
the UC Berkeley AMPLab millennium machines, which are
equipped with dual 12-core Intel Xeons and a single NVIDIA
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Figure 5: A comparison of Rafiqi and NVIDIA’s GPU REST engine for varying concurrent loads on a single
Titan X GPU. The dotted line indicates the steady state of the system, where throughput is maximized and
the response return rate is equal to the incoming request rate.

Tesla K20c GPU. All models are identical versions Caffenet
retrieved from the Caffe model zoo[15].

In all of the following benchmarks, we limit the maximum
number of cached models to at most four. We use a batching
daemon quanta of 5ms, 1 GPU context, a max batch size of
8, and 4 worker threads.

We register five copies of Caffenet, forcing our system to
swap models in and out of memory. Then, we set our re-
quest concurrency to one and used three different access pat-
terns to benchmark our system. We used 1000 requests for
every model. First, we used a sequential access pattern,
which is the worst case for an LRU memory manager, be-
cause it forces the system to swap models at every request
(”thrashing”). Then, we used a uniform, random distribu-
tion to choose models to request. Finally, we use a power law
(Zipf) distribution drawn from [16] using alpha=1.1, which
is our approximation of a real-world scenario: the top model
receives 50% of requests, the next receives 37.5%, and so
on.

The results of this can be seen in Figure 2. As expected, our
sequential accesses performed the worst. But, while we had
a much higher average latency for this, our 99th percentile
was almost the same as the other two, indicating that our
GPU memory operations are a fairly static cost that can be
amortized over a larger volume of requests. The uniform ac-
cess pattern, on the other hand, has a much better average
latency than the sequential access pattern, but it increases
rapidly. However, this is expected: for any given request in
a uniform distribution, there’s a 1/N chance of triggering
a swap, where N is the number of registered models. Uni-
form has a much higher 99th percentile latency than 80th
percentile latency, because 1/N = 1/5 = 20% of requests
triggered evictions and swaps. Finally, the zipf distribution
performed the best because it triggered the fewest swaps, as
50% of requests went to the same model. Zipf also has a
long tail, however, because its less-accessed models always

trigger evictions.

In our next benchmarks, we plot latency and throughput as
a function of the number of models being accessed. We ac-
cess models with a concurrency level of 1 request in flight at
a time. Figures 3 and 4 show the results of this test. The se-
quential access test is a worst-case evaluation, as it requires
a swap on every single incoming request (with more than 4
models and it shows: once models begin swapping, through-
put is reduced to 20% of a run without any swapping, and
latency is 5 times higher. Since they experience fewer swaps,
uniform random and zipf distributions both perform better
in throughput, taking roughly a 50% throughput hit, but
taking an latency hit that is roughly equal to the worst-
case. The substantial latency increase for all patterns is the
result of a lack of concurrency in the benchmark: anytime
a request swaps, the classification takes 90 additional mil-
liseconds, and no other requests can happen at the same
time. Unfortunately, we were unable to benchmark high-
concurrency model swapping due to a rare bug that occurred
only occasionally during highly-concurrent model-swapping
access patterns.

6. RELATED WORK
There have been a number of model-serving system released
relatively recently. Many of them are serving systems based
on established deep learning frameworks. We discuss several
such systems in turn.

Nvidia has invested heavily in GPU-based deep learning.
Rafiqi is based on Nvidia’s GPU REST Engine[17], which
provided the initial Go-C++ framework and initial archi-
tecture of the Caffe interface. At present, Nvidia’s sys-
tem is designed to optimize low-latency serving of a single
model. As a result, its memory management is limited: a
single model is loaded at start-time onto all GPUs, and re-
mains there for the duration of the system’s runtime. Since
Nvidia prioritized low-latency, their system does not batch
requests, although they list this as a candidate future fea-



ture. As shown in section 5, our implementation of batching
only modestly raised latency while providing a substantial
throughput gain.

However, the GPU REST engine provides multi-GPU sup-
port out of the box, while Rafiqi does not currently support
utilizing multiple GPUs. This enables Nvidia’s system to
support higher throughput on multi-GPU systems. We ex-
pect that the introduction of multi-GPU support to Rafiqi
would substantially improve our performance on such sys-
tems. Support for multi-GPU systems in Rafiqi is discussed
in detail in section 7.

Tensorflow Serving[18] is a model serving system built on top
of Google’s deep learning library, Tensorflow. At present,
Tensorflow is aimed at large-scale datacenter deployment[19],
and does not focus on optimizing single-node performance.
Due to an extremely complex setup procedure, we were un-
able to produce direct comparative evaluations of Tensor-
flow Serving. However, previous comparative evaluations
of deep learning frameworks have indicated that, for large
batch sizes on the GPU, a single forward pass in Tensorflow
takes roughly twice as long as a forward pass in Caffe[20].

7. FUTURE WORK
We also see room for improvement in the following areas:

7.1 Multi-GPU Support
Many production systems are equipped with multiple high-
performance GPUs. Future work could markedly improve
the system by load balancing requests across GPUs, as in
[21]. In addition, the memory management system could
be modified to cache models across GPUs, to increase cache
capacity. The scheduler and batching system could incorpo-
rate awareness of model cache locality, and prioritize schedul-
ing classification jobs on the GPU where models are cached
and where utilization is low.

7.2 Higher Concurrency Model Swapping
Our evaluation demonstrated that model-swapping causes
a severe performance penalty without further optimization.
In addition to better support for multiple GPUs, future it-
erations of Rafiqi would benefit from a more sophisticated
locking framework for the memory manager, in order to per-
mit higher concurrency of classifications and swaps during
model-swapping access patterns. In addition, the scheduler
could be made aware of what asynchronous to gpu transfers
are in progress, and incorporate the GPU transfer penalty
into its batching and scheduling decisions, by avoiding schedul-
ing jobs for a model if an asynchronous transfer is still in
progress.

7.3 Adaptive Quanta
Currently, the batching daemon has a static quanta. How-
ever, this leads to performance issues: if the quanta is too
large, requests will accumulate on the queue, while if the
quanta is too small, batch sizes are too small, causing through-
put to suffer. An interesting optimization would be to have
an adaptive quanta, using exponential averaging, that changes
based upon the time it takes for a single classify request.
This would involve having a different daemon per model,
but would ensure that the daemon wakes up right after the

classify completes, creating less waiting time for the worker
threads.

8. CONCLUSION
This paper presents the design and architecture of Rafiqi,
a model-serving system optimized to reduce the latencies
inherent in using the GPU for processing in a low-latency
environment. We demonstrate that Rafiqi’s batching sys-
tem substantially improves throughput over NVIDIA’s GPU
REST engine in highly concurrent single-GPU environments,
at a minimal latency cost, while simultaneously supporting
requests for and caching of an arbitrary numbers of models.
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